Localizing A*

Stefan Edelkamp
Institut fiir Informatik
Am Flughafen 17
D-79110 Freiburg
edelkamp@informatik.uni-freiburg.de

Abstract

Heuristic search in large problem spaces inherently
calls for algorithms capable of running under restricted
memory. This question has been investigated in a num-
ber of articles. However, in general the efficient usage
of two-layered storage systems is not further discussed.
Even if hard-disk capacity is sufficient for the problem
instance at hand, the limitation of main memory may
still represent the bottleneck for their practical appli-
cations. Since breadth-first and best-first strategies do
not exhibit any locality of expansion, standard virtual
memory management can soon result in thrashing due
to excessive page faults.

In this paper we propose a new search algorithm and
suitable data structures in order to minimize page
faults by a local reordering of the sequence of expan-
sions. We prove its correctness and completeness and
evaluate it in a real-world scenario of searching a large
road map in a commercial route planning system.

Introduction

Heuristic search algorithms are usually applied to huge
problem spaces. Hence, having to cope with memory
limitations is an ubiquitous issue in this domain. Since
the development of the A* algorithm (Hart, Nilsson, &
Raphael 1968), the main objective has always been to
develop methods to regain tractability.

The class of memory-restricted search algorithms has
been developed under this aim. The framework im-
poses an absolute upper bound on the total memory the
algorithm may use, regardless of the size of the prob-
lem space. Most papers do not explicitly distinguish
whether this limit refers to disk space or to working
memory, but frequently the latter one appears to be
implicitly assumed.

IDA* explores the search space by iterative deepening
and uses space linear in the solution length, but may re-
visit the same node again and again (Korf 1985). It does
not use additionally available memory. MREC switches
from A* to IDA* if the memory limit is reached (Sen
& Bagchi 1989). In contrast, SMA* (Russell 1992) re-
assigns the space by dynamically deleting a previously
expanded node, propagating up computed f-values to

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Stefan Schrodl
DaimlerChrysler Research and Technology
1510 Page Mill Road
Palo Alto, CA 94303
schroedl@rtna.daimlerchrysler.com

the parents in order to save re-computation as far as
possible. Eckerle and Schuierer improve the dynamic
re-balancing of the search tree (Eckerle & Schuierer
1995). However, it remains to be shown that these al-
gorithms in general outperform A* or IDA* since they
impose a large administration overhead. A more recent
work employs stochastic node caching and is shown to
reduce the number of visited nodes compared to MREC
(Minura & Ishida 1998).

Even if secondary storage is sufficient, limitation of
working memory may still represent a bottleneck for
practical applications. Modern operating systems pro-
vide a general-purpose mechanism for processing data
larger than available main memory called virtual mem-
ory. Transparently to the program, swapping moves
parts of the data back and forth from disk as needed.
Usually, the virtual address space is divided up into
units called pages; the corresponding equal-sized units
in physical memory are called page frames. A page table
maps the virtual addresses on the page frames and keeps
track of their status (loaded/absent). When a page fault
occurs, i.e., a program tries to use an unmapped page,
the CPU is interrupted; the operating system picks a
little-used page frame and writes its contents back to
the disk. It then fetches the referenced page into the
page frame just freed, changes the map, and restarts
the trapped instruction. In modern computers memory
management is implemented on hardware with a page
size commonly fixed at 4096 Byte.

Various paging strategies have been explored that
aim at minimizing page-faults. Belady has shown
that an optimal off-line page exchange strategy deletes
the page, which will not be used for the longest
time (Belady 1966). Unfortunately, the system, un-
like possibly the application program itself, cannot
know this in advance. Several different on-line algo-
rithms for the paging problem have been proposed,
such as Last-In-First-Out (LIFO), First-In-First-Out
(FIFO), Least-Recently-Used (LRU), Least-Frequently-
Used (LFU), Flush-When-Full (FWF), etc. (Tanen-
baum 1992). Sleator and Tarjan proved that LRU is
the best on-line algorithm for the problem achieving an
optimal competitive ratio equal to the number of pages
that fit into main memory (Sleator & Tarjan 1985).

