
Localizing A�

Stefan Edelkamp
Institut f�ur Informatik

Am Flughafen ��
D������ Freiburg

edelkamp�informatik�uni�freiburg�de

Stefan Schr�odl
DaimlerChrysler Research and Technology

���� Page Mill Road
Palo Alto	 CA �
���

schroedl�rtna�daimlerchrysler�com

Abstract

Heuristic search in large problem spaces inherently
calls for algorithms capable of running under restricted
memory� This question has been investigated in a num�
ber of articles� However� in general the e�cient usage
of two�layered storage systems is not further discussed�
Even if hard�disk capacity is su�cient for the problem
instance at hand� the limitation of main memory may
still represent the bottleneck for their practical appli�
cations� Since breadth��rst and best��rst strategies do
not exhibit any locality of expansion� standard virtual
memory management can soon result in thrashing due
to excessive page faults�

In this paper we propose a new search algorithm and
suitable data structures in order to minimize page
faults by a local reordering of the sequence of expan�
sions� We prove its correctness and completeness and
evaluate it in a real�world scenario of searching a large
road map in a commercial route planning system�

Introduction

Heuristic search algorithms are usually applied to huge
problem spaces� Hence	 having to cope with memory
limitations is an ubiquitous issue in this domain� Since
the development of the A� algorithm �Hart	 Nilsson	

Raphael �����	 the main objective has always been to
develop methods to regain tractability�
The class of memory�restricted search algorithms has

been developed under this aim� The framework im�
poses an absolute upper bound on the total memory the
algorithm may use	 regardless of the size of the prob�
lem space� Most papers do not explicitly distinguish
whether this limit refers to disk space or to working
memory	 but frequently the latter one appears to be
implicitly assumed�
IDA� explores the search space by iterative deepening

and uses space linear in the solution length	 but may re�
visit the same node again and again �Korf ������ It does
not use additionally available memory� MREC switches
from A� to IDA� if the memory limit is reached �Sen

 Bagchi ������ In contrast	 SMA� �Russell ����� re�
assigns the space by dynamically deleting a previously
expanded node	 propagating up computed f �values to

Copyright c� ����� American Association for Arti�cial In�
telligence �www�aaai�org�� All rights reserved�

the parents in order to save re�computation as far as
possible� Eckerle and Schuierer improve the dynamic
re�balancing of the search tree �Eckerle
 Schuierer
������ However	 it remains to be shown that these al�
gorithms in general outperform A� or IDA� since they
impose a large administration overhead� A more recent
work employs stochastic node caching and is shown to
reduce the number of visited nodes compared toMREC
�Minura
 Ishida ������
Even if secondary storage is su�cient	 limitation of

working memory may still represent a bottleneck for
practical applications� Modern operating systems pro�
vide a general�purpose mechanism for processing data
larger than available main memory called virtual mem�
ory� Transparently to the program	 swapping moves
parts of the data back and forth from disk as needed�
Usually	 the virtual address space is divided up into
units called pages � the corresponding equal�sized units
in physical memory are called page frames� A page table
maps the virtual addresses on the page frames and keeps
track of their status �loaded�absent�� When a page fault
occurs	 i�e�	 a program tries to use an unmapped page	
the CPU is interrupted� the operating system picks a
little�used page frame and writes its contents back to
the disk� It then fetches the referenced page into the
page frame just freed	 changes the map	 and restarts
the trapped instruction� In modern computers memory
management is implemented on hardware with a page
size commonly �xed at
��� Byte�
Various paging strategies have been explored that

aim at minimizing page�faults� Belady has shown
that an optimal o��line page exchange strategy deletes
the page	 which will not be used for the longest
time �Belady ������ Unfortunately	 the system	 un�
like possibly the application program itself	 cannot
know this in advance� Several di�erent on�line algo�
rithms for the paging problem have been proposed	
such as Last�In�First�Out �LIFO�	 First�In�First�Out
�FIFO�	 Least�Recently�Used �LRU�	 Least�Frequently�
Used �LFU�	 Flush�When�Full �FWF�	 etc� �Tanen�
baum ������ Sleator and Tarjan proved that LRU is
the best on�line algorithm for the problem achieving an
optimal competitive ratio equal to the number of pages
that �t into main memory �Sleator
 Tarjan ������
Programmers can reduce the number of page faults

