Derivatives

Overriding principal is the concept of change (speed, weather, populations,..)

I. Average speed

An object is dropped from a 500 ft building.  From physics we know that the distance above the ground is 
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.  Sketch a graph of distance versus time.  Find time until object hits the ground.  Compute average speed on the interval 
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Geometrically the average speed is the slope of the secant line.

II. Instantaneous velocity

Greeks realized that at any given instant even a moving object is frozen.  Newton and his contemporaries gave up on the notion of speed at an instant and replaced it with average speeds over shorter and shorter intervals.

Compute instantaneous speed at the time 
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Geometrically the instantaneous speed is the slope of the tangent line.

III. The derivative at a point

Can apply the same process to any function.  The instantaneous rate of change of 
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 or letting 
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IV. The derivative as a function

We can apply the process of finding the derivative to many different 
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 values and in fact for every 
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 value there is a corresponding value for the derivative.  For any function 
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 we define the derivative function
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                  There are several equivalent notations for the derivative function including
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V. Interpretations of the derivative

As a slope and as a rate of change.   

Ex.  Suppose C is cost and t is time.  Then 
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VI. Graphical derivatives
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VII. Algebraic shortcuts for computing derivatives

Table of known derivatives

· Power rule 
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· Trigonometric functions
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                  Combinations 

· Sums, Differences, Products, Quotients
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· Chain rule
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· Implicit differentiation

VIII. Focus on theory

 Limits

 Intuitive definition
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                    Existence of limits (limits can fail to exist if there are small jumps, 

                    unbounded behavior or excessive oscillations)

                    Rigorous definition

                   
[image: image26.wmf]L

x

f

a

x

=

®

)

(

lim

 means that for every 
[image: image27.wmf]0

>

e

 there exists a 
[image: image28.wmf]0

>

d

 such that 

                   
[image: image29.wmf]e

<

-

L

x

f

)

(

 whenever 
[image: image30.wmf]d

<

-

a

x

.

                    Continuity

                    Intuitively a function is continuous if you can sketch its graph without lifting 

                    your pencil.  From a rigorous perspective a function is continuous at 
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                    Differentiability

                    A function is differentiability if it possesses the property of local linearity.  

                    Differentiability 
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                    Continuity 
[image: image36.wmf]Þ

 differentiability

                    Differentiable functions have the Mean value property 
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                    for some value of 
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.  This means there is a point where the slope of 

                    the tangent line is equal to the slope of the secant line or that there is point 

                    where the instantaneous rate of change is equal to the average rate of change.

IX. Homework assignment
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