Programmers can reduce the number of page faults

by designing data structures that exhibit memory lo-
cality, such that successive operations tend to access
nearby memory addresses. However, sometimes it
would be desirable to have more explicit control of sec-
ondary memory manipulations. For example, fetching
data structures larger than the system page size may
require multiple disk operations. A file buffer can be
regarded as a kind of “software” paging that mimics
swapping on a coarser level of granularity. Generally,
an application can outperform the operating system’s
memory management because it is well-informed to pre-
dict future memory access.

Particularly for search algorithms, system paging can
become the major bottleneck. We experienced this
problem when applying A* to the domain of route plan-
ning. Node structures become large, compared to hard-
ware pages; moreover, A* does not respect locality at
all; it explores nodes in the strict order of f values, re-
gardless of their neighborhood, and hence jumps back
and forth in a spatially unrelated way for only marginal
differences in the estimation value.

In the following we present a new heuristic search al-
gorithm to overcome this lack of locality. In connection
with software paging strategies, it can lead to a signifi-
cant speedup. The idea is to organize the graph struc-
ture for spatial locality and to expand spatial local data
even if it can lead to a possible non-optimal solution.
As a consequence, the algorithm cannot stop with the
first solution found, but has to do the additional work
of exploring all pending paths. However, the increased
number of node expansions can be outweighed by the
reduction in the number of page faults.

In the next section, we review traditional A* and
extend it so as to allow for node expansions in arbi-
trary order. We prove its correctness and completeness,
and as a byproduct we fix a minor lack of accuracy in
the traditional proof for A*. Then, we describe a data
structure called Heap-Of-Heaps that is suitable to ac-
commodate locality and is based on a partitioning of
the search space. Finally the algorithm is evaluated
within a commercial route planning system.

The Algorithm

We start by characterizing the standard A* algorithm
(Hart, Nilsson, & Raphael 1968) in an unusual but con-
cise way on the basis of Dijkstra’s algorithm to find
shortest paths in (positively) weighted graphs from a
start node s to a set of goal nodes T (Dijkstra 1959). Di-
jkstra’s algorithm uses a priority queue Open maintain-
ing the set of currently reached yet unexplored nodes.
If f(u) denotes the total weight of the currently best
explored path from s to some node u (also called the
merit of u), the algorithm always selects a node from
Open with minimum f value for expansion, updates its
successors’ f-values, and transfers it to the set Closed
with established minimum cost path.

Traditional A* = Dijkstra + Re-weighting

Algorithm A* accommodates the information of a
heuristic h(u), which estimates the minimum cost of a

path from node u to a goal node in T'. It can be cast as a
search through a re-weighted graph. More precisely, the
edge weights w are replaced by new weights w by adding
the heuristic difference: w(u,v) = w(u,v)—h(u) +h(v).
At each instant of time in the re-weighted Dijkstra al-
gorithm, the merit f of a node w is the sum of the new
weights along the currently cheapest path explored by
the algorithm.

By this transformation, negative weights can be in-
troduced. Nodes that have already been expanded
might be encountered on a shorter path. Thus, con-
trary to Dijkstra’s algorithm, A* deals with them by
possibly re-inserting nodes from Closed into Open.

On every path p from s to u the accumulated weights
in the two graph structures differ by h(s) and h(u) only,
i.e., w(p) = w(p) — h(u) + h(s). Consequently, on every
cycle ¢ we have w(c) = w(c) > 0, i.e., the re-weighting
cannot lead to negatively weighted cycles so that the
problem remains solvable.

Let 6(u,v) and d(u,v) denote the least-cost path
weights between nodes v and v in the initial resp. re-
weighted graphs. The heuristic h is called consistent
if and only if w(u,v) > 0 for all v and v. It is called
optimistic if h(u) < min{d(u,t)|t € T} = h*(u). This
is equivalent to the condition min{o(u,t)|t € T} > 0.

