Physics

Todays Agenda

- Reference frames and relative motion.
- Uniform Circular Motion

Inertial Reference Frames:

- A **Reference Frame** is the place you measure from.
 - It's where you nail down your (x,y,z) axes!
- An Inertial Reference Frame (IRF) is one that is not accelerating with respect to the "fixed stars".
 - We will consider only IRF's in this course.
 - The earth is a pretty good IRF even though it is accelerating (rotating) w.r.t. the stars slightly.
- Valid IRF's can have fixed velocities w.r.t each-other.
 - More about this later when we discuss forces.
 - For now, just remember that we can make measurements from different vantage points.

Relative Motion

Consider a problem with two distinct IRF's:
 An airplane flying on a windy day.

A pilot wants to fly from Austin to Dallas. Having asked a friendly student, she knows that Dallas is 120 miles due north of Austin. She takes off from the Airport at noon. Her plane has a compass and an air-speed indicator to help her navigate.

- The compass allows her to keep the nose of the plane pointing north.
- The air-speed indicator tells her that she is traveling at 120 miles per hour with respect to the air.

Relative Motion...

- The plane is moving north in the IRF attachd to the air:
 - $V_{p,a}$ is the velovity of the plane w.r.t the air.

Relative Motion...

- But suppose the air is moving east in the IRF attached to the ground.
 - $V_{a,g}$ is the velocity of the air w.r.t the ground (i.e. *wind*).

Relative Motion...

$$V_{p,g} = V_{p,a} + V_{a,g}$$

Is a vector equation relating the airplanes velocity in different reference frames.

Uniform Circular Motion

- What does it mean ?
- How do we describe it ?
- What can we learn about it ?

How can we describe UCM?

- In general, one co-ordinate system is as good as any other:
 - Cartesian:
 - » (x,y) [position]
 - » (v_x, v_y) [velocity]
 - Polar:
 - » (R,θ) [position]
 - » (v_R,ω) [velocity]
- In UCM:
 - R is constant (hence $V_R = 0$).
 - **o** (anguar velocity) is constant.
 - Polar co-ordinates are a natural way to describe UCM!

Polar Coordinates:

- The arc length s (distance along the circumference) is related to the angle in a simple way:
 - $s = R\theta$, where θ is the angular displacement.
 - l units of θ are called *radians*.

• For one complete revolution: $2\pi R = R\theta_c$

 $\begin{array}{l} \theta_{c} = 2\pi \\ \theta \text{ has period } 2\pi. \end{array}$

1 revolution = 2π radians.

Polar Coordinates...

- In cartesian co-ordinates we say velocity dx/dt = v.
 - X = vt

In polar coordinates, angular velocity d θ/dt = ω.
 θ = ωt

 Even though the speed is constant, velocity is not constant since the direction is changing.

Consider average acceleration in time $\Delta t \subset \Delta v / \Delta t$

- Even though the speed is constant, velocity is not constant since the direction is changing.
 - Consider average acceleration in time $\Delta t \implies \Delta v / \Delta t$

Δν

Move Δv to average time of the interval Δt .

- Even though the speed is constant, velocity is not constant since the direction is changing.
 - Consider average acceleration in time $\Delta t \subset \Delta v / \Delta t$

seems like Δv (hence $\Delta v / \Delta t$) points toward the origin !

 Even though the speed is constant, velocity is not constant since the direction is changing.

3 As we shrink Δt , $\Delta v / \Delta t = a$

Aside: Polar Unit Vectors

• We are familiar with the cartesian unit vetors: *i j k*

Centripetal Acceleration

Must be accelerating if direction is changing:
 Centripetal Acceleration !!

Similar triangles: $\frac{\Delta v}{v} = \frac{\Delta R}{R}$

But $\Delta R = v \Delta t$ for small Δt

So:
$$\frac{\Delta v}{v} = \frac{v\Delta t}{R}$$
 \implies $\frac{\Delta v}{\Delta t} = \frac{v^2}{R}$

$$a = \frac{v^2}{R}$$

Centripetal Acceleration

- UCM results in acceleration:

J Magnitude: $a = v^2 / R$ (= $\omega^2 R$ since v = $R\omega$)J Direction: \hat{r} (toward center of circle)

Example: Propeller Tip

 The propeller on a stunt plane spins with frequency f = 3500 rpm. The length of each propeller blade is L= 80cm. What centripetal acceleration does a point at the tip of a propeller blade feel?

Example:

• First calculate the angular velocity of the propeller:

1
$$rpm = 1 \frac{rot}{min} \times \frac{1}{60} \frac{min}{s} \times 2\pi \frac{rad}{rot} = 0.105 \frac{rad}{s} \equiv 0.105 \text{ s}^{-1}$$

so 3500 rpm means $\omega = 367 \text{ s}^{-1}$

 Now calculate the acceleration.
 a = ω²R = (367s⁻¹)² x (0.8m) = 1.1 x 10⁵ m/s² = 11,000 g

direction of \vec{a} is toward propeller hub $(-\vec{r})$.

Example: Acceleration at Equator.

• What is the centripetal acceleration experienced by a person standing on the earth's equator, due to the earth's rotation.

• Recall that the radius of the earth is $R_e = 6.35 \times 10^6 m$.

Example: Newton & the Moon

- What is the acceleration of the Moon due to its motion around the earth?
- What we know (Newton knew this also):
 - $T = 27.3 \text{ days} = 2.36 \times 10^6 \text{ s}$
 - $R = 3.84 \times 10^8 \text{ m}$
 - $R_E = 6.35 \times 10^6 \text{ m}$

(period ~ 1 month)
(distance to moon)
(radius of earth)

Moon...

• Calculate angular frequency:

$$\frac{1}{27.3}\frac{rot}{day} \times \frac{1}{86400}\frac{day}{s} \times 2\pi \frac{rad}{rot} = 2.66 \times 10^{-6} \text{ s}^{-1}$$

• So $\omega = 2.66 \times 10^{-6} \text{ s}^{-1}$.

• Now calculate the acceleration.

 $a = \omega^2 R = 0.00272 \text{ m/s}^2 = .000278 \text{ g}$

direction of a is toward center of earth (-r).

Moon...

- So we find that $a_{moon} / g = .000278$
- Newton noticed that $R_E^2 / R^2 = .000273$

- This inspired him to propose the **Universal Law of Gravitation:** $F_{Mm} = GMm / R^2$
- What if our solar system was more complicated...
 - Would early scientists have been as successful??
 - Would science have evolved differently??

Recap for today:

- Reference frames and relative motion.
- Uniform Circular Motion
- Look at Textbook problems