Physics

Todays Agenda

- Reference frames and relative motion.
- Uniform Circular Motion

Inertial Reference Frames:

- A **Reference Frame** is the place you measure from.
	- I It's where you nail down your (x,y,z) axes!
- An Inertial Reference Frame (IRF) is one that is not accelerating with respect to the " fixed stars".
	- **We will consider only IRF's in this course.**
	- The earth is a pretty good IRF even though it is accelerating (rotating) w.r.t. the stars slightly.
- Valid IRF's can have fixed velocities w.r.t each-other.
	- More about this later when we discuss forces.
	- **For now, just remember that we can make** measurements from different vantage points.

Relative Motion

● Consider a problem with **two** distinct IRF's: ❵ **An airplane flying on a windy day.**

A pilot wants to fly from Austin to Dallas. Having asked a friendly student, she knows that Dallas is 120 miles due north of Austin. She takes off from the Airport at noon. Her plane has a compass and an air-speed indicator to help her navigate.

- **The compass allows her to keep the nose of the plane** pointing north.
- **The air-speed indicator tells her that she is traveling at Fig. 2.1.** 120 miles per hour **with respect to the air**.

Relative Motion...

- The plane is moving north in the IRF attachd to the air:
	- **i** $V_{p,q}$ is the velovity of the plane w.r.t the air.

Relative Motion...

- But suppose the air is moving east in the IRF attached to the ground.
	- **I** $V_{a,g}$ is the velocity of the air w.r.t the ground (i.e. wind).

Relative Motion... ● What is the velocity of the plane in an IRF attached to the ground? **i** $V_{p, g}$ is the velocity of the plane w.r.t the ground.

Vp, g

Relative Motion...

$$
V_{p,g} = V_{p,a} + V_{a,g}
$$

Is a vector equation relating the airplanes velocity in different reference frames.

Uniform Circular Motion

- What does it mean?
- How do we describe it?
- What can we learn about it ?

How can we describe UCM?

- In general, one co-ordinate system is as good as any other:
	- **B** Cartesian:
		- » (x,y) [position]
		- \rightarrow (V_x, V_y) [velocity]
	- ❵ Polar:
		- » (R,θ) [position]
		- » (V_R, ω) [velocity]
- In UCM:
	- **B** R is constant (hence $V_R = 0$).
	- ❵ ω (anguar velocity) is constant.
	- ❵ Polar co-ordinates are a natural way to describe UCM!

Polar Coordinates:

- The arc length **s** (distance along the circumference) is related to the angle in a simple way:
	- $s = R\theta$, where θ is the angular displacement.
	- \mathbf{l} units of θ are called radians.

● For one complete revolution: $2\pi R = R\theta_c$

 $\overline{\theta}_{c} = 2\pi$ θ has period 2π.

R \setminus . **v** \mathbf{y}_1 and \mathbf{y}_2 (x,y) **s** θ

 $\frac{1}{2}$ 1 revolution = 2π radians.

SDW - Physics - VHS

 \mathbf{x} and \mathbf{x}

Polar Coordinates...

 \bullet In cartesian co-ordinates we say velocity $dx/dt = v$.

 $\}$ $x = vt$

• In polar coordinates, angular velocity $d \theta/dt = \omega$. $\theta = \omega t$

● Even though the speed is constant, velocity is **not** constant since the direction is changing.

❵ Consider average acceleration in time ∆t ∆**v** / ∆t

- Even though the speed is constant, velocity is **not** constant since the direction is changing.
	- ❵ Consider average acceleration in time ∆t ∆**v** / ∆t

 $\overbrace{w\Delta t}$ Move ∆**v** to average time of $\overbrace{w\Delta t}$ the interval Δt .

● Even though the speed is constant, velocity is **not** constant since the direction is changing.

❵ Consider average acceleration in time ∆t ∆**v** / ∆t

seems like ∆**v** (hence ∆**v**/∆t) points toward the origin !