For convenience, since in the following we are deal-
ing only with the transformed weights, we will write w
instead of w.

Invariance Condition

In each iteration of the A* algorithm, the element u
with minimum f value is chosen from the set Open and
is inserted into Closed. Then the set of successors I'(u)
is generated. Each node v € I'(u) is inspected and Open
and Closed are adjusted according to the following pro-
cedure Improve.

Procedure Improve (Node u, Node v)
if (v € Open)
i (f () + w(u,v) < £(0))
Open.DecreaseKey(v, f(u) + w(u,v))
else if (v € Closed)
if (f(u) + w(u,v) < f(v))
Closed.Delete(v)
Open.Insert(v, f(u) + w(u,v))
else
Open.Insert(v, f(u) + w(u,v))

The core of the standard optimality proof of A* pub-
lished in Al-literature (Pearl 1985) consists of an invari-
ance stating that while the algorithm is running there
is always a node v in the Open list on an optimal path
with the optimal f-value f(v) = §(s,v). In our opinion,
this reasoning is true but lacks some formal rigidness:
if the child of a node with optimal f-value was already
contained in Closed (be it with optimal f value), then
it wouldn’t be reopened and the invariance would be
violated. It is part of the proof to show that this situa-
tion cannot occur. Thus, we strengthen the invariance

condition by requiring the node not to be followed by
any Closed node on the same optimal solution path.

Invariance I. Let p = (s = vy, ...,v, = t) be a least-
cost path from the start node s to a a goal node t € T.
Application of Improve preserves the following invari-
ance: Unless vy, is in Closed with f(v,) = (s, vn),
there is a node v; in Open such that f(v;) = 0(s,v;),
and no j > ¢ ewists such that v; is in Closed with

f(v;) = d(s,v;).

Proof: W.lo.g. let i be maximal among the nodes sat-
isfying (I). We distinguish the following cases:

1. Node « is not on p or f(u) > d(s,u). Then node
v; # uremains in Open. Since no v in Open N p NI (u)
with f(v) = d(s,v) < f(u) + w(u,v) is changed and
no other node is added to Closed, (I) is preserved.

2. Node u is on p and f(u) = §(s,u). If u = v,, there
is nothing to show.
First assume u = v;. Then Improve will be called for
v = v;41 € ['(u); for all other nodes in I'(u) \ {vi+1},
the argument of case 1 holds. According to (I), if
v is in Closed, then f(v) > d(s,v), and it will be
reinserted into Open with f(v) = d(s,u) + w(u,v) =
d(s,v). If v is neither in Open or Closed, it is in-
serted into Open with this merit. Otherwise, the De-
creaseKey operation will set it to d(s,v). In either
case, v guarantees the invariance (I).

Now suppose u # v;. By the maximality assumption
of i we have u = v; with &k < i. If v = v;, no De-
creaseKey operation can change it because v; already
has optimal merit f(v) = §(s,u) + w(u,v) = d(s,v).
Otherwise, v; remains in Open with unchanged f-
value and no other node besides u is inserted into
Closed; thus, v; still preserves (I). a

Note that we have not required f to be optimistic.
Under this assumption, the optimality of A* is implied
as a corollary, i.e., the fact that a solution returned by
the algorithm is indeed a shortest one. To see this, sup-
pose that the algorithm terminates the search process
with the first node ¢’ in the set of goal nodes T" and f(t')
is not optimal. Then f(t') > d(s,u) + min{d(u,t)|t €
T} > 0(s,u) = f(u), since for an optimistic estimate
the value min{é(u,t)| t € T'} is not negative. This con-
tradicts the choice of ¢'. |

General-Node-Ordering A*

Mowve ordering is a search optimization technique which
has been explored in depth in the domain of two-
player games and single-agent applications. It is well-
known that substituting the priority queue by a stack
or a FIFO-queue results in a depth-first resp. breadth-
first traversal of the problem graph. In this case the
DeleteMin operation is replaced by Pop or Dequeue,
respectively. In the following we will assume a generic
operation DeleteSome not imposing any restrictions
on the selection criteria. The subsequent section will
give an implementation that is allowed to select nodes
which are “local” to to previously expanded nodes with

respect to the application-dependent storage scheme,
even though they do not have a minimum f value.

