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Abstract

The prime objective in construction industry is to complete the planned activities of
project in time. Arranging these activities in proper time sequence is a formidable
task. Various methods like network based and non network based have been applied
for scheduling in Construction Industry. Activities can be scheduled to comply with
constrained resource usage, after the critical path has been identified. This involves
determining the start time of non critical activities within the total float. The other
aim is to make the resource usage as smooth as possible. Some times different time
estimates are available for activities. Although lower project duration leads to higher
direct costs, indirect costs are also decreased. In such a case it is important to study
the trade off between completion time and cost of the project. These problems, when
formulated mathematically as optimization problems, are N'P — complete. Since no
solution techniques which can guarantee the optimal solution in polynomial time
are available, non traditional approximation algorithms like Genetic Algorithms,
Ant Colony Optimization (ACO) have to be used.

The objective of this work is to develop methods for scheduling problems in con-
struction utilizing the power of non traditional optimization methods. As part of the
project, a software to find the critical path of a network based construction schedule
has been developed in C on Linux operating system. This program can takes the
input as activity precedence relationships and duration of the activities; and gives
the project duration and critical path as output. A software in C for optimization
of a general mixed integer non linear programming problem using Ant Colony Op-
timization has also been developed. The constrained resource allocation problem
has been solved using the ACO technique, where the objective is to minimize the
total cost of the project with resource availability and precedence relationships as
constraints. Results on a test problem indicate that the present model could find
better solutions than reported in literature. A formulation for the multiobjective
time-cost trade-off problem has also been presented. Here two objectives of project
duration and direct cost are considered and the aim is to find a trade-off curve for
these two objectives by choosing a combination of available resource utilization op-
tions for activities of the network. To solve this multiobjective time-cost trade-off
problem, a genetic algorithm called NSGA II was used and case study on a popular
test problem indicates that the method could successfully obtain a diverse set of
solutions on the time-cost trade-off curve.
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Chapter 1

Introduction

1.1 Introduction

Construction planning is a fundamental and challenging activity in the manage-
ment and execution of construction projects. It involves the choice of technology,
the definition of work tasks, the estimation of the required resources and durations
for individual tasks, and the identification of any interactions among the different
work tasks [206]. A good construction plan is the basis for developing the budget
and the schedule for work. Developing the construction plan is a critical task in the
management of construction, even if the plan is not written or otherwise formally
recorded. In addition to these technical aspects of construction planning, it may
also be necessary to make organizational decisions about the relationships between
project participants and even which organizations to include in a project. For exam-
ple, the extent to which sub-contractors will be used on a project is often determined
during construction planning.

Forming a construction plan is a highly challenging task. As Sherlock Holmes noted:

Most people, if you describe a train of events to them, will tell you what
the result would be. They can put those events together in their minds,
and argue from them that something will come to pass. There are few
people, however, who, if you told them a result, would be able to evolve
from their own inner consciousness what the steps were which led up to
that result. This power is what I mean when I talk of reasoning backward

[12].

Like a detective, a planner begins with a result (i.e. a facility design) and must
synthesize the steps required to yield this result. Essential aspects of construction
planning include the generation of required activities, analysis of the implications



1.2 Scheduling Techniques 2

of these activities, and choice among the various alternative means of performing
activities. In contrast to a detective discovering a single train of events, however,
construction planners also face the normative problem of choosing the best among
numerous alternative plans. Moreover, a detective is faced with an observable result,
whereas a planner must imagine the final facility as described in the plans and
specifications.

Project management is the principle of planning different projects and keeping them
on track within time, cost and resource constraints. Making a schedule for construc-
tion means: making a plan with the sequence of operations and the list of resources,
i.e., work force materials, amchines as they corresopnd to the project [21]. Schedul-
ing of a construction project is challenging because:

e A construction project involves hundreds sometimes thousands of activities
and the proper sequencing of so many activities demands a lot of knowledge
and years of experience.

e Hundres of independent resources can be usedin a construction project and
these resources are often limited both in time and size.

e Many constraints have to be satisfied e.g. deadline of major phases, the com-
pletion date of construction, budget constraints etc. TO stay within the dead-
line and budget is usually the most serious problem.

e Finally, the reason why it is so difficult to make a schedule is the complexity
and the computational work involved!

Modern techniques of project management are made use of by managers who deal

with planning scheduling and control of the projects. A well organized construction
project is finished quicker and cheaper than a badly organized.

1.2 Scheduling Techniques

Scheduling techniques can be classified in many ways, traditional or non traditional
and network based or non network based.

1.2.1 Traditional Scheduling Techniques

Some of these techniques are

1. Bar chart method

2. Mile stone charts
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3. Linear Scheduling method.

All these techniques are non network based.

1.2.2 Non Traditional Scheduling Techniques

Following Non Traditional Scheduling Techniques are currently in use

1. Critical path method(CPM)
2. Programme evaluation and review technique(PERT)

3. Precedence Diagramming Method(PDM)

All these techniques are network based, so one can say that modern techniques are
network based while traditional are non network based scheduling techniques.

1.3 Network Based Scheduling Techniques

Network Based Scheduling Techniques have evoled due to overcome the limitations
traditional scheduling techniques. Two most important problems to be addressed
were

1. Emphasis on logical relationships.

2. Division of planning and scheduling into two separate phases

The heart of a network based technique is always a graph, a set of nodes and
connected arrows. Observing Fig. 1.1, it can be seen how clearly the graph presents
the network logic. For example in Fig. 1.1 activity A has to be completed before
activity B can start. Generally we say that all activities preceding a given activity
must be completed before the activity in question can be started.

1.3.1 Basic Steps in Network Based Scheduling Techniques

The network based project management methodology embodies the following steps
in order of appearance:
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Step 1 | Defining Activities
Planning | Step 2 | Defining Activitiy Interdepencies
phase | Step 3 | Drawing the network
Step 4 | Time and Resource Estimation
Scheduling | Step 5 | Basic Calculations
Phase | Step 6 | Advanced Calculations
Control | Step 7 | Project Control
Phase | Step 8 | Project Review

Planning and scheduling is a dynamic process and iterative process. If results ob-
tained are not satisfactory, one may have to go back to previous steps.

Figure 1.1: Activity-on-Branch Representation of a Nine Activity Project

1.4 Resource Constrained Scheduling

In a real project construction resources like crew sizes, equipment and materials
are limited. The unlimited resources assumption in the traditional CPM technique
is not feasible [31]. In this section, we shall review some general approaches to
integrating both concerns in scheduling.

Two problems arise in developing a resource constrained project schedule. First, it
is not necessarily the case that a critical path schedule is feasible. Because one or
more resources might be needed by numerous activities, it can easily be the case that
the shortest project duration identified by the critical path scheduling calculation
is impossible. The difficulty arises because critical path scheduling assumes that
no resource availability problems or bottlenecks will arise. Finding a feasible or
possible schedule is the first problem in resource constrained scheduling. Of course,
there may be a numerous possible schedules which conform with time and resource
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constraints. As a second problem, it is also desirable to determine schedules which
have low costs or, ideally, the lowest cost [20].

Numerous heuristic methods have been suggested for resource constrained schedul-
ing. Many begin from critical path schedules which are modified in light of the
resource constraints. Others begin in the opposite fashion by introducing resource
constraints and then imposing precedence constraints on the activities. Still others
begin with a ranking or classification of activities into priority groups for special
attention in scheduling. One type of heuristic may be better than another for dif-
ferent types of problems. Certainly, projects in which only an occasional resource
constraint exists might be best scheduled starting from a critical path schedule. At
the other extreme, projects with numerous important resource constraints might be
best scheduled by considering critical resources first. A mixed approach would be
to proceed simultaneously considering precedence and resource constraints.

1.4.1 Resource Levelling

The resource leveling problem arises when there are sufficient resources available
and it is necessary to reduce the fluctuations in the pattern of resource usage [13].
These fluctuations are very undesirable because they often present labor, utilization,
and financial difficulties for the contractor. The scheduling objective is to make
the resource requirements as uniform as possible. In resource leveling there are
no resource limits and the process is accomplished by shifting only the onocritical
activities within their available float, the project duration of the original critical
path remains fixed.

1.4.2 Resource allocation

Resource allocation is also called constrained resource scheduling. Resource alloca-
tion attempts to reschedule the project tasks so that a limited number of resources
can be efficiently utilized while keeping the unavoidable extension of the project to
a minimum. The variables considered in this problem are the priorities for resource
allocation of the activities. These priorities in turn determine the start time of
the non critical activities. Hence one can also take the activity start times of the
non critical activities as the variables in such a problem. Constraint is imposed on
the available resource of each type. The objective is to find the minimum project
duration.



1.4 Resource Constrained Scheduling 6

1.4.3 Current approaches to resource scheduling

An approach to resource allocation with integer linear programming was presented
in [28]. It was assumed that some resources are limited and when the requirement is
exceeded then those resources have to be borrowed / leased with associated leasing
cost. A predetermined pattern of resource usage for each activity was used to find
the resource deficit. The objective function used is minimization of total leasing cost
over the project duration subject to the network logic. However resource leveling was
not attempted. The model has the capability of mapping continuous, intermittent,
uniform and non uniform activities. The variables considered were start and stop
times of each activity. The model can be used to help plan the preliminary resource
requirements and make lease versus buy decisions. All integer linear programming
problems are NP — Complete [2, (], so there is no guarantee that this model will
guarantee optimal solution. The number of variables are very large due to the binary
mapping of each day during the total float, hence the model may not be very useful
for large projects.

A integer linear programming model for resource leveling was proposed in [13] for
small to medium sized projects. Easa (1989) has assumed that resource availability
is unlimited, and the total amount of resource consumption due to an activity is
known. The variables considered are the starting time of non critical activities
subject to the limits of earliest start time and latest start time. Once the start
times of all the activities are known the resource usage pattern can be determined.
Required ( or uniform) resource usage rate of each resource is calculated as total
resource consumption divided by the project duration. The objective function is to
minimize the cumulative difference resource usage from the uniform resource usage
for the project duration. The model was implemented for two sample problems with
good results, however the earlier qualifications for integer linear programming still
apply to this model.

An integrated approach to resource leveling and constrained resource scheduling
was presented in [5]. Chan et al. (1996) has considered the ordering of scheduling
activities as variables. Based upon the ordering of activities, start times are obtained
and used to find the resource usage pattern. The objective is to minimize the
weighted sum of the deviation of resource usage from availability for each resource
from start to end of the project. A penalty is imposed upon the objective function if
the usage of any resource crosses a predetermined resource availability. A schedule
builder was designed which can take care of network logic while “constructing” the
solution. The solution technique used is Genetic Algorithms [20], a biologically
inspired optimization technique. Encouraging performance was observed on small
as well as large projects. However, Genetic algorithms may not converge to the
optimal solution quickly and one does not know whether the “best” found solution
is an optimal solution. But GAs have been found always to give good solutions.

Hegazy (1999) [22] presented a different approach to simultaneous resource leveling
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and constrained resource scheduling using Genetic Algorithms. The methodology
was implemented in a commercial software, Microsoft Project [39], thereby making
it easier for practitioners to adopt the technique. This technique makes use of the
“Activity Priority” feature of MS Project. After a set of priorities are assigned for
all the activities, the software calculates the resource usage pattern. Two objective
functions were suggested:

1. Moment of the resource histogram about X (time) axis, M.

2. Moment of the resource histogram about Y (Resource ) axis, M,

Objective 1 can be used when the focus is on reducing project resource fluctuations,
while objective 2 can be used when the focus is on reducing the resource utilization
period. The sum of both the objectives can be used when the focus is on both
aspects. Each gene in the Genetic Algorithm chromosome represents the activity
priority ( from Very High to Lowest). A macro program in MS Project was coded.
Although “Multiobjective search using Genetic Algorithms” is discussed, in reality
only one objective was used in implementation . It is not clear how the resource
constraints are incorporated, since it is mentioned only during introduction but not
in the formulation. Hegazy et al.(2000) [25] presented an algorithm for scheduling
using multi skilled constrained resources, where resource constraints for multiple and
multi skilled resources are taken into account. Hegazy and Ersahin(2001) [23] pre-
sented the spread sheet model for integrating critical-path network scheduling with
time-cost trade-off analysis, resource allocation, resource levelling and cash flow
management. The model uses the total project cost as the objective function to be
minimized. To facilitate this large-size optimization, a nontraditional optimization
technique genetic algorithms is used to locate the globally optimal solution.
Hegazy and Kassab (2003) [24] presented a new approach for resource optimization
by combining a flow-chart based simulation tool with a powerful genetic optimization
procedure. The proposed approach determines the least costly, and most produc-
tive, amount of resources that achieve the highest benefit/cost ratio in individual
construction operations. To further incorporate resource optimization into con-
struction planning, various genetic algorithms GA-optimized simulation models are
integrated with commonly used project management software. Accordingly, these
models are activated from within the scheduling software to optimize the plan. The
result is a hierarchical work-breakdown-structure tied to GA-optimized simulation
models. It was proposed that computer simulation and genetic algorithms can be
an effective combination with great potential for improving productivity and saving
construction time and cost.

