NOV 2004 GCE ‘O’ LEVEL PAPER 2

SUGGESTED ANSWERS

Question	Suggested Answer
1a	$\mathrm{S}=\frac{\mathrm{D}}{\mathrm{~T}}=\frac{100}{12.5}=8.0 \mathrm{~ms}^{-1}$
1b	Average speed implies constant speed throughout. At the start of the race, he is unable to run at $8.0 \mathrm{~ms}^{-1}$ immediately upon taking off, so he must run faster at other parts of the race so that his average speed is $8.0 \mathrm{~ms}^{-1}$
2a	$\begin{aligned} & \text { Weight }=\mathrm{W}=\mathrm{m} \mathrm{~g}_{\mathrm{g}} \\ & =(20 \mathrm{~kg})\left(10 \mathrm{Nkg}^{-1}\right)=200 \mathrm{~N} \end{aligned}$
2b(i)	Constant speed of the box means that the acceleration of the box is zero, and the resultant force of the box $(F=m a)$ is zero as well. The friction must be equal and opposite to the push of 80 N . Friction $=80 \mathrm{~N}$ opposing motion
2b(ii)	To the left opposing motion
2c(i)	$\begin{aligned} & F=m \mathrm{a} \\ & \mathrm{~F}=(20 \mathrm{~kg})\left(1.5 \mathrm{~ms}^{-2}\right)=30 \mathrm{~N}=\text { resultant force } \end{aligned}$
2c(ii)	Forward force - friction $=$ resultant force 80 N - friction $=30 \mathrm{~N}$ Friction $=80 \mathrm{~N}-30 \mathrm{~N}=50 \mathrm{~N}$
3 a	$\begin{aligned} & \text { Mass of alloy }=\text { mass of metal } 1+\text { mass of metal } 2 \\ & =\rho_{1} V_{1}+\rho_{2} V_{2} \\ & =(5)(4)+(6)(8) \\ & =68 \mathrm{~g} \end{aligned}$
3b	$\begin{aligned} & \text { Density of alloy }=\text { total mass } \div \text { total volume } \\ & =[68 \mathrm{~g}] /\left[4+8 \mathrm{~cm}^{3}\right]=68 / 12 \\ & =5.7 \mathrm{gcm}^{-3} \end{aligned}$
4a	$\begin{aligned} & \mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{v} \\ & \mathrm{KE}=1 / 2(1400)(20)^{2}=280000 \mathrm{~J} \end{aligned}$
4b	Loss in kinetic energy = gain in work done to stop the car $\begin{aligned} & 280000=F \mathrm{~s} \\ & 280000=(F)(50 \mathrm{~m}) \\ & F=280000 / 50=5600 \mathrm{~N} \end{aligned}$
5a	Moved into strong sunlight \rightarrow radiation heat transfer The process is radiation heat transfer
5b	Can A. Can A has a higher rate of heat gain (gains heat faster) so its temperature increases faster, because black surfaces are better absorbers of heat radiation than polished surfaces.
6a	Draw the normal axis (dotted line) Draw the refracted ray that bends towards the normal Mark out the angle of incidence and angle of refraction
6b	$\mathrm{n}=\frac{\sin (\text { bigger angle })}{\sin (\text { smaller angle })}=\frac{\sin 45}{\sin 28}=1.51 \approx 1.5$

6c	$\mathrm{n}=\frac{\mathrm{c}}{\mathrm{v}}=\frac{\text { speed of light in air }}{\text { speed of light in glass }}$ $\mathrm{v}=\frac{\mathrm{c}}{\mathrm{n}}=\frac{3 \times 10^{8}}{1.5}=2.0 \times 10^{8} \mathrm{~ms}^{-1}$
7a(i)	2 \mathbf{v}

$\left.\begin{array}{|l|l|}\hline \text { 10b } & \begin{array}{l}\text { The thermometric properties of the liquid in the thermometer: } \\ \text { (a) the volume of a fixed mass of liquid, } \\ \text { (b) and that the volume of this fixed mass of liquid expands and contracts } \\ \text { linearly with a unit change in temperature }\end{array} \\ \hline \text { 10c(i) } & \begin{array}{l}\text { Resistance of a metal wire } \\ \text { Volume of a fixed mass of gas } \\ \text { Electric current in a metal wire }\end{array} \\ \hline \text { 10c(ii) } & \begin{array}{l}\text { Step 1: place the thermometer in a filter funnel of pure melting ice at } 0{ }^{\circ} \mathrm{C} \text { at a } \\ \text { pressure of 1 atm, and then mark out the level of mercury as } 0^{\circ} \mathrm{C}\end{array} \\ \begin{array}{l}\text { Step 2: place the thermometer in the steam above pure boiling water at } 100{ }^{\circ} \mathrm{C} \text { at } \\ \text { a pressure of 1 atm, and then mark out the level of mercury as } 100{ }^{\circ} \mathrm{C}\end{array} \\ \hline \text { 11a(i) } & \begin{array}{l}\text { Step 3: divide the length between the } 0{ }^{\circ} \mathrm{C} \text { marking and the } 100{ }^{\circ} \mathrm{C} \text { marking into } \\ \text { 100 equal divisions, each division representing } 1{ }^{\circ} \mathrm{C} .\end{array} \\ \hline \text { Interchanging the position of the firer and the timer so as to perform the } \\ \text { experiment again, and then taking the average of the two results (in } 2 \text { different } \\ \text { positions) obtained. }\end{array} \quad \begin{array}{l}\text { Increase the distance between the firer and the timer so that the time readings are } \\ \text { large, so as to minimize the percentage error due to human reaction time. } \\ \text { Also, perform the experiment a few more times and take the average time. }\end{array}\right\}$

Q	ANS	Suggested Explanation
1	C	Distance travelled = area under speed-time graph $=1 / 2(10)(20)+(10)(20)=300 \mathrm{~m}$
2	C	$\begin{aligned} & W=m g \\ & g=W \div m \quad[\text { largest ratio of } W / m=\text { largest } g] \end{aligned}$
3	A	Moment $=\mathrm{F} \mathrm{d}=(40 \mathrm{~N})(20 \mathrm{~cm})=800 \mathrm{~N} \mathrm{~cm}$ anti-clockwise To balance, we need 800 N cm clockwise about the pivot Hence, $\mathrm{M}=\mathrm{F} \mathrm{d}=(20 \mathrm{~N})(40 \mathrm{~cm})=800 \mathrm{~N} \mathrm{~cm}$ clockwise [Option A]
4	A	Heat energy (most of it) and sound energy (some of it)
5	D	By conservation of energy, total energy at $X=$ total energy at Y Since car is not moving (at rest) at X, energy at $X=$ G.P.E only Car is still moving at Y, so energy at $Y=K E+G P E$
6	D	Evaporation occurs at the surface of liquid at all temperatures
7	B	Convection is the main process in liquids and gases.
8	C	Frequency is the number of complete waves passing through per second
9	D	Images can be real and inverted, or virtual and upright.
10	D	Electromagnetic waves travel through vacuum at a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
11	B	Speed of sound is faster in solids and slowest in gas.
12	A	Bar needs to be attracted, so it must be a magnetic material (iron nickel cobalt).
13	D	Ammeter connected in series, and voltmeter connected in parallel across.
14	D	$\begin{aligned} & \mathrm{Q}=\mathrm{It}=(\mathrm{P} / \mathrm{V})(2.0 \mathrm{~s}) \\ & =(48 / 12)(2.0)=8.0 \mathrm{C} \end{aligned}$
15	A	Resistance changes, the effective resistance in the circuit changes, so the series current in the circuit changes
16	B	Live wire is connected to the earth wire and both are connected to the fuse. So the metal case (which is connected to the earth wire) is now connected to the live wire.
17	C	$P=I V=(5 A)(250 V)=1250 W$ Since the maximum is 1250 W , we choose an answer that is smaller than 1250 W but closest to it.
18	B	Out of syllabus
19	C	Out of syllabus
20	A	8 protons and 17-8 = 9 neutrons