In contrast to A*, reaching the first goal node will no
longer guarantee optimality of the found solution path.
Hence, the algorithm has to continue until the Open list
runs empty. By storing and updating the current best
solution path length as a global lower bound value «, we
give an anytime extension to A*that improves the so-
lution quality over time. The concept can be compared
to the linear best first algorithm Depth-First-Branch-
and-Bound (Korf 1993).

Function General-Node-Ordering A*
Open.Insert(s, h(s))
a4 00
bestSolution < ()
while not (Open.IsEmpty())
u < Open.DeleteSome()
Closed.Insert(u)
(*) if (f(u) > @) continue
if(ueTA flu) <a)
o e f(u)
bestSolution < retrieved path to u
else I'(u) + Ezpand(u)
for all v in T'(u)
Improve(u,v)
return bestSolution

Theorem 1 If the heuristic estimate h is optimistic,
General-Node-Ordering A* is optimal.

Proof: Upon termination, each node inserted into
Open must have been selected at least once. Suppose
that invariance (I) is preserved in each loop, i.e., that
there is always a node v in the Open list on an optimal
path with f(v) = 0(s,v). Thus the algorithm cannot
terminate without eventually selecting the goal node
on this path, and since by definition it is not more ex-
pensive than any found solution path and bestSolution
maintains the currently shortest path, an optimal so-
lution will be returned. It remains to show that the
invariance (I) holds in each iteration. If the extracted
node u is not equal to v there is nothing to show. Oth-
erwise f(u) = d(s,u). The bound a denotes the cur-
rently best solution length. If f(u) < « the condition
in (*) is not fulfilled and no pruning takes place. On
the other hand f(u) > « leads to a contradiction since
a > 0(s,u) + min{d(u,t)|t € T} > d(s,u) = f(u) (the
latter inequality is justified by h being optimistic). O

Theorem 2 Algorithm General-Node-Ordering A* is
complete, i.e., terminates on finite graphs.

Proof: For each successor generation, General-Node-
Ordering A* adds new links to its traversal tree. More-
over, the algorithm only reopens a node in Closed
when it finds a strictly cheaper path to it and, as said
above, re-weighting of positively weighted graphs keeps
weights of cycles positive. Hence, the algorithm consid-
ers at most the number of acyclic path of the underlying
finite graph. This number is finite and, therefore, the
algorithm terminates. a

The Heap-Of-Heaps Data Structures

Let us briefly review the usual A* implementation in
terms of data structures. The set Open is realized
as a priority queue (heap) supporting the operations
IsEmpty, Min, Insert, DecreaseKey DeleteMin. The
membership tests v € Open resp. v € Closed in pro-
cedure Improve are implemented using a hash table T'.
This makes explicit storage of the Closed set obsolete,
since it is equal to T'\ Open.

For large node structures, it is inefficient to move
them physically around; rather, they are maintained
in an auxiliary data structure D containing all graph
information. D can also contain the links related to the
heap and to the hashing chains maximizing memory
locality with respect to node operations. If the graph
is entirely stored, the hash table collapses with D. In
some cases there is even no other option than explicit
storage, e.g. in the domain of route planning.

Our approach to achieve memory locality is to
find a suitable partition of the search space and of
all associated data structures into a set of (soft-
ware) pages Pp,...,P. We assume a function
¢ : Node — {1, ..., k} which maps each node to the cor-
responding page it is contained in.

The data structure Heap-Of-Heaps represents the
Open set. It consists of a collection of k priority queues
Hy,...,Hy, one for each page. At any instant, one
of the heaps, H,.t;pe, 15 designated as being active.
One additional priority queue H keeps track of the root
nodes of all H; with i # active; It is used to quickly
find the overall minimum across all of these heaps.

The following operations are delegated to the member
priority queues H; in the straightforward way. When-
ever necessary, H is updated accordingly.

Function IsEmpty()
return /\f:1 H;.IsEmpty()

Procedure Insert(Node u, Merit f(u))
if (p(u) # active N f(u) < f(Hg(yy-Min()))
H.DecreaseKey(H gy, f(u))
Hgyy-Insert(u, f(u))

Procedure DecreaseKey(Node u, Merit f(u))
if (¢p(u) # active A f(u) < f(Hgey-Min()))
H.DecreaseKey(H (v, f(u))
H gy DecreaseKey(u, f(u))

Operation DeleteSome performs DeleteMin on the
active heap.

Function DeleteSome()
CheckActive()
return H .4, .DeleteMin()

The Insert and DecreaseKey operations can affect
all heaps. However, the hope is that the number of
adjacent pages of the active page is small and that they
are already in memory or have to be loaded only once;
all other pages and priority queues remain unchanged
and do not have to reside in main memory.

As the aim is to minimize the number of switches
between pages, the algorithm favors the active page by

continuing to expand its nodes although the minimum f
value might already exceed the minimum of all remain-
ing priority queues. There are two control parameters:
An activeness bonus A and an estimate A for the cost
of an optimum solution.

Procedure CheckActive()
if (H getiye -IsEmpty() v . .
H gctiye-Min()) - f(H.Min().Min()) > A
A f(H getipe-Min()) > A)))
H.Insert(H getie, f(Hactive-Min()))
H g ctive < H.-Min()
‘H.Remove(H yetive)

If the minimum f-value of the active heap is larger
than that of the remaining heaps plus the activeness
bonus A, the algorithm may switch to the priority queue
satisfying the minimum root, f value. Thus, A discour-
ages page switches by determining the proportion of a
page to be explored. As it increases to large values, in
the limit each activated page is searched to completion.

However the active page still remains valid, unless A
is exceeded. The rationale behind this second heuristic
is that one can often provide a heuristic for the total
least cost path which is, on the average, more accurate
than that obtained from h, but which might be overes-
timating in some cases.

With this implementation, algorithm General-Node-
Ordering A* itself remains almost unchanged, i.e., the
data structure and page handling is transparent to the
algorithm. Traditional A* arises as a special case for
A =0 and A < h*(s), where h*(s) denotes the actual
minimum cost between the start node and a goal node.

Optimality is guaranteed, since we leave the heuristic
estimates unaffected by the heap prioritization scheme,
and since each node inserted into the Heap-of-Heaps
structure is eventually returned by DeleteMin.

Experiments

In our experiments we incorporated our algorithm into
a commercially available route planning system run-
ning on Windows platforms. The system covers an area
of approximately 800 x 400 km at a high level of de-
tail, and comprises approximately 910,000 nodes (road
junctions) linked by 2,500,000 edges (road elements).
The entire graph structure, together with the members
needed for the search algorithm, results in a total mem-
ory size of 40 MByte, which already exceeds the adver-
tized minimum main memory hardware requirement of
32 MByte.

For long-distance routes, conventional A* expands
the nodes in a spatially uncorrelated way, jumping to
a node as far apart as some 100 km, but possibly re-
turning to the successor of the previous one in the next
step. Therefore, the working set gets extremely large,
and the virtual memory management of the operating
system leads to excessive paging and is the main burden
on the computation time.

As a remedy, we achieve memory locality of the
search algorithm by exploiting the underlying spatial
relation of connected nodes. Nodes are geographically

Figure 1: The granularity of the partition (lines indicate
bounding rectangles of pages).

sorted according to their coordinates in such a way that
neighboring nodes also tend to appear close to each
other. A page consists of a constant number of succes-
sive nodes (together with the outgoing edges) according
to this order. Thus, pages in densely populated regions
tend to cover a smaller area than those representing ru-
ral regions. For not too small sizes, the connectivity
within a page will be high, and only a comparably low
fraction of road elements cross the boundaries to adja-
cent pages. Fig. 1 shows some bounding rectangles of
nodes belonging to the same page.