Mattila and Abraham (1998) [30] presented a method to level the resources of a
typical highway construction project that was scheduled using the linear scheduling
method. The integer linear programming resource leveling formulation presented
uses the concepts of rate float and activity float. The objective was to find a set
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of start times of activity to minimize the deviations of resource usage above and
below the desired usage rate. There is no limit on resource usage. In an exten-
sion to this model, Mattila and Park (2003) [37] proposed linear scheduling model
and the repetitive scheduling method. This paper discusses basic linear scheduling
techniques and then calculates critical activities of basic linear scheduling elements
using two methods. The results of two techniques are then compared.

El-Rayes and Moselhi (2001) [15] has developed an automated model for optimizing
resource utilization for repetitive construction projects. The model is based on a
dynamic programming formulation, designed to identify an optimum crew forma-
tion and interruption option for each activity in the project that leads to minimum
project duration. The model incorporates a scheduling algorithm and an interrup-
tion algorithm. The scheduling algorithm complies with job logic, crew availability,
and crew work continuity constraints. The interruption algorithm generates a set
of feasible interruption vectors for each crew formation to be used as a second-state
variable in the dynamic programming formulation. A project example from the lit-
erature was analyzed in order to demonstrate the use of the model and illustrate
its capabilities. Extending this methodology, Moselhi and Hassanein (2003). [35]
presented a model, designed to optimize scheduling of linear projects. The model
employs a two-state-variable, N-stage,dynamic programming formulation, coupled
with a set of heuristic rules. The model is resource-driven, and incorporates both
repetitive and non repetitive activities in the optimization process to generate practi-
cal and near-optimal schedules. The model is implemented in a prototype software
that operates in Windows environment. It is developed utilizing object-oriented
programming and provides for automated data entry. Several graphical and tabular
output reports are be generated.

Elazouni and Gab-Allah(2004) [16] introduced an integer-programming finance based
scheduling method to produce financially feasible schedules that balance the financ-
ing requirements of activities at any period with the cash available during that same
period. The proposed method offers two fold benefits of minimizing total project
duration and fulfilling finance availability constraints. This model was extended for
use with Genetic Algorithms in [17] with considerable improvements.

1.5 Time cost trade off

The previous sections discussed the duration of activities as either fixed or random
numbers with known characteristics. However, activity durations can often vary
depending upon the type and amount of resources that are applied [26]. Assigning
more workers to a particular activity will normally result in a shorter duration.
Greater speed may result in higher costs and lower quality, however. In this section,
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we shall consider the impacts of time, cost and quality tradeoffs in activity durations.
In this process, we shall discuss the procedure of project crashing as described below.

A simple representation of the possible relationship between the duration of an
activity and its direct costs appears in Fig. 1.2. Considering only this activity in
isolation and without reference to the project completion deadline, a manager would
undoubtedly choose a duration which implies minimum direct cost, represented by
D;; and Cj; in the figure. Unfortunately, if each activity was scheduled for the
duration that resulted in the minimum direct cost in this way, the time to complete
the entire project might be too long and substantial penalties associated with the
late project start-up might be incurred. This is a small example of sub-optimization,
in which a small component of a project is optimized or improved to the detriment
of the entire project performance. Avoiding this problem of sub-optimization is a
fundamental concern of project managers.
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Figure 1.2: Illustration of a Linear Time/Cost Tradeoff for an Activity (from [26])

At the other extreme, a manager might choose to complete the activity in the
minimum possible time, Df;, but at a higher cost C;. This minimum completion
time is commonly called the activity crash time. The linear relationship shown in
the figure between these two points implies that any intermediate duration could
also be chosen. It is possible that some intermediate point may represent the ideal
or optimal trade-off between time and cost for this activity.

What is the reason for an increase in direct cost as the activity duration is reduced?
A simple case arises in the use of overtime work. By scheduling weekend or evening
work, the completion time for an activity as measured in calendar days will be
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reduced. However, premium wages must be paid for such overtime work, so the cost
will increase. Also, overtime work is more prone to accidents and quality problems
that must be corrected, so indirect costs may also increase. More generally, we
might not expect a linear relationship between duration and direct cost, but some
convex function such as the nonlinear curve or the step function shown in Fig. 1.3.
A linear function may be a good approximation to the actual curve, however, and
results in considerable analytical simplicity

oSt A
C:ij ————————————
Step Function
Convex Function
S o WTTTTTTT T T .

CF. CL Time

Figure 1.3: Illustration of Non-linear Time/Cost Tradeoffs for an Activity (from

[26])

A time cost optimization model using integer programming / linear programming
(LP/IP) hybrid was developed and presented in [35]. It was assumed that an activ-
ity can be completed in various durations with associated cost. Duration of various
activities are assumed to be discrete for a project . Hence the time cost relationship
for an activity is discrete. In the linear programming formulation, the objective
function is the total cost which is the sum of direct cost and indirect cost. The
variables in LP formulation are continuous. Indirect cost is taken function of the
duration. The constraints imposed are the network logic and constraints from the
convex hull of the time cost relationship of activity. The linear programming for-
mulation gives lowerbound to the time cost trade off, while the exact solution is
found out using integer programming which can handle the discrete time cost rela-
tionships. The problem was solved using solver in Microsoft Excel. The previous
LP/IP model was extended in [18] The objective is to know what choice of time-cost
alternative for each activity would produce the solution with minimum total cost.
In the first stage, time cost trade off surface is generated using genetic algorithms.
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The direct cost is considered as one objective while the project duration as other.
The fitness of each individual is calculated by finding the distance of the solution
from the convex hull. The closer a solution to the convex hull, higher the fitness. In
the next stage, minimum total cost solution is found out by adding the direct cost
and indirect cost ( which is proportional to the duration). A 18 activity network
was used to demonstrate the software developed in Microsoft Excel.

Li and Love (1997) [33] formulated a different type of time cost trade off problem
which occurs when the project is running behind schedule. To meet the deadline,
the project duration should be reduced to a certain limit. It was assumed that all
the activities are not crashable. The objective is to find which activities should be
crashed and by what duration to shorten the total duration to the targeted limit with
minimum compressing cost. Each gene represents the crash duration of an activity
in the chromosome coding. The proposed method was explained for a network with
10 crashable activities. Li et al. [32] also presented a machine learning and genetic
algorith to solve this problem.

A Genetic Algorithms based multicriteria scheduling model which integrates the
time/cost trade-off model, resource leveling and resource allocation model was pro-
posed in [31]. The model is implemented in two phases. The GA crashing engine
subsystem at Phase 1 manipulates project time/cost trade-off variables. In the
time/cost trade-off model, project costs are a function of project durations, whose
lengths are dependent on resource availabilities. Correspondingly, the resource-
constrained model needs activity durations from the time/cost trade-off model as
basic input data for the computation of minimum project duration under resource
constraints. Therefore, these two models interact with each other at Phase 1. In the
final step, both results (i.e., project costs and durations) are evaluated by technique
for order preference by similarity to ideal solution. The survivors are fed back to
the GA-based time/cost trade-off algorithm and the GA based resource-constrained
algorithm for the next generation. Phase 2 focuses on resource leveling. In this
paper, resource leveling is a subsidiary to Phase 1 of the integrated model. The
GA-based resource leveling system receives information about the optimal schedule
and related resource requirements from Phase 1, and then adjusts activity starting
dates to obtain a more even resource profile. The model is very versatile and can
successfully integrate resource scheduling and time cost trade off. The final output
is the duration and starting date of each activity.

Que (2002) [10] presented an approach that makes GA-based time-cost optimization
viable for practical application by integrating a project management system to the
GA system and taking full advantage of its powerful scheduling functionality. The
approach ensures that all scheduling parameters, including activity relationships,
lags, calendars, constraints, resources, and progress, are considered in determining
the project completion date corresponding to a solution, allowing more comprehen-
sive and realistic evaluations during optimization. Since the benefits of the approach
are qualitative rather than quantitative, experimental results were not included.
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Leu et al. (1999) [30] presented a fuzzy optimal model for resource-constrained
construction scheduling. The model took into consideration both uncertain activity
duration and resource constraints. A genetic algorithm-based technique was used
to search for optimal fuzzy profiles of project duration and resource amounts under
the constraint of limited resources. However, the method did not attempt to seek
project total cost minimization. Senouci and Adeli (2001)[12] presented a mathemat-
ical model for resource scheduling, which handled resource-constrained scheduling,
resource leveling, and project total cost minimization simultaneously. The patented
neural dynamics model of Adeli and Park (1998) [!] was used to solve the opti-
mization model. However, the model dealt with continuous variables only and did
not consider the case of discrete variables. A model which considers all precedence
relationships, multiple crew strategies, total project cost minimization, and time-
cost trade-off was proposed in [13]. In the new formulation, resource leveling and
resource-constrained scheduling are performed simultaneously. The model presented
uses the quadratic penalty function to transform the resource-scheduling problem
to an unconstrained one. The objective function used is the total cost minimization
subject to network precedence constraints and resource availability limits. All type
of precedence relationships like finish-start, start-finish, start-start, finish-finish can
be used. The model uses Genetic Algorithms as the optimization technique to drive
the search towards good solutions. The effectiveness was demonstrated on a 12
activity network.

Zheng et al. (2004) [11] presented a novel multiobjective approach that aims to
optimize total time and total cost simultaneously. GAs concepts and tools. The
model introduces a MAWA (modified adaptive weight approach) to replace tradi-
tional fixed or random weights, and integrates time and total cost into a single
objective for simulation. This approach imparts the GAs with greater freedom to
search in the multiobjective space that overcomes the drawbacks of single objective
TCO, i.e., a local optimum in HCA (hill-climbing algorithms), and the previously
proposed multiobjective approach developed by Gen and Cheng (2000)[19]. The
main focus of this paper was on improving the solution technique used by earlier
researchers. The model was similar to the one adopted in [35]. A similar attempt
was made by Zheng et al. (2005) [15] to improve the Genetic Algorithm solution
procedure using pareto ranking and niche formation.

A multiobjective optimization model was developed to transform the traditional
two-dimensional time-cost trade-off analysis to an advanced three-dimensional time-
cost-quality trade-off analysis in [27, 11]. The model was designed to search for
optimal resource utilization plans that minimize construction time and cost while
maximizing its quality. The optimization model is developed in three main stages:
1. Model formulation stage that incorporates all major decision variables and opti-
mization objectives; 2. quality quantification stage that formulates new functions to
enable the consideration of construction quality in this optimization problem; and
3. model implementation stage that implements a multiobjective GA for highway



1.6 Summary and Layout of the Report 13

construction to enable the simultaneous optimization of construction time, cost, and
quality. An application example is analyzed to illustrate the use of the model and
demonstrate its capabilities in considering quality in the optimization process and
in developing optimal trade-offs among construction time, cost, and quality. These
new capabilities should prove useful to decision makers in highway construction and
rehabilitation projects, especially those who are involved in new types of contracts
that demand high-quality performance.

References on Time Cost trade-off and Construction Resource Scheduling

Time-cost Optimiza-

[34]

tion []?[]7[]7[L[]?[7 ]a
[31], [20]
[23]

Resource Scheduling

1.6 Summary and Layout of the Report

In this introductory chapter, time cost trade off and resource scheduling problems in
construction scheduling were introduced. These problems when formulated math-
ematically as optimization problems are NP — complete since they are all mixed
integer non linear programming problems [6]. As no polynomial time algorithms to
solve such problems are available [0, 2], approximation algorithms like meta heuris-
tics have to be used. In the next chapter a discussion on one such method called
Ant Colony Optimization is taken up. Many other non traditional methods are

available like genetic algoritihms [20], simulated annealing [7], particle swarm opti-
mization [29], evolutionary strategies [11]. A discussion on these techniques can be
found in popular textbooks [20, 7, 11, 29]. A formulation of multiobjective time-cost

trade-off problem is present in Chapter 4 and solution to the problem is attempted
using non-dominated sorting genetic algorithm. Chapter 3 presents the formulation
for constrained resouce allocation and leveling problem, which is solved with Ant
colony optimization Finally a summary of the report and future plans are discussed
in Chapter 5.



Chapter 2

Ant Colony Optimization

2.1 Introduction

In the early 90’s, ant colony optimization (ACO) [10, 9] emerged as a novel nature-
inspired metaheuristic method for the solution of combinatorial optimization prob-
lems. The inspiring source of ACO is the foraging behavior of real ants. When
searching for food, ants initially explore the area surrounding their nest in a random
manner. As soon as an ant finds a food source, it evaluates quantity and quality of
the food and carries some of the food found to the nest. During the return trip, the
ant deposits a chemical pheromone trail on the ground. The quantity of pheromone
deposited, which may depend on the quantity and quality of the food, will guide
other ants to the food source. The indirect communication between the ants via
the pheromone trails allows them to find shortest paths between their nest and food
sources. This behaviour of real ant colonies is exploited in artificial ant colonies in
order to solve discrete optimization problems.

2.2 Real Ants Behaviour

Ants are social insects, that is, insects that live in colonies and whose behavior
is directed more to the survival of the colony as a whole than to that of a single
individual component of the colony. Social insects have captured the attention of
many scientists because of the high structuration level their colonies can achieve,
especially when compared to the relative simplicity of the colony’s individuals. An
important and interesting behavior of ant colonies is their foraging behavior, and,
in particular, how ants can find the shortest paths between food sources and their
nest.

Although individual ants move in a quasi-random fashion, performing relatively sim-
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ple tasks, the entire colony of ants can collectively accomplish sophisticated move-
ment patterns and can find the shortest route between their nest and a food source .
Ants accomplish this by depositing a substance called pheromone as they move. This
chemical trail can be detected by other ants, which are probabilistically more likely
to follow a path rich in pheromone. This chemical trail can be detected by other
ants, which are probabilistically more likely to follow a path rich in pheromone.To
show how trail information can be utilized to adapt to sudden unexpected changes
in the terrain, a brief example is given below (see Fig.2.1). In Fig.(2.1a) a colony of
ants is traveling in both directions between point A and point B. Each ant knows
which direction to take because of the pheromone trail that is present from point A
to point E Fig. (2.1 a). Fig. (2.1 b)show what happens when an object is placed in
the middle of the path. Since the object is not placed symmetrically on the trail,
the path B-C-D is shorter than the path B-F-G-H-D. The ants moving from point B
to point D and vice versa ,will have to make a decision whether to turn left or right.
Since there is no pheromone in either direction, the ant has an equal probability of
turning right or left. Initially the first ants turn left or right equally, which means
that the equal number of ants are taking path B-C-D and path B-F-G-H-D . The
ant traveling along any path will leave pheromone along it. The ants traveling the
B-C-D path will arrive at point D earlier than the ones traveling along path B-F-G-
H-D . An ant traveling in the opposite direction and is at point D will detect more
pheromone along the D-C path, since not only are ants going from D to C, but ants
also have started to arrive from C to D. On the other hand the path B-F-G-H-D
being longer , the ants have not yet arriving on path D-H. The exact same thing is
occurring at point B. Therefore due to more pheromone deposition , probabilistically
more ants will begin taking path D-C-B . Eventually the pheromone level on the
D-C-B path will become so dominant that all of the ants will choose this path as in
Fig. (2.1 ¢). This will also hold true for the ants traveling from point B to D. Hence
the ants, using their highly effective pheromone based communication method, are
able to find the shortest path between point B and D.

This particular behaviour of ant colonies has inspired the Ant Colony Optimization
meta-heuristic algorithm, in which a set of artificial ants co-operate to find solutions
to a given optimization problem by depositing pheromone trails throughout the
search space.

2.3 Ant colony optimization

ACO algorithms are metaheuristic methods for tackling combinatorial optimization
problems [I1]. The central component of an ACO algorithm is the pheromone
model, which is used to probabilistically sample the search space. As outlined in
[3], the pheromone model can be derived from a model of the CO problem under
consideration. A model of a CO problem can be stated as follows.
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Food Food Food

Figure 2.1: Biological ants find shortest path by using pheromone based communi-
cation.

Definition 1 A model P = (S,€, ) of a CO problem consists of:

e o search (or solution) space S defined over a finite set of discrete decision
variables and a set €2 constraints among the variables;

e an objective function f: S — R to be minimized.

The search space S is defined as follows: Given is a set of n discrete variables
X; with domains D; = v}, -+~ ,lei‘,i =1,---,n. A variable instantiation, that is,
the assignment of a value vf to a variable X; , is denoted by X; = ’UZJ A feasible
solution s € S is a complete assignment (i.e., an assignment in which each decision
variable has a domain value assigned) that satisfies the constraints. If the set of
constraints 2 is empty, then each decision variable can take any value from its
domain independently of the values of the other decision variables. In this case we
call P an unconstrained problem model, otherwise a constrained problem model.
A feasible solution s* € S is called a globally optimal solution, if f(s*) <
f(s) Vs €S8 The set of globally optimal solutions is denoted by S* C S To solve a

CO problem one has to find a solution s € §*

A model of the CO problem under consideration implies the finite set of solution
components and the pheromone model as follows [3]. First, we call the combination
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of a decision variable X; and one of its domain values v/ a solution component de-
noted by cf Then, the pheromone model consists of a pheromone trail parameter
7? for every solution component cg The value of a pheromone trail parameter ’Z;j
called pheromone value — is denoted by Tij . The set of all pheromone trail parame-
ters is denoted by 7. As a CO problem can be modelled in different ways, different
models of the CO problem can be used to define different pheromone models. Alg. 1
captures the framework of a basic ACO algorithm, as outlined in [3]. It works as
follows. At each iteration, n, ants probabilistically construct solutions to the com-
binatorial optimization problem under consideration, exploiting a given pheromone
model. Then, optionally, a local search procedure is applied to the constructed so-
lutions. Finally, before the next iteration starts, some of the solutions are used for
performing a pheromone update. The details of this framework [3] are explained in
more detail in the following.

InitializePheromoneValues(7'). At the start of the algorithm the pheromone values
are all initialized to a constant value ¢ > 0.

Algorithm:ACO procedure

Input: An instance of the problem P of a CO problem model P = (S, f,Q)
InitializePheromoneValues(7) ;
Sps — NULL ;
while Termination criteria not true do
Giter — ¢ )
for each ant k do
5 < ConstructSolution(7) ;
s «— LocalSearch(s) ;
if ( (5) < f(ﬁbs)) or (ﬁbs == NULL ) then
| Sp

s = Sbps
end
Giter — Giter U{s}u
end

ApplyPheromoneUpdate(7, Gier, Sps) ;
end

Output: The best— so— far solution sy,

Algorithm 1: Framework of a basic Ant Colony Optimization Algorithm

ConstructSolution(7"). The basic ingredient of any ACO algorithm is a constructive
heuristic for probabilistically constructing solutions. A constructive heuristic assem-
bles solutions as sequences of elements from the finite set of solution components
¢ . A solution construction starts with an empty partial solution s, = (). Then,
at each construction step the current partial solution s,. is extended by adding a
feasible solution component from the set 9(s,) € € \ s,, which is defined by
the solution construction mechanism. The process of constructing solutions can be
regarded as a walk (or a path) on the so-called construction graph Go = (€, £) ,
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which is a fully connected graph whose vertices are the solution components € and
the set £ are the connections. The allowed walks on G are implicitly defined by
the solution construction mechanism that defines the set 91(s,) with respect to a
partial solution s,. We denote the set of all solution that may be constructed in this
way by &. The choice of a solution component from N(s,) is, at each construction
step, done probabilistically. In most ACO algorithms the probabilities for choosing
the next solution component — also called the transition probabilities — are defined
as follows [3]:

»( J‘sp) Tij U(Cf)ﬁ

S oy T Vel € MN(s,) (2.3.1)

where 7 weighting function that assigns, at each construction step, a heuristic value
n(c!) to each feasible solution component (¢/). The values that are given by the
weighting function are commonly called the heuristic information. « and 3 are
positive parameters whose values determine the relative importance of pheromone
and heuristic information.

ApplyPheromoneUpdate(7, G;yer, 5p5) Most ACO algorithms use the following pheromone
value update rule:

J—(l—pri+p > Fls), (2.3.2)

5€6upd|c{ €s
{ }

fori=1,--- n,and j € {1,--- ,|D;|}. p € (0,1] is a parameter called evaporation
rate. F': & +— R™ is a function such that f(s) < f(s/) = F(s) > F(s/), Vs #s/ €
S. F(s) is commonly called the quality function. Instantiations of this update rule
are obtained by different specifications of &4 , which is a subset of S, [J{8ps} .
where G, is the set of solutions that were constructed in the current iteration, and
{8sps} is the best-so-far solution. A well-known example of update rule Eq.2.3.2 is
the AS-update rule [9] (i.e., the update rule of Ant System (AS) ) which is obtained
from Eq.2.3.2 by setting

Gupi — Giter The goal of the pheromone value update rule is to increase the
pheromone values on solution components that have been found in high quality
solutions. In AS the quality function F'(s) is defined as follows,

F(s):%, Vs € Guo (2.3.3)
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where @ is a constant. In [9] elitist strategy for trail update was also suggested as
per Eq.2.3.4.

9
f(5s)

where s, is the the best—so—far solution and n. is the number of elitist ants, a
parameter of the algorithm.

F(ﬁbs) = Ne. (234)

Another method for trail update was introduced in [!] and called as Rank-based
Ant system (AS,qnk) In the AS,q.k, the solutions created by the ants are ranked
according to how well they solve the problem. Let u; denote the rank of the solution
of ant i. Then ;.. ( the best solution in the current iteration) will have rank 1.

Gupa is defined as [1],

6upd = 6rank U {sbs}a (235)
where G, is defined by Eq.2.3.6 as
Grank == { 5; | My < )\} (236)

where A denotes the number of top ranked ants used for trail update.

In AS,ank , the quality function F'(s) is defined as follows,

F(5Z> - Q%v VGz € 6rank (237)

where G, has rank ;.

2.4 Conclusions

In this chapter, underlying biological foundations of ACO metaphor were explained
and framework for solution of a problem was discussed. A software in the C pro-
gramming language for solution of such a generic problem has been prepared and
tested. The ACO metaphor would now be used for solution of Constrained Resource
Scheduling in next chapter.



Chapter 3

Constrained Resource Scheduling
using ACO

The resource constrained scheduling problem was introduced in Sec. 1.4. In this
chapter a mathematical formulation of the problem is presented with variables as the
duration and the starting time of each activity [13]. Cost and resource distributions
as functions of activity duration are assumed to be known for each activity. The
objective is then to determine the starting time and duration of each activity to
optimize the total project cost subject to limited resource constraint.

3.1 Problem formulation

Consider a network with n, activities. Any precedence relationship between the
activities is permissible ( finish-finish, start-start, finish-start, start-finish). We will
use the following notation

e 0, : duration of activity 4; 07" < 0; < 0™ Vi=1,2,...,n,.
e 5, : start time of activity ;

e ¢, : direct cost of of activity ¢ for duration 9;; ¢ =1,2,...,n,.
o [;; : lag/ lead time between activities ¢ and j.

e S;: set of activities succeding activity

o C;: direct project cost; Cq =Y i ¢;(0;)

e C;: indirect project cost

e C;: total project cost; C; = Cyq + C;
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e S, set of activities in progress at time ¢
e 71;;: daily requirement of kth resource for activity i.

e [j;: maximum availability of kth resource at time t.

For each activity, a cost distribution curve could be constructed from the allocated
resources. Depending on the type of activity, such curves could be either continuous
or discrete. They could also be linear or nonlinear as shown in Figs.3.1 ( a and b),
respectively. Similarly, curves describing resource profiles (resource-duration) can
be constructed as shown in Figs. 3.2 (a and b). In these two figures, the Y-axis
denotes a type k resource as required by activity ¢ for duration of 9;. In this study,
continuous linear and nonlinear cost - duration curves and resource-duration curves
are considered.

Since indirect costs are time dependent, the relationship between C; and the project
duration D can be expressed as

Ci=Cy+bD (3.1.1)
where Cy are intial costs for the project and b is the slope of the cost distribution
function ( i.e. daily expenditures) Consider X = {s1,8,...,8,,,01,02,...,0n,, } as

the vector of decision variables. Now the resource constrained scheduling problem
can be written as

minimize Ci(X) (3.1.2)

subject to:
Precedence constraints

e Finish to start (FS)

s +0; + [;; <5 VjeS,; (3.1.3)
e Start to start (SS)

s, +;<s; VjeS (3.1.4)
e Start to Finish (SF)

s, +; <s;+0; ViesS; (3.1.5)
e Finish to Finish (FF)

s; +0; + [ij < 5;+0; Vj e S; (316)
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Figure 3.1: Activity cost distribution curves: (a) linear and (b) discrete ( from [13])
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3.2 Computer implementation 24

Maximum Resource Constraint

Zrki < Ry (3.1.7)

1ES:

Peak resource usage deviation constraint

> ri— > | <RL (3.1.8)

€St 1€St41

where RL is the desired resource leveling limit.

Variable bounds

I <y < T (3.1.9)

3.2 Computer implementation

A numerical example is presented in order to illustrate the steps and capabilities
of the model presented. The critical path method (CPM) network shown in Fig.
3.3 describes a project that consists of 12 activities (labeled A-L). It is assumed
that there are no limitations on precedence relationships between succeeding activi-
ties. For the example project, these relationships are shown in Table 3.2. Cost-time
tradeoff data are provided in Table 3.1. This includes the relationships between
resources and durations and relationships between activities’ direct costs and dura-
tions. An initial cost of $6,000 and a daily cost of $2,500 are used in this example. It
is also assumed that each activity requires a particular type of resource, and different
activities require different resources.

A computer program was developed in C on Linux operating system to implement
the ACO algorithm explained in Alg. 1 of Chapter 2. The program starts with
reading input parameters for the ACO algorithm like number of ants, pheromone
evaporation constant, maximum number of ants etc. Each duration and start time
for an activity and the corresponding resource utilization for executing an activity
can be regarded as a solution component. The trail on each solution component
is initially initialized to a small value. In the solution construction routine, ants
decide upon a solution component ( i.e. start time and duration for an activity)
using the available pheromone information. After all ants construct their solutions,
the objective function values are evaluated in the apply pheromone update routine
of Alg. 1. The objective function evaluation procedure starts with reading of the
activity precedence relationships and assignment of the time duration and start
time for each activity. Using this information, the project duration is calculated
and critical path is identified. Calculations for activity costs and resource usage are
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Table 3.1: Relationship between activity duration and cost, resouce usage

Activity Minimum Maximum Number of  Direct cost ($)
duration duration resources

A 1 2 3-d 3000- 100d- 50d°
B 4 bt 9-d 7000~ 300d- 75d?
C 1 3 8-d 6000- 500d- 254>
D 1 2 3-d 8000- 600d- 504>
B 2 4 5-d 11000- 400d- 20d>
F 2 3 5-d 11000- 400d- 75d>
G 1 2 6-d 7000~ 500d- 10d?
H 1 2 4 -d 3500~ 300d- 75d>
I 2 4 9-d 3500- 300d- 504>
J 7 8 9-d 2500- 100d- 15d?
K 4 6 7-d 5000- 200d- 25d°
L 2 3 4-d 2000~ 200d- 30d?

done next. Then, the direct project cost is calculated as sum of costs of all the
activities. After these calculations, the start time and duration of each activity are
checked for precedence relationship constraints and a weighted normalized penalty
is applied for each violation [8]. Now, the calculations for resource usage for each
day till the project completion can be performed and the maximum resource usage
constraint can be checked. The solution quality ( objective function value ) is
penalized for each constraint violation using the penalty function method. Finally
the complete project cost with the penalty for constraint violation is returned to the
apply pheromone update routine.

3.3 Case study

In this study a maximum resouce usage limit of 7 was used and a solution satisfying
this constraint was searched using the implementation ACO algorithm. Table 3.4
shows the starting time and activity durations obtained with this constraint. The
project duration is 16 days. The total direct cost for the solution is $ 49775, while
the indirect cost is $ 46000. Total cost of the project is $ 95775. Fig. 3.4 shows
the daily resource usage profile for this schedule. In Fig. 3.4, the X-axis shows the
number of days completed and the Y-axis shows the total resources used for that
particular day. It can be observed that the total resource usage never exceeds the
availability of 7 per day and this proves the capability of the ACO algorithm to find
a feasible solution. The convergence of the ACO algorithm along with iteration is
show in Fig. 3.5 There is a very quick improvement in the objective function value
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Table 3.2: Activity precedence relationships.

Activity Succeeding relationship lag
activity type time (days)
A B SS 2
A D SS 2
B C FF 3
C G FS 0
D E SF 2
D F FF 4
E H SS 1
F K FS 0
G I FF 4
G J FF 2
H K FS 2
I L FS 1
J L FS 0
K L FS 0

Figure 3.3: Network for test problem (from [13])
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Table 3.4: Schedule with maximum resource usage 7.

Table 3.3: Algorithm details for test problema

Algorithm used: Rank Based

Ant System
Ranks Used )
Elitist Ants 1
No of variables 23,
No of ants 50
Max no of cycles 50
Max no of runs 3
Evaporation (rho) 0.200000
Initial trail 1.000000
Local update used
« 1.000000,
Local update evap( 7) 0.200000

Local search
used with

Global Best Ant

In local search

Max no of Cycles
No of Ants
Evaporation (Isp )

15
25
0.500000

Activity 0; # resources s; C

A 2 1
B ) 4
C 3 )
D 2 1
E 4 1
F 3 2
G 2 4
H 2 2
I 4 )
J 8 1
K 6 1
L 3 1

0 2600
2 3625
74275
3 6600
0 9080
4 9125
10 5600
1 2600
12 1500
8 740
6 2900
12 1130
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in the initial iterations and the best solution is found at the end of 5Hth iteration.
The construction graph used by the ants is show in Fig. 3.6. Fig. 3.6 shows the
available solution components for each activity lined up vertically for each variable
( X-Axis). Ants start from their home ( point [0,0]) and then take a path to a
solution component of each variable as shown. For example, the ants chose the
last solution component for first two variables ( duration of activity A and B) and
the first solution component for last variable ( start time of L) before reaching the
destination food source.

Project Resource histogram

12 1

10 | 1

Number of resources per day

0 Il Il Il
0 5 10 15 20

Workdays

Figure 3.4: Project resource histogram for case study

3.4 Conclusions

This chapter presents the formulation and solution of constrained resource allocation
and leveling problem in construction scheduling. A solution is attempted using ACO.
The variables considered are the start time and duration of each activity. Resource
usage is constrained by a predefined upper limit. A unique feature of this formulation
is that all types of relationship constraints in activities can be accomodated. A case
study is presented to demonstrate the successful use of ACO for this problem.
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Chapter 4

Time-Cost Trade-Off using
Genetic Algorithms

The time cost trade-off (TCTO) problem was introduced in 1.5 The objective of this
chapter is to present the formulation and results of a multi-objective optimization
model that supports minimizing construction time and cost. Here it is assumed that
there is a set of options for carrying out each activity and the engineer is required
to choose an option for each activity so as to simulataneously minimize the cost
of carrying out activities (direct cost) as well as the project duration. A higher
project duration contributes to a higher indirect cost and the optimum solution
balances direct and indirect cost to obtain a minimum project cost as shown in Fig.
4.1. However to calculate the totalcost, we need to know the exact mathematical
relationship between the project duration and indirect cost. Such information is not
always known in advance, so the aim in solving this problem would be to find the
time-cost trade-off curve and leave the task of deciding a solution belonging to the
optimal time-cost trade-off curve to the decision maker/engineer. The TCTO curve
is obtained using a multiobjective genetic algorithm called NSGA-IT [3].

4.1 Problem Formulation

Solving construction TCTO problem involves making a sequence of decisions to
choose the proper methods, resources, and equipment to perform each activity of a
project, which optimizes the overall performance of the project in terms of time and
cost. Let us consider a network with n, activities. Each activity ¢ can be performed
with 6; combinations of methods, resources and equipment with a corresponding
cost ¢; and time duration t;. x; is the option chosen for activity ¢« For the optimiza-
tion problem, the vector of decision variables X = {x,2s,...,2,,}. Let EST; be
the earliest start time of the i th activity calculated according to the precedence
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Figure 4.1: Time cost trade off
relationships for the network.
The multi-objective TCTO problem is:
minimize  €(X) =Y ci(;) (4.1.1)
i=1
minimize 7 = max{EST;, + ti(z;) | i=1,2,...,n4} (4.1.2)
subject to
1<z <0, (4.1.3)

The project duration 7 is calculated using the critical path method.

4.2 Non dominated sorting Genetic Algorithm -

II ( NSGA II)

The multi-objective optimization problem of Eq. 4.1.1 - 4.1.3 is solved using the
Non dominated sorting Genetic Algorithm - IT ( NSGA II) [¢]. As such, the present

model is implemented in three major phases:
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1. Initialization phase that generates an initial set of S possible solutions for the
problem;

2. fitness evaluation phase that calculates the cost, and time of each generated
solution;

3. population generation phase that seeks to improve the fitness of solutions over
successive generations.

4.3 Computer implementation and case study

The above formulation for finding out the project duration and cost was imple-
mented in C on Linux operating system. Source code for NSGA II was obtained
from KanGAL, IIT Kanpur ( www.iitk.ac.in/kangal/soft.htm). The NSGA II
software from KanGAL requires the user to change only the objective function for
a specific application. The project duration is calculated using the CPM routine,
which takes actvitiy precedence and duration as input. The direct cost of the project
can be calculated by simply summing up the costs of the individual activities for a
particular vector of options ( X). As an example, the 18-activity network of [15]
was solved. Precedence relationships between the different activities is shown in
Fig. 4.2. Various resource utilization options for all the activities along with their
associated cost and duration are shown in Table 4.1 Binary solution encoding is
used for every activity option variable depending upon the number of options for
that activity. The parameters used for a sample run were

e Population size = 500

e Number of generations = 150

e Number of objective functions = 2

e Number of constraints = 0

e Number of real variables = 0

e Number of binary variables = 18

e Probability of crossover of binary variable = 0.8

e Probability of mutation of binary variable = 0.02
e Seed for random number generator = 3.782000e-01
e Number of crossover of binary variable = 536517

e Number of mutation of binary variable = 59641
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Table 4.1: Resource utilization options for test problem

(A TR & (I T

1 14 2400 |9 18 240
1 15 2150 |9 20 180
1 16 1900 |9 23 150
1 21 1500 |9 25 100
1 24 1200 10 15 450
2 15 3000 |10 22 400
2 18 2400 10 33 320
2 20 1800 |11 12 450
2 23 1500 |11 16 350
2 25 1000 |11 20 300
3 15 4500 | 12 22 2000
3 22 4000 12 24 1750
3 33 3200 | 12 28 1500
4 12 45000 | 12 30 1000
4 16 35000 | 13 14 4000
4 20 20000 |13 18 3200
5 22 20000 | 13 24 1800
5 24 17500 | 14 9 3000
5 28 15000 | 14 15 2400
5 30 10000 | 14 18 2200
6 14 40000 | 15 16 3500
6 18 32000 | 16 20 3000
6 24 18000 | 16 22 2000
7 9 30000 |16 24 1750
7 15 24000 | 16 28 1500
7 18 22000 | 16 30 1000
8 14 220 17 14 4000
8 15 215 17 18 3200
& 16 200 17 24 1800
8 21 208 18 9 3000
8 24 120 18 15 2400
9 15 300 18 18 2200
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Fig. 4.3 shows the objective function values of the individuals of the first generation.
It can be observed that there are many dominated individuals in the first generation.
The minimum project duration is around 124 days and the minimum project cost
is around $100,000. Fig. 4.4 shows the plot of project duration and direct cost
for the last generation. In this generation the algorithm has searched large number
of solutions along the non-dominated front. Best non-dominated solutions from all
the generations are shown in Fig. 4.5. It can be observed that the algorithm has
successfully found a diverse set of solutions on the trade-off curve.

v
w

ey A -

Start \

1 10 15
\I 2 18
| 3 | [ 13
4
4 [ 1a _.{ 16 # Activity ID

Figure 4.2: Network for test problem (from [18])

4.3.1 Validation of the model

In order to validate the results provided by the present model, they are compared
to those reported in the literature for the same application example [18]. The
comparison confirms that the present model is capable of generating the same set of
optimal solutions as those reported in [18] for the time-cost trade-off analysis. In,
Fig. 4.5 we can see that there are disjoint regions along the non-dominated curve.
Similar sets were obtained by the implementation in [18].



4.3 Computer implementation and case study

35

Total Direct Project Cost ($)

Total Direct Project Cost ($)

Solutions in the first generation
190000 T

180000

170000

160000

150000

140000

130000

120000

110000

100000 ]

90000 1 1 1 1 1

T
Solution L]

100 120 140 160 180
Project duration (days)

Figure 4.3: The initial generation

Solutions in the last (150th) generation
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Figure 4.4: The last generation
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Best Solutions in all generations
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Figure 4.5: Best solutions

4.4 Conclusions

This chapter presents a multi-objective time cost trade-off problem in construction
scheduling and a solution is attempted using NSGA II. First objective is project
duration and the second objective is project direct cost. It is assumed that different
resource utilization options for each activity leading to different activity costs and
duration are known in advance. The aim is to find the pareto optimal solutions by
choosing a combination of different resource utilization options. The efficacy of the
implementation was demonstrated on a 18 activity network. The computer imple-
mentation could successfully obtain many solutions on the non-dominated front. In
this formulation resource constraints are not considered. It would be interesting to
formulate an integrated model which can handle objectives time, cost and resource
leveling along with resource usage constraints.



Chapter 5

Summary

From the discussion in previous chapters it can be observed that although time cost
trade off and resource scheduling are problems of equal interest to project managers,
they have been treated separately. One of the reasons for the separate treatment
is that efficient techniques were not available for solution of individual problems, so
increasing the complexity of the problem would have been only of theoretical inter-
est. But now approximate solution techniques which can deal with the complexity
are available. An integrated framework for simulataneous solution of time cost
trade off and resouce scheduling problems is required. Non traditional optimization
techniques like Genetic Algorithms and Ant Colony Optimization can easily han-
dle discrete and continuous variables, non linear objectives and constraints and are
ideally suited multiobjective optimization problems [%]. Simulataneous solution of
the time-cost trade-off problem and constrained resource leveling problem is difficult
because in time-cost trade-off problem, aim is to find the duration of each activity.
Duration of each activity decides the critical path and the activity floats. Since
activity floats are not known in advance, it is not possible to put tight bounds on
starting time of each activity. As deciding starting of each activity is aim of re-
source allocation, these two problems have to be solved sequentially. The aims of
the present study are

e Formulation with multiple objectives of time cost trade off and resouce schedul-
ing problems in construction.

e Solving the above formulation with multiobjective non traditional optimization
techniques.

e Implementation of the above framework and demonstration on case studies.
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5.1 Main Contributions

As a part of the project following softwares were developed in the C programming
language on Linux operating system

e Critical path method software for activity-on-node and activity-on-edge net-
works

e ACO software for optimization of a general mixed integer non linear program-
ming problem using Ant Colony Optimization

The above two softwares were used to solve the multiobjective time-cost trade-off
problem and the constrained resource scheduling problem.

5.2 Future work

Many interesting possibilities arise out of the present work. It would be interesting
to study the effect of parameter settings of the ACO and NSGA II algorithm on
the performance on case studies. Recently quality aspect of construction has been
incorporated into the time-cost trade-off problem [27, 11]. A problem formulation
which takes into account the project time, cost and quality along with the resource
constraints would be a challenging problem to work on. Further, one can explore
the effect of converting the resource leveling constraint ( as in Eq. 3.1.8 ) into an
objective and studying this effect on the quality of solutions obtained.
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