● Even though the speed is constant, velocity is **not** constant since the direction is changing.

E As we shrink Δt , $\Delta v / \Delta t$ dv/dt = a

Aside: Polar Unit Vectors

● We are familiar with the cartesian unit vetors: **i j k**

Centripetal Acceleration

• Must be accelerating if direction is changing: ❵ Centripetal Acceleration !!

 $\frac{\Delta V}{V} = \frac{\Delta R}{R}$ $\overline{\mathsf{R}}$ ΔR R and \parallel and \parallel Similar triangles: $\frac{\Delta V}{\Delta}$

But $\Delta R = v \Delta t$ for small Δt

Similar triangles:
$$
\frac{\Delta v}{V} = \frac{\Delta V}{R}
$$

But $\Delta R = v\Delta t$ for small Δt
So: $\frac{\Delta V}{V} = \frac{v\Delta t}{R}$ $\frac{\Delta V}{\Delta t} = \frac{v^2}{R}$

$$
a = \frac{v^2}{R}
$$

Centripetal Acceleration

- UCM results in acceleration:
	-
	-

i Magnitude: $a = v^2 / R$ $(= \omega^2 R \text{ since } v = R\omega)$ **B** Direction: \hat{r} (toward center of circle)

Example: Propeller Tip

• The propeller on a stunt plane spins with frequency $f = 3500$ rpm. The length of each propeller blade is $L=$ 80cm. What centripetal acceleration does a point at the tip of a propeller blade feel?

Example:

● First calculate the angular velocity of the propeller:

1
$$
\text{rpm} = 1 \frac{\text{rot}}{\text{min}} \times \frac{1}{60} \frac{\text{min}}{\text{s}} \times 2 \pi \frac{\text{rad}}{\text{rot}} = 0.105 \frac{\text{rad}}{\text{s}} = 0.105 \text{ s}^{-1}
$$

 $\frac{1}{2}$ so 3500 rpm means $\omega = 367 \text{ s}^{-1}$

• Now calculate the acceleration. $a = \omega^2 R = (367s^{-1})^2 \times (0.8m) = 1.1 \times 10^5 m/s^2$ $= 11,000$ g

❵ direction of **a** is toward propeller hub (-**r**). **^**

Example: Acceleration at Equator.

● What is the centripetal acceleration experienced by a person standing on the earth's equator, due to the earth's rotation.

• Recall that the radius of the earth is $R_e = 6.35 \times 10^6$ m.

Example: Newton & the Moon

- What is the acceleration of the Moon due to its motion around the earth?
- What we know (Newton knew this also):
	- $\overline{I} = 27.3$ days = 2.36 x 10⁶ s
	- $R = 3.84 \times 10^8$ m

 $R_F = 6.35 \times 10^6 \text{ m}$

(period \sim 1 month) (distance to moon) (radius of earth)

Moon...

● Calculate angular frequency:

WIO
\nalculate angular frequency:
\n
$$
\frac{1}{27.3} \frac{rot}{day} \times \frac{1}{86400} \frac{day}{s} \times 2\pi \frac{rad}{rot} = 2.66 \times 10^{-6} \text{ s}^{-1}
$$

 \bullet So $\omega = 2.66 \times 10^{-6}$ s⁻¹.

● Now calculate the acceleration.

 $a = \omega^2 R = 0.00272 \text{ m/s}^2 = .000278 \text{ g}$

l direction of **a** is toward center of earth (-**r**^{\uparrow}).

Moon...

- So we find that a_{moon} / $g = .000278$
- Newton noticed that $R_E^2/R^2 = .000273$

- This inspired him to propose the **Universal Law of Gravitation:** $F_{Mm} = GMm / R^2$
- What if our solar system was more complicated...
	- ❵ Would early scientists have been as successful??
	- ❵ Would science have evolved differently??

Recap for today:

- Reference frames and relative motion.
- Uniform Circular Motion
- Look at Textbook problems