There are three parameters controlling the behavior
of the algorithm with respect to secondary memory, the
algorithm parameters A and A, and the (software) page
size. The latter one should be adjusted so that the ac-
tive page and its adjacent pages together roughly fit
into available main memory. The optimum solution es-
timate A is obtained by calculating the Euclidean dis-
tance between the start and the goal and adding a fixed
percentage.

Fig. 2 opposes the number of page faults to the num-
ber of node expansions for varying page size and A. We
observe that the rapid decrease of page faults compen-
sates the increase of expansions (note the logarithmic
scale). Using an activeness bonus of about 2 km suf-
fices to decrease the value by more than one magnitude
for all page sizes. At the same time the number of ex-
panded nodes increases by less than ten percent.

Fig. 3 depicts the corresponding influence of A. In
this case the reduction of page faults by more than a
magnitude can be achieved by investing less than 50
percent extra node expansions for A equal to 1.25 times
the Euclidean distance. The effect is almost indepen-
dent of the page size.

Unfortunately, the convincing decrease in page faults
did not translate proportionally to execution time; the
maximum reduction amounted to about 30 percent. We
suspect that the reason is that we could not totally con-
trol the operating system’s hardware paging still work-
ing besides and on top of our software paging technique.
Hence, more inquiry into the platform-dependent im-
plementation is still required.

We conclude that there is a trade-off between the
growth of node expansions and the savings of page

expansions ——
page faults -----

900000 -
800000 |-
700000 -
600000 |-
500000 F—,
400000 -
300000 £
200000 F
100000
0

page size
1 ====een’” 15000
delta [km] 10 100

Figure 2: Number of page-faults and node expansions
for varying page size and activeness bonus A.

expansions ——
page faults ----—-

800000 -
700000
600000
500000 y
400000
300000~

200000
100000

0
100 105 110

5000
7~ 10000

page size

115 120 12;‘
lambda / dist [%]

Figure 3: Number of page-faults and node expansions
for varying page size and the ratio (in percent) of solu-
tion length approximation A and the Euclidean distance
dist between start and goal.

faults that has to be resolved by tuning the parameters
to improve the overall efficiency for best performance.

Related Work

A couple of dynamic data structures have been pro-
posed which take into account secondary memory struc-
tures. Major representatives are tree structured in-
dices, such as B-Trees invented by Bayer and Mc-
Creight (Bayer & McCreight 1970) and dynamic hash-
ing variants (Larson 1978), such as extendible hash-
ing (Fagin et al. 1970) and virtual hashing (Litwin
1978). External sorting algorithms (Knuth 1973) are
special-tailored for handling sequences on disk storage
that do not fit into working memory. An extension
for the LEDA (Mehlhorn & N#her 1999) C++ library
project to secondary storage systems, LEDA-SM for
short, is being developed by Crauser and Mehlhorn at

MPI/Saarbriicken.

One currently deeply investigated area in which
the advantage of memory locality pays off is the
breadth-first synthesis of binary decision diagrams
(BDDs) (Bryant 1985). The idea is to construct the
diagram structure in a level-wise traversal (Hu & Dill
1993). Since there is a trade-off between low mem-
ory overhead and memory access locality, hybrid ap-
proaches based on context switches are currently being
explored (Yang et al. 1998).

Since each page is explored independently, the algo-
rithms easily lends itself to parallelization by allowing
for more than one active page at a time. In fact, a com-
monly used method for duplicate pruning uses a hash
function similar to ¢ defined above to associate with
each node of the search space a distinct subspace with
a dedicated processor. In (Mahapatra & Dutt 1997),
the notion of locality is important to reduce communi-
cation between processors and it is implemented as the
neighborhood on a hypercube.

There are some related approaches to the re-
weighting technique used in our optimality proof.
Searching negatively weighted graphs has been inten-
sively studied in literature, cf (Cormen, Leiserson, &
Rivest 1990). An O(]V||E|) algorithm for the single-
source shortest path problem has been separately pro-
posed by Bellman and Ford. The algorithm has been
improved by Yen. The all-pair shortest path problem
has been solved by Floyd based on a theorem of War-
shall. It has been extended by Johnson for sparse and
possibly negatively weighted graphs by re-weighting.
All these algorithms do not apply to the scenario of
implicitly given graphs with additional heuristic infor-
mation.

Conclusion

We have presented an approach to relax the order of
node expansions in traditional A*. Its admissibility is
shown using a refined invariance condition based on
Dijkstra’s algorithm and re-weighted graphs. The re-
ordering is used to make the search algorithm take into
account memory locality for the price of an increased
number of expansions. However, this is offset by the
minimization of secondary memory access in a two-
layered storage system, which is a major bottleneck
for the traditional algorithm. To this end, the data
structure Heap-of-Heaps has been developed which par-
titions the underlying graph into pages; two heuristic
threshold values discourage page switches and can be
tuned for best performance. The count of page switches
from an evaluation within a commercially available
route planning system supports this view.

References

Bayer, R., and McCreight, E. 1970. Organization and
maintenanace of large ordered indexes. Acta Informat-
ica 13(7):427-436.

Belady, L. 1966. A study of replacement algorithms
for virtual storage computers. IBM Syst. J 5:18-101.

Bryant, R. E. 1985. Symbolic manipulation of boolean
functions using a graphical representation. In Design
Automation, 688—694.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L.
1990. Introduction to Algorithms. The MIT Press.

Dijkstra, E. W. 1959. A note on two problems in con-
nexion with graphs. Numerische Mathematik 1:269—
271.

Eckerle, J., and Schuierer, S. 1995. Efficient memory-
limited graph search. In KI, 101-112.

Fagin, R.; Nievergelt, J.; Pippenger, N.; and Strong,
H. R. 1970. Extendible hashing - a fast access
method for dynamic files. ACM Trans. Database Syst.
4(3):315-344.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A

formal basis for heuristic determination of minimum
path cost. IEEE Trans. on SSC 4:100.

Hu, A. J., and Dill, D. L. 1993. Reducing BDD size
by exploiting functional dependencies. In Design Au-
tomation, 266-271.

Knuth, D. E. 1973. The Art of Computer Program-
ming, Vol 8: Sorting and Searching. Addison-Wesley.
Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27(1):97-109.

Korf, R. E. 1993. Linear-space best-first search. Arti-
ficial Intelligence 62(1):41-78.

Larson, P.-A. 1978. Dynamic hashing. BIT 18(2):184—
201.

Litwin, W. 1978. Virtual hashing: a dynamically
changing hashing. In Very Large Databases, 517-523.
Mahapatra, N. R., and Dutt, S. 1997. Scalable global
and local hashing strategies for duplicate pruning in
parallel A* graph search. IEEE Transactions on Par-
allel and Distributed Systems 8(7):738-756.
Mehlhorn, K., and Naher, S. 1999. The LEDA
Platform of Combinatorial and Geometric Computing.
Cambridge University Press.

Minura, T., and Ishida, T. 1998. Stochastic node
caching for efficient memory-bounded search. In
AAAI 450-459.

Pearl, J. 1985. Heuristics. Addison-Wesley.

Russell, S. 1992. Efficient memory-bounded search
methods. In ECAI-92, 1-5.
Sen, A. K., and Bagchi, A. 1989. Fast recursive formu-

lations for best-first search that allow controlled use of
memory. In IJCAI 297-302.

Sleator, D., and Tarjan, R. 1985. Amortized efficiency
of list update and paging rules. Communications of
the ACM 28:202-208.

Tanenbaum, A. S. 1992. Modern Operating Systems.
New Jersey: Prentice Hall.

Yang, B.; Chen, Y.-A.; Bryang, R. E.; and Hallaron,
D. R. 1998. Space- and time-efficient BDD construc-

tion via working set control. In Asia and South Pacific
Design Automation, 423-432.

