
Properties of Matrix Operations 
  

Properties of Addition (Subtraction) 
The basic properties of addition for real numbers also hold true for matrices.   
Let A, B and C be m x n matrices  
A±B=(aij±bij) corresponding elements are added or subtracted 
Addition/subtraction can be done only with matrices of the same size! 

1. –A=(–1)A 
2. A + B  =  B + A   commutative 
3. A + (B + C)  =  (A + B) + C    associative 
4. There is a unique m x n matrix O with A + O  =  A    additive identity 
5. For any  m x n matrix A there is an m x n matrix D (called -A) with  
          A + D  =  O        additive inverse  

 
Properties of Matrix Multiplication 

Unlike matrix addition, the properties of multiplication of real numbers do not all generalize to 
matrices.  Matrices rarely commute even if AB and BA are both defined.  There often is no 
multiplicative inverse of a matrix, even if the matrix is a square matrix.  There are a few 
properties of multiplication of real numbers that generalize to matrices.  We state them now. 
Let A, B and C be matrices of dimensions such that the following are defined.  Then 
Number of columns of the first matrix has to be equal to the number of rows of the second 

matrix: [m×n]·[n×p]=[m×p]. Definition: AB=  ∑
=

n

k
kjikba

1

1. AB≠BA (in general) 
2. A(BC)  =  (AB)C = ABC     associative 
3. A(B + C)  =  AB + AC        distributive 
4. (A + B)C  =  AC + BC        distributive 
5. There are unique matrices Im and In with 
          Im A  =  A In  =  A        multiplicative identity  

We will often omit the subscript and write I for the identity matrix.  The identity matrix is a 
square scalar matrix with 1's along the diagonal.  For example 

         
 

Properties of Scalar Multiplication 
Since we can multiply a matrix by a scalar, we can investigate the properties that this 
multiplication has.  All of the properties of multiplication of real numbers generalize.  In 
particular, we have 
Let r and s be real numbers and A and B be matrices.  Then 
rA=(raij) multiply each element of a matrix by r 

1. rA=Ar 



2. r(sA)  =  (rs)A 
3. (r + s)A  =  rA + sA 
4. r(A + B)  =  rA + rB 
5. A(rB)  =  r(AB)  =  (rA)B  

 
Properties of the Transpose of a Matrix 

Recall that the transpose of a matrix is the operation of switching rows and columns.  We state 
the following properties.  We proved the first property in the last section. 
Let r be a real number and A and B be matrices.  Then 
Definition: if A=(aij) then AT=(aji) 

1. (AT)T  =  A 
2.  (AB)T  =  BTAT 
3. (rA + sB)T = rAT + sBT 

a) (rA)T  =  rAT   (s=0) 
b) (A + B)T  =  AT + BT (r=s=1) 
c) (A – B)T  =  AT – BT (r=1, s=-1) 

 
Properties of Unit Matrices 

I (a unit matrix) is a square matrix with all its diagonal elements equal to 1.  
1. AI=IA=A 

 
Properties of Determinants 

Defined only for square matrices. 
1. If two rows (or columns) are interchanged then the sign of the determinant is changed. 
2. If two rows (or columns) are the same then the determinant is 0. 
3. If a row (or column) is multiplied by a constant k then the determinant is also multiplied 

by k. 
4. Adding a number p times one row (or column) to another row (or column) does not 

change the value of the determinant. 
5. |AB| = |A| |B| 
6. |AT| = |A| 

 
Properties of the Inverse Matrices 

The inverse of a square matrix A with |A|≠0 is the matrix defined by TA
A

A 11 =−  

1. AAT = |A| I = ATA (The Cofactor Theorem) 
2. AA-1 = I = A-1A 
3. (A-1)-1 = A 
4. (rA)-1=

r
1 A-1 

5. (AT)-1 = (A-1)T 
6. (AB)-1 = B-1 A-1 
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PROPERTIES OF MATRICES 
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BASIC OPERATIONS - addition, subtraction, multiplication 

For example purposes, let   A =










a b

c d
   and   B =











e f

g h
   and   C =











i

j
 

then   A B+ =








 ±









 =

± ±
± ±











a b
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e f

g h

a e b f

c g d h
 

and   AB =

















 =

+ +
+ +











a b

c d

e f

g h

ae bg af bh

ce dg cf dh
 AC=


















 =

+
+











a b

c d

i

j

ai bj

ci dj
 

a scalar times a matrix is  3
3 3

3 3

a b

c d

a b

c d








 =









  