by designing data structures that exhibit memory lo�
cality	 such that successive operations tend to access
nearby memory addresses� However	 sometimes it
would be desirable to have more explicit control of sec�
ondary memory manipulations� For example	 fetching
data structures larger than the system page size may
require multiple disk operations� A �le bu�er can be
regarded as a kind of �software� paging that mimics
swapping on a coarser level of granularity� Generally	
an application can outperform the operating system�s
memory management because it is well�informed to pre�
dict future memory access�
Particularly for search algorithms	 system paging can

become the major bottleneck� We experienced this
problem when applying A� to the domain of route plan�
ning� Node structures become large	 compared to hard�
ware pages� moreover	 A� does not respect locality at
all� it explores nodes in the strict order of f values	 re�
gardless of their neighborhood	 and hence jumps back
and forth in a spatially unrelated way for only marginal
di�erences in the estimation value�
In the following we present a new heuristic search al�

gorithm to overcome this lack of locality� In connection
with software paging strategies	 it can lead to a signi��
cant speedup� The idea is to organize the graph struc�
ture for spatial locality and to expand spatial local data
even if it can lead to a possible non�optimal solution�
As a consequence	 the algorithm cannot stop with the
�rst solution found	 but has to do the additional work
of exploring all pending paths� However	 the increased
number of node expansions can be outweighed by the
reduction in the number of page faults�
In the next section	 we review traditional A� and

extend it so as to allow for node expansions in arbi�
trary order� We prove its correctness and completeness	
and as a byproduct we �x a minor lack of accuracy in
the traditional proof for A�� Then	 we describe a data
structure called Heap�Of�Heaps that is suitable to ac�
commodate locality and is based on a partitioning of
the search space� Finally the algorithm is evaluated
within a commercial route planning system�

The Algorithm
We start by characterizing the standard A� algorithm
�Hart	 Nilsson	
 Raphael ����� in an unusual but con�
cise way on the basis of Dijkstra�s algorithm to �nd
shortest paths in �positively� weighted graphs from a
start node s to a set of goal nodes T �Dijkstra ������ Di�
jkstra�s algorithm uses a priority queue Open maintain�
ing the set of currently reached yet unexplored nodes�
If f�u� denotes the total weight of the currently best
explored path from s to some node u �also called the
merit of u�	 the algorithm always selects a node from
Open with minimum f value for expansion	 updates its
successors� f �values	 and transfers it to the set Closed
with established minimum cost path�

Traditional A� � Dijkstra � Re�weighting

Algorithm A� accommodates the information of a
heuristic h�u�	 which estimates the minimum cost of a

path from node u to a goal node in T � It can be cast as a
search through a re�weighted graph� More precisely	 the
edge weights w are replaced by new weights �w by adding
the heuristic di�erence� �w�u� v� � w�u� v��h�u��h�v��
At each instant of time in the re�weighted Dijkstra al�
gorithm	 the merit f of a node u is the sum of the new
weights along the currently cheapest path explored by
the algorithm�
By this transformation	 negative weights can be in�

troduced� Nodes that have already been expanded
might be encountered on a shorter path� Thus	 con�
trary to Dijkstra�s algorithm	 A� deals with them by
possibly re�inserting nodes from Closed into Open�
On every path p from s to u the accumulated weights

in the two graph structures di�er by h�s� and h�u� only	
i�e�	 w�p� � �w�p��h�u��h�s�� Consequently	 on every
cycle c we have �w�c� � w�c� � �	 i�e�	 the re�weighting
cannot lead to negatively weighted cycles so that the
problem remains solvable�

Let ��u� v� and ���u� v� denote the least�cost path
weights between nodes u and v in the initial resp� re�
weighted graphs� The heuristic h is called consistent
if and only if �w�u� v� � � for all u and v� It is called
optimistic if h�u� � minf��u� t�jt � Tg � h��u�� This

is equivalent to the condition minf���u� t�jt � Tg � ��
For convenience	 since in the following we are deal�

ing only with the transformed weights	 we will write w
instead of �w�

Invariance Condition

In each iteration of the A� algorithm	 the element u
with minimum f value is chosen from the set Open and
is inserted into Closed� Then the set of successors ��u�
is generated� Each node v � ��u� is inspected and Open
and Closed are adjusted according to the following pro�
cedure Improve�

Procedure Improve �Node u	 Node v�
if �v � Open�

if �f�u� � w�u� v� � f�v��
Open�DecreaseKey�v� f�u� � w�u� v��

else if �v � Closed �
if �f�u� � w�u� v� � f�v��

Closed�Delete�v�
Open�Insert�v� f�u� � w�u� v��

else

Open�Insert�v� f�u� � w�u� v��

The core of the standard optimality proof of A� pub�
lished in AI�literature �Pearl ����� consists of an invari�
ance stating that while the algorithm is running there
is always a node v in the Open list on an optimal path
with the optimal f �value f�v� � ��s� v�� In our opinion	
this reasoning is true but lacks some formal rigidness�
if the child of a node with optimal f �value was already
contained in Closed �be it with optimal f value�	 then
it wouldn�t be reopened and the invariance would be
violated� It is part of the proof to show that this situa�
tion cannot occur� Thus	 we strengthen the invariance

condition by requiring the node not to be followed by
any Closed node on the same optimal solution path�

Invariance I� Let p � �s � v�� � � � � vn � t� be a least�
cost path from the start node s to a a goal node t � T �
Application of Improve preserves the following invari�
ance� Unless vn is in Closed with f�vn� � ��s� vn��
there is a node vi in Open such that f�vi� � ��s� vi��
and no j � i exists such that vj is in Closed with
f�vj� � ��s� vj��

Proof� W�l�o�g� let i be maximal among the nodes sat�
isfying �I�� We distinguish the following cases�

�� Node u is not on p or f�u� � ��s� u�� Then node
vi �� u remains inOpen� Since no v inOpen � p ���u�
with f�v� � ��s� v� � f�u� � w�u� v� is changed and
no other node is added to Closed	 �I� is preserved�

�� Node u is on p and f�u� � ��s� u�� If u � vn	 there
is nothing to show�

First assume u � vi� Then Improve will be called for
v � vi�� � ��u�� for all other nodes in ��u� n fvi��g	
the argument of case � holds� According to �I�	 if
v is in Closed	 then f�v� � ��s� v�	 and it will be
reinserted into Open with f�v� � ��s� u� � w�u� v� �
��s� v�� If v is neither in Open or Closed	 it is in�
serted into Open with this merit� Otherwise	 the De�
creaseKey operation will set it to ��s� v�� In either
case	 v guarantees the invariance �I��

Now suppose u �� vi� By the maximality assumption
of i we have u � vk with k � i� If v � vi	 no De�
creaseKey operation can change it because vi already
has optimal merit f�v� � ��s� u� � w�u� v� � ��s� v��
Otherwise	 vi remains in Open with unchanged f �
value and no other node besides u is inserted into
Closed � thus	 vi still preserves �I�� �

Note that we have not required f to be optimistic�
Under this assumption	 the optimality of A� is implied
as a corollary	 i�e�	 the fact that a solution returned by
the algorithm is indeed a shortest one� To see this	 sup�
pose that the algorithm terminates the search process
with the �rst node t� in the set of goal nodes T and f�t��
is not optimal� Then f�t�� � ��s� u� � minf��u� t�jt �
Tg � ��s� u� � f�u�	 since for an optimistic estimate
the value minf��u� t�j t � Tg is not negative� This con�
tradicts the choice of t�� �

General�Node�Ordering A�

Move ordering is a search optimization technique which
has been explored in depth in the domain of two�
player games and single�agent applications� It is well�
known that substituting the priority queue by a stack
or a FIFO�queue results in a depth��rst resp� breadth�
�rst traversal of the problem graph� In this case the
DeleteMin operation is replaced by Pop or Dequeue	
respectively� In the following we will assume a generic
operation DeleteSome not imposing any restrictions
on the selection criteria� The subsequent section will
give an implementation that is allowed to select nodes
which are �local� to to previously expanded nodes with

respect to the application�dependent storage scheme	
even though they do not have a minimum f value�
In contrast to A�	 reaching the �rst goal node will no

longer guarantee optimality of the found solution path�
Hence	 the algorithm has to continue until the Open list
runs empty� By storing and updating the current best
solution path length as a global lower bound value �	 we
give an anytime extension to A�that improves the so�
lution quality over time� The concept can be compared
to the linear best �rst algorithm Depth�First�Branch�
and�Bound �Korf ������

Function General�Node�Ordering A�

Open�Insert�s� h�s��
���
bestSolution � 	
while not �Open�IsEmpty���

u� Open�DeleteSome��
Closed�Insert�u�

��� if �f�u� � �� continue
if �u � T
 f�u� � ��

�� f�u�
bestSolution � retrieved path to u

else ��u�� Expand�u�
for all v in ��u�

Improve�u� v�
return bestSolution

Theorem � If the heuristic estimate h is optimistic�
General�Node�Ordering A� is optimal�

Proof� Upon termination	 each node inserted into
Open must have been selected at least once� Suppose
that invariance �I� is preserved in each loop	 i�e�	 that
there is always a node v in the Open list on an optimal
path with f�v� � ��s� v�� Thus the algorithm cannot
terminate without eventually selecting the goal node
on this path	 and since by de�nition it is not more ex�
pensive than any found solution path and bestSolution
maintains the currently shortest path	 an optimal so�
lution will be returned� It remains to show that the
invariance �I� holds in each iteration� If the extracted
node u is not equal to v there is nothing to show� Oth�
erwise f�u� � ��s� u�� The bound � denotes the cur�
rently best solution length� If f�u� � � the condition
in ��� is not ful�lled and no pruning takes place� On
the other hand f�u� � � leads to a contradiction since
� � ��s� u� � minf��u� t�jt � Tg � ��s� u� � f�u� �the
latter inequality is justi�ed by h being optimistic�� �

Theorem � Algorithm General�Node�Ordering A� is
complete� i�e�� terminates on �nite graphs�

Proof� For each successor generation	General�Node�
Ordering A� adds new links to its traversal tree� More�
over	 the algorithm only reopens a node in Closed
when it �nds a strictly cheaper path to it and	 as said
above	 re�weighting of positively weighted graphs keeps
weights of cycles positive� Hence	 the algorithm consid�
ers at most the number of acyclic path of the underlying
�nite graph� This number is �nite and	 therefore	 the
algorithm terminates� �

The Heap�Of�Heaps Data Structures

Let us brie y review the usual A� implementation in
terms of data structures� The set Open is realized
as a priority queue �heap� supporting the operations
IsEmpty	 Min	 Insert	 DecreaseKey DeleteMin� The
membership tests v � Open resp� v � Closed in pro�
cedure Improve are implemented using a hash table T �
This makes explicit storage of the Closed set obsolete	
since it is equal to T nOpen�
For large node structures	 it is ine�cient to move

them physically around� rather	 they are maintained
in an auxiliary data structure D containing all graph
information� D can also contain the links related to the
heap and to the hashing chains maximizing memory
locality with respect to node operations� If the graph
is entirely stored	 the hash table collapses with D� In
some cases there is even no other option than explicit
storage	 e�g� in the domain of route planning�
Our approach to achieve memory locality is to

�nd a suitable partition of the search space and of
all associated data structures into a set of �soft�
ware� pages P�� � � � � Pk� We assume a function
� � Node� f�� � � � � kg which maps each node to the cor�
responding page it is contained in�
The data structure Heap�Of�Heaps represents the

Open set� It consists of a collection of k priority queues
H�� � � � � Hk	 one for each page� At any instant	 one
of the heaps	 Hactive 	 is designated as being active�
One additional priority queue H keeps track of the root
nodes of all Hi with i �� active� It is used to quickly
�nd the overall minimum across all of these heaps�
The following operations are delegated to the member

priority queues Hi in the straightforward way� When�
ever necessary	 H is updated accordingly�

Function IsEmpty��

return
Vk

i��Hi�IsEmpty��

Procedure Insert�Node u	 Merit f�u��
if ���u� �� active
 f�u� � f�H��u��Min����

H�DecreaseKey�H��u�� f�u��
H��u��Insert�u	 f�u��

Procedure DecreaseKey�Node u	 Merit f�u��
if ���u� �� active
 f�u� � f�H��u��Min����

H�DecreaseKey�H��u�� f�u��
H��u��DecreaseKey�u	f�u��

Operation DeleteSome performs DeleteMin on the
active heap�

Function DeleteSome��
CheckActive��
return Hactive �DeleteMin��

The Insert and DecreaseKey operations can a�ect
all heaps� However	 the hope is that the number of
adjacent pages of the active page is small and that they
are already in memory or have to be loaded only once�
all other pages and priority queues remain unchanged
and do not have to reside in main memory�
As the aim is to minimize the number of switches

between pages	 the algorithm favors the active page by

continuing to expand its nodes although the minimum f
value might already exceed the minimum of all remain�
ing priority queues� There are two control parameters�
An activeness bonus ! and an estimate " for the cost
of an optimum solution�

Procedure CheckActive��
if �Hactive �IsEmpty�� �

�f�Hactive �Min���� f�H�Min���Min��� � !

 f�Hactive �Min��� � "��

H�Insert�Hactive � f�Hactive �Min����
Hactive � H�Min��
H�Remove�Hactive �

If the minimum f �value of the active heap is larger
than that of the remaining heaps plus the activeness
bonus !	 the algorithmmay switch to the priority queue
satisfying the minimum root f value� Thus	 ! discour�
ages page switches by determining the proportion of a
page to be explored� As it increases to large values	 in
the limit each activated page is searched to completion�
However the active page still remains valid	 unless "

is exceeded� The rationale behind this second heuristic
is that one can often provide a heuristic for the total
least cost path which is	 on the average	 more accurate
than that obtained from h	 but which might be overes�
timating in some cases�
With this implementation	 algorithm General�Node�

Ordering A� itself remains almost unchanged	 i�e�	 the
data structure and page handling is transparent to the
algorithm� Traditional A� arises as a special case for
! � � and " � h��s�	 where h��s� denotes the actual
minimum cost between the start node and a goal node�
Optimality is guaranteed	 since we leave the heuristic

estimates una�ected by the heap prioritization scheme	
and since each node inserted into the Heap�of�Heaps
structure is eventually returned by DeleteMin�

Experiments

In our experiments we incorporated our algorithm into
a commercially available route planning system run�
ning on Windows platforms� The system covers an area
of approximately ���

�� km at a high level of de�
tail	 and comprises approximately ���	��� nodes �road
junctions� linked by �	���	��� edges �road elements��
The entire graph structure	 together with the members
needed for the search algorithm	 results in a total mem�
ory size of
� MByte	 which already exceeds the adver�
tized minimum main memory hardware requirement of
�� MByte�
For long�distance routes	 conventional A� expands

the nodes in a spatially uncorrelated way	 jumping to
a node as far apart as some ��� km	 but possibly re�
turning to the successor of the previous one in the next
step� Therefore	 the working set gets extremely large	
and the virtual memory management of the operating
system leads to excessive paging and is the main burden
on the computation time�
As a remedy	 we achieve memory locality of the

search algorithm by exploiting the underlying spatial
relation of connected nodes� Nodes are geographically

Figure �� The granularity of the partition �lines indicate
bounding rectangles of pages��

sorted according to their coordinates in such a way that
neighboring nodes also tend to appear close to each
other� A page consists of a constant number of succes�
sive nodes �together with the outgoing edges� according
to this order� Thus	 pages in densely populated regions
tend to cover a smaller area than those representing ru�
ral regions� For not too small sizes	 the connectivity
within a page will be high	 and only a comparably low
fraction of road elements cross the boundaries to adja�
cent pages� Fig� � shows some bounding rectangles of
nodes belonging to the same page�
There are three parameters controlling the behavior

of the algorithm with respect to secondary memory	 the
algorithm parameters ! and "	 and the �software� page
size� The latter one should be adjusted so that the ac�
tive page and its adjacent pages together roughly �t
into available main memory� The optimum solution es�
timate " is obtained by calculating the Euclidean dis�
tance between the start and the goal and adding a �xed
percentage�
Fig� � opposes the number of page faults to the num�

ber of node expansions for varying page size and !� We
observe that the rapid decrease of page faults compen�
sates the increase of expansions �note the logarithmic
scale�� Using an activeness bonus of about � km suf�
�ces to decrease the value by more than one magnitude
for all page sizes� At the same time the number of ex�
panded nodes increases by less than ten percent�
Fig� � depicts the corresponding in uence of "� In

this case the reduction of page faults by more than a
magnitude can be achieved by investing less than ��
percent extra node expansions for " equal to ���� times
the Euclidean distance� The e�ect is almost indepen�
dent of the page size�
Unfortunately	 the convincing decrease in page faults

did not translate proportionally to execution time� the
maximum reduction amounted to about �� percent� We
suspect that the reason is that we could not totally con�
trol the operating system�s hardware paging still work�
ing besides and on top of our software paging technique�
Hence	 more inquiry into the platform�dependent im�
plementation is still required�
We conclude that there is a trade�o� between the

growth of node expansions and the savings of page

expansions

0

5000

10000

15000
1 10 100

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

page size

delta [km]

page faults

Figure �� Number of page�faults and node expansions
for varying page size and activeness bonus !�

expansions

0

5000

10000

15000100 105 110 115 120 125

0

100000

200000

300000

400000

500000

600000

700000

800000

page size

lambda / dist [%]

page faults

Figure �� Number of page�faults and node expansions
for varying page size and the ratio �in percent� of solu�
tion length approximation " and the Euclidean distance
dist between start and goal�

faults that has to be resolved by tuning the parameters
to improve the overall e�ciency for best performance�

Related Work

A couple of dynamic data structures have been pro�
posed which take into account secondary memory struc�
tures� Major representatives are tree structured in�
dices	 such as B�Trees invented by Bayer and Mc�
Creight �Bayer
 McCreight ����� and dynamic hash�
ing variants �Larson �����	 such as extendible hash�
ing �Fagin et al� ����� and virtual hashing �Litwin
������ External sorting algorithms �Knuth ����� are
special�tailored for handling sequences on disk storage
that do not �t into working memory� An extension
for the LEDA �Mehlhorn
 N�aher ����� C�� library
project to secondary storage systems	 LEDA�SM for
short	 is being developed by Crauser and Mehlhorn at

MPI�Saarbr�ucken�
One currently deeply investigated area in which

the advantage of memory locality pays o� is the
breadth��rst synthesis of binary decision diagrams
�BDDs� �Bryant ������ The idea is to construct the
diagram structure in a level�wise traversal �Hu
 Dill
������ Since there is a trade�o� between low mem�
ory overhead and memory access locality	 hybrid ap�
proaches based on context switches are currently being
explored �Yang et al� ������
Since each page is explored independently	 the algo�

rithms easily lends itself to parallelization by allowing
for more than one active page at a time� In fact	 a com�
monly used method for duplicate pruning uses a hash
function similar to � de�ned above to associate with
each node of the search space a distinct subspace with
a dedicated processor� In �Mahapatra
 Dutt �����	
the notion of locality is important to reduce communi�
cation between processors and it is implemented as the
neighborhood on a hypercube�
There are some related approaches to the re�

weighting technique used in our optimality proof�
Searching negatively weighted graphs has been inten�
sively studied in literature	 cf �Cormen	 Leiserson	

Rivest ������ An O�jV jjEj� algorithm for the single�
source shortest path problem has been separately pro�
posed by Bellman and Ford� The algorithm has been
improved by Yen� The all�pair shortest path problem
has been solved by Floyd based on a theorem of War�
shall� It has been extended by Johnson for sparse and
possibly negatively weighted graphs by re�weighting�
All these algorithms do not apply to the scenario of
implicitly given graphs with additional heuristic infor�
mation�

Conclusion

We have presented an approach to relax the order of
node expansions in traditional A�� Its admissibility is
shown using a re�ned invariance condition based on
Dijkstra�s algorithm and re�weighted graphs� The re�
ordering is used to make the search algorithm take into
account memory locality for the price of an increased
number of expansions� However	 this is o�set by the
minimization of secondary memory access in a two�
layered storage system	 which is a major bottleneck
for the traditional algorithm� To this end	 the data
structure Heap�of�Heaps has been developed which par�
titions the underlying graph into pages� two heuristic
threshold values discourage page switches and can be
tuned for best performance� The count of page switches
from an evaluation within a commercially available
route planning system supports this view�

References

Bayer	 R�	 and McCreight	 E� ����� Organization and
maintenanace of large ordered indexes� Acta Informat�
ica ������
��#
���

Belady	 L� ����� A study of replacement algorithms
for virtual storage computers� IBM Syst� J ����#����

Bryant	 R� E� ����� Symbolic manipulation of boolean
functions using a graphical representation� In Design
Automation	 ���#��
�

Cormen	 T� H�� Leiserson	 C� E�� and Rivest	 R� L�
����� Introduction to Algorithms� The MIT Press�

Dijkstra	 E� W� ����� A note on two problems in con�
nexion with graphs� Numerische Mathematik �����#
����

Eckerle	 J�	 and Schuierer	 S� ����� E�cient memory�
limited graph search� In KI	 ���#����

Fagin	 R�� Nievergelt	 J�� Pippenger	 N�� and Strong	
H� R� ����� Extendible hashing � a fast access
method for dynamic �les� ACM Trans� Database Syst�

�������#�

�

Hart	 P� E�� Nilsson	 N� J�� and Raphael	 B� ����� A
formal basis for heuristic determination of minimum
path cost� IEEE Trans� on SSC
�����

Hu	 A� J�	 and Dill	 D� L� ����� Reducing BDD size
by exploiting functional dependencies� In Design Au�
tomation	 ���#����

Knuth	 D� E� ����� The Art of Computer Program�
ming� Vol 	� Sorting and Searching� Addison�Wesley�

Korf	 R� E� ����� Depth��rst iterative�deepening� An
optimal admissible tree search� Arti�cial Intelligence
��������#����

Korf	 R� E� ����� Linear�space best��rst search� Arti�
�cial Intelligence ������
�#���

Larson	 P��A� ����� Dynamic hashing� BIT ��������
#
����

Litwin	 W� ����� Virtual hashing� a dynamically
changing hashing� In Very Large Databases	 ���#����

Mahapatra	 N� R�	 and Dutt	 S� ����� Scalable global
and local hashing strategies for duplicate pruning in
parallel A� graph search� IEEE Transactions on Par�
allel and Distributed Systems ��������#����

Mehlhorn	 K�	 and N�aher	 S� ����� The LEDA
Platform of Combinatorial and Geometric Computing�
Cambridge University Press�

Minura	 T�	 and Ishida	 T� ����� Stochastic node
caching for e�cient memory�bounded search� In
AAAI	
��#
���

Pearl	 J� ����� Heuristics� Addison�Wesley�

Russell	 S� ����� E�cient memory�bounded search
methods� In ECAI�
�	 �#��

Sen	 A� K�	 and Bagchi	 A� ����� Fast recursive formu�
lations for best��rst search that allow controlled use of
memory� In IJCAI	 ���#����

Sleator	 D�	 and Tarjan	 R� ����� Amortized e�ciency
of list update and paging rules� Communications of
the ACM ������#����

Tanenbaum	 A� S� ����� Modern Operating Systems�
New Jersey� Prentice Hall�

Yang	 B�� Chen	 Y��A�� Bryang	 R� E�� and Hallaron	
D� R� ����� Space� and time�e�cient BDD construc�
tion via working set control� In Asia and South Paci�c
Design Automation	
��#
���

