Searching

The Problem

We are given a list L of n unique elements and we wish to determine whether X is in L.
If X is in L, determine its position.
The Model

We make several assumptions

1. All elements of L are unique.

2. Comparison based model meaning we will only use comparisons to find X in L.

3. The list is implemented as an array (constant access time).

4. Comparisons are proportional to overall runtime.

Linear search
In a linear search we start at the beginning and continue until we find the target. This very basic technique works for sorted and non-sorted lists. We use the following definitions to compute the worst and average cost of an algorithm.
[image: image14.wmf])

(

max

)

(

_

I

t

A

cost

worst

A

I

I

n

Î

=

[image: image15.wmf])

(

)

(

)

(

_

I

t

I

P

A

cost

average

A

I

I

n

å

×

=

Î

Exercise:
· Program Algorithm 2.2 in compared to what?
Linear search animation

· http://cs.oregonstate.edu/~minoura/cs162/javaProgs/search/LinearSearch.html
Best cost of linear search algorithm:

X is first in the list and
[image: image1.wmf]1

=

n

t

.
Worst cost of linear search algorithm:

X is last in the list and
[image: image2.wmf]n

t

n

=

.
Average cost of linear search algorithm:

Assume X is equally likely to be anywhere in the list. Hence the number of comparisons could be 1,2,3,…,n. Each one of these possibilities has probability
[image: image3.wmf]n

1

. Hence, the expected number of comparisons is
[image: image4.wmf]2

1

1

1

+

=

×

=

å

=

n

n

i

t

n

i

n

.
Note: In general we do not care about the best cost since we would need to be extraordinarily lucky to achieve it. The average cost is meaningful but difficult to compute and requires us to make some assumptions about the distribution of the inputs. In many cases we compute the worst cost.

Binary search
If the data is sorted we can search much more efficiently. Imagine looking for the name “Susan Smith” in a phone book. Open the phone book about half way and you may find a name that begins with “M”. Since “Smith” comes after “M” we can ignore the entire first half of the phone book. Open the remaining half of the phone book about half way and you may find a name that begins with “T”. Since “Smith” comes before “T” we can ignore the latter half. Repeat this process until you find “Susan Smith”. The underlying idea of binary search is to divide the sorted data into two halves and to examine the data at the point of the split. Since the data is sorted, we can easily ignore one half or the other depending on where the data we're looking for lies in comparison to the data at the split. This makes the binary search much more efficient search than linear search. The binary is an example of a divide-and-conquer algorithm.
Exercise:
· Program Algorithm 2.5 in compared to what?
This algorithm uses a three way comparison which means it could stop before we are down to a list of length 1. There is another version of the algorithm that uses a two way comparison that stops only when we reach a list of length 1.

Binary search animation

· http://cs.oregonstate.edu/~minoura/cs162/javaProgs/search/BinarySearch.html
Worst cost of binary search algorithm:

Use a simple table.

	Comparison
	Search range

	0
	n

	1
	n/2

	2
	n/4

	3
	n/8

	:
	:

	2i
	n/2i

	log2 n
	1

Use a recurrence.
Next The recurrence for the binary search is
[image: image5.wmf]1

2

)

(

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

=

n

t

n

t

 with
[image: image6.wmf]1

)

1

(

=

t

 since in a three-way comparison we eliminate at least
[image: image7.wmf]ú

ú

ù

ê

ê

é

2

n

 elements. We can solve using iteration

[image: image8.wmf]i

n

t

n

t

n

t

n

t

n

t

i

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

=

+

ï

þ

ï

ý

ü

ï

î

ï

í

ì

+

þ

ý

ü

î

í

ì

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

=

+

þ

ý

ü

î

í

ì

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

=

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

=

2

1

1

1

8

1

1

4

1

2

)

(

M

Since
[image: image9.wmf]1

2

=

ú

û

ú

ê

ë

ê

i

n

 when
[image: image10.wmf]ë

û

n

i

log

=

 we have
[image: image11.wmf]ë

û

1

log

)

(

+

=

n

n

t

.
Note: The binary search requires a data structure that supports random access. In a binary search we must be able to immediately locate any item in the data set, given an index number for it. With linked lists, one would have to traverse O(n) items to find a single item in the list, completely ruining the efficiency of the binary search.
Speed Limit on Comparison Based Searches

In the preceding sections we analyzed the best, worst and average cases for a particular algorithm. In this section we consider the more abstract problem of finding a lower bound on the worst cost of all the searching algorithms within the comparison based model. The definition shown below illustrates the difficulty of determining such a bound.

[image: image16.wmf]þ

ý

ü

î

í

ì

=

Î

Î

)

(

max

min

)

(

_

I

t

A

d

lower_boun

cost

worst

A

I

I

A

A

n

M

Instead of trying to implement the definition directly, we use the information theoretic lower bound technique of creating a comparison tree. The progress of any comparison based searching algorithm (makes comparisons of x with L[i]) can be described by a path through a binary tree. Each node in the tree represents one comparison. The left branch represents the path the algorithm takes when x < L[i] and the right branch represents the path the algorithm takes when x > L[i]. The comparison tree must have at least n nodes since there are n successful ways for a searching algorithm to terminate. Reviewing some tree definitions.

· level – number of nodes on the path between the root and the node.

· height – level of the deepest leaf.

In the example shown below, we are searching a list of 6 items. The maximum number of comparisons needed to find the target is 3 and this equal to the height of the tree plus one.

Level 0

Level 1

Level 2

Theorem: A binary tree of height h has at most 2h+1-1 nodes. Equivalently, the height of a binary tree with n nodes is at least
[image: image12.wmf]ë

û

n

log

.
Hence, we have a lower bound of
[image: image13.wmf]ë

û

1

log

+

n

 comparisons in the worst case for comparison based searches. This shows that the binary search is optimal within the comparison based model.
Changing the model
It turns out that we can reduce the average cost of searching below the limit derived in the previous section by changing the model. In particular we leave the world of strict comparison based searching in which the only thing we assume about our data is that it is sorted. The algorithm we investigate in this section is called the interpolation search. An interpolation works well when the data is uniformly distributed across the search key space. In this case we can do better that divide the list in half. We use interpolation to estimate the position of the target X in the list L. The average running time of the interpolation is O(log (log n)). This function grows so slowly that for practical purposes it is never much larger than 5. If the data is not uniformly distributed, the performance of this algorithm degrades and in the worst case is O(n).
INTERPOLATON SEARCH
 i := 0
 j := n-1
 found := False

 while (i<j and found=False) do
 m := [i + (j-i)*(x-ai) / (aj-ai)]

 if (x > am) then
 i := m+1

 else if (x = am) then
 found := True

 else j := m

 if (found = False) then
 m := -1
 return m

Project

1. Use C++ to code the iterative and recursive versions of the linear and binary searches (algorithms 2.1, 2.2, 2.4 and 2.5).

2. Add some simple output statements to print out the length of the list currently being considered for both the linear and binary searches.
3. Chapter 2: Exercise 5.

4. The divide-and-conquer principle can be applied in other situations. For example, we can apply it to a guessing game in which one player, A, selects a number in the range from 1 to some value and the other player, B, tries to guess it by asking yes-or-no questions of the form ``Is your number less than n?'' (putting in specific values for n). An efficient strategy for B to use is repeated bisection of the range within which A's number is known to lie. Write a C++ program that plays the role of B in this game. Your program should take the maximum possible value from the user. When invoked, it should print out a question of the specified form and read in the user's response (presumably, the symbol yes or the symbol no), then repeat the process until the range of possible values has been narrowed to contain only one number. The procedure should then display and identify that number. A sample run might look like this:

 > (guessing-game 100)
 Is your number less than 51? yes

Is your number less than 26? No

Is your number less than 38? no

Is your number less than 44? no

Is your number less than 47? yes

Is your number less than 45? no

Is your number less than 46? no

Since your number is less than 47 but not less than 46,

it must be 46.
� EMBED Equation.3 ���

�EMBED Equation.3���

� EMBED Equation.3 ���

X : L[4]

X : L[2]

X : L[5]

X : L[1]

X : L[3]

X : L[6]

_1104600422.unknown

_1104689596.unknown

_1104689748.unknown

_1105081819.unknown

_1105294827.unknown

_1104689846.unknown

_1104690609.unknown

_1104689717.unknown

_1104687771.unknown

_1104688443.unknown

_1104687175.unknown

_1104687744.unknown

_1104686168.unknown

_1104599497.unknown

_1104599955.unknown

_1104599199.unknown