CRAMER'S RULE for solving simultaneous equations 
Given the equations: 

32 321 =++ xxx  

73 321 =−+ xxx  

1321 =++ xxx  

We express them in matrix form: 
















=
































−

1

7

3

111

131

112

3

2

1

x

x

x

 

Where matrix A is 
















−=
111

131

112

A  

and vector y is 

















1

7

3
 

According to Cramer’s rule: 

1

3 1 1

7 3 1

1 1 1 8
2

4
x

A

−

= = =  

To find  x1 we replace the first 
column of A with vector y and 
divide the determinant of this new 
matrix by the determinant of A. 

2

2 3 1

1 7 1

1 1 1 4
1

4
x

A

−

= = =  

To find  x2 we replace the second 
column of A with vector y and 
divide the determinant of this new 
matrix by the determinant of A. 

3

2 1 3

1 3 7

1 1 1 8
2

4
x

A
−

= = = −  

To find  x3 we replace the third 
column of A with vector y and 
divide the determinant of this new 
matrix by the determinant of A. 
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THE DETERMINANT 
The determinant of a matrix is a scalar value that is used in many matrix operations.  The matrix must be 
square (equal number of columns and rows) to have a determinant.  The notation for absolute value is used 

to indicate "the determinant of", e.g. A  means "the determinant of matrix A" and a b

c d
 means to take the 

determinant of the enclosed matrix.  Methods for finding the determinant vary depending on the size of the 
matrix. 
 
The determinant of a 2×2 matrix is simply: 

where A =










a b

c d
,   det

a b
ad bc

c d
= = = −A A  

 
The determinant of a 3×3 matrix can be calculated by repeating the 
first two columns as shown in the figure at right.  Then add the 
products of each of three diagonal rows and subtract the products of 
the three crossing diagonals as shown. 

a a a a a a a a a

a a a a a a a a a
11 22 33 12 23 31 13 21 32

13 22 31 11 23 32 12 21 33

+ +
− − −

 

This method used for 3×3 matrices does not work for larger matrices. 

a
a
a

−−

a a11 12 13 a a11 12

−

31 a a32 33

21 a a22 23

a
a

31

21

+ + +

a32

a22

 

 
1 3 2 0

4 4 1 1

2 0 1 3

3 3 1 5

 
 
 =
 
 
 

D  

1

4 1 1

0 1 3

3 1 5

 
 =  
  

d  

2

4 1 1

2 1 3

3 1 5

 
 =  
  

d  

3

4 4 1

2 0 3

3 3 5

 
 =  
  

d  

4

4 4 1

2 0 1

3 3 1

 
 =  
  

d  

The determinant of a 4×4 matrix can be calculated by finding the determinants 
of a group of submatrices.  Given the matrix D we select any row or column.  
Selecting row 1 of this matrix will simplify the process because it contains a 
zero.  The first element of row one is occupied by the number 1 which belongs to 
row 1, column 1.   

Mentally blocking out this row and column, we take the determinant of the 
remaining 3x3 matrix d1.  Using the method above, we find the determinant of d1 
to be 14. 

Proceeding to the second element of row 1, we find the value 3 occupying row 1, 
column 2.  Mentally blocking out row 1 and column 2, we form a 3x3 matrix 
with the remaining elements d2.  The determinant of this matrix is 6. 

Similarly we find the submatrices associated with the third and fourth elements of 
row 1.  The determinant of d3 is -34.  It won't be necessary to find the 
determinant of d4. 

Now we alternately add and subtract the products of the row elements and their 
cofactors (determinants of the submatrices we found), beginning with adding the 
first row element multiplied by the determinant d1 like this: 

( ) ( ) ( ) ( )
( )
1 2 3 4det 1 det 3 det 2 det 0 det

14 18 68 0 72

= × − × + × − ×

= − + − − = −

D d d d d
 

The products formed from row or column elements will be added or subtracted 
depending on the position of the elements in the matrix.  The upper-left element 
will always be added with added/subtracted elements occupying the matrix in a 
checkerboard pattern from there.  As you can see, we didn't need to calculate d4 
because it got multiplied by the zero in row 1, column 4. 

Adding or 
subtract-
ing matrix 
elements: 

+ − + 
 − + − 
 + − + 
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AUGMENTED MATRIX 

A set of equations sharing the same variables may be 
written as an augmented matrix as shown at right. 

y z

x y z

x y z

+ =
+ + =
+ + =

3 5

2 2 11

3 2 13

 
1
2
13

0
2

2 13

3 5
1 11

 

REDUCED ROW ECHELON FORM  (rref) 
Reducing a matrix to reduced row echelon form or rref is a means of solving 
the equations.  In this process, three types of row operations my be performed.  
1) Each element of a row may be multiplied or divided by a number, 2) Two 
rows may exchange positions, 3) a multiple of one row may be added/subtracted 
to another. 

1
2
13

0
2

2 13

3 5
1 11

 

 
1) We begin by 

swapping rows 
1 and 2. 1

1
2

3
0
2

2 13
3 5
1 11

 

2) Then divide 
row 1 by 2. 

3
0
1

1
1
2

3
0
2

2 13
3 5
1 11 ÷2

=
1 2 13

5.5
1 3
1 .5

5

 
 
3) Then subtract 

row 2 from 
row 1. 3

0
1

1 2 13

5.5
1 3
1 .5

5
-II

 

4) And subtract 
3 times row 1 
from row 3. 

0
1

01
1
0

3
0
1

2 13
3 5

-2.5 .5
=

-3(I) 11.51
1 3

9.5

0 -2.5
5
.5

 
 
5) Then subtract 

row 2 from 
row 3. 

0
1

0 11.51
1 3

9.5

0 -2.5
5

-II

.5

 

6) And divide 
row 3 by 6.5. 0

1

0
1 3
0 -2.5

5
.5

0 6.5 6.5 ÷ 6.5
0
1

0
= 1 3

0 -2.5
5
.5

0 1 1  
 
7) Add 2.5× 

row 3 to 
row 1. 

0
1

0
1 3
0 -2.5

5
.5

0 1 1

+2.5(III)

 

8) And subtract 
3× row 3 
from row 2. 

0
1

0
= 1

0

0 1 1

0 3
0 2

0
0
1

1
5
3

0 1
1 3
0 0

-3(III)

 
 
The matrix is now in reduced row echelon form and if we rewrite 
the equations with these new values we have the solutions.  A matrix 
is in rref when the first nonzero element of a row is 1, all other 
elements of a column containing a leading 1 are zero, and rows are 
ordered progressively with the top row having the leftmost leading 1.   

x

y

z

=
=
=

3

2

1

 0
1

0
1
0

0 1 1

0 3
0 2

 

 
When a matrix is in reduced row echelon form, it is possible to tell how may solutions there are to the 
system of equations.  The possibilities are 1) no solutions - the last element in a row is non-zero and the 
remaining elements are zero; this effectively says that zero is equal to a non-zero value, an impossibility, 2) 
infinite solutions - a non-zero value other than the leading 1 occurs in a row, and 3) one solution - the only 
remaining option, such as in the example above. 
 
If an invertible matrix  A  has been reduced to rref form then its determinant can be found by 

1 2det( ) ( 1)s
rk k k= − ⋅⋅⋅A ,  where s is the number of row swaps performed and  k1, k2, · · ·  kr  are the 

scalars by which rows have been divided. 

RANK 
The number of leading 1's is the rank of the matrix.  Rank is also defined as the dimension of the largest 
square submatrix having a nonzero determinant.  The rank is also the number of vectors required to form a 
basis of the span of a matrix. 
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THE IDENTITY MATRIX 
In this case, the rref of  A  is the identity matrix, denoted  In  characterized by the 
diagonal row of 1's surrounded by zeros in a square matrix.  When a vector is 
multiplied by an identity matrix of the same dimension, the product is the vector 
itself,  Inv = v. 

 

rref( )A =

















1 0 0

0 1 0

0 0 1

 

LINEAR TRANSFORMATION 
This system of equations can be represented in the form  Ax = b.  
This is also known as a linear transformation from x to b 
because the matrix  A  transforms the vector x into the vector b. 

0 1 3

2 2 1

3 1 2

 
 =  
  

A
 

x =

















x

y

z

 b =

















5

11

13

 

ADJOINT 
For a 2×2 matrix, the adjoint is: 

 where A =










a b

c d
,   adj

d b

c a

− 
=  − 

A  

For a 3×3 and higher matrix, 
the adjoint is the transpose of 
the matrix after all elements 
have been replaced by their 
cofactors (the determinants of 
the submatrices formed when 
the row and column of a 
particular element are 
excluded).  Note the pattern 
of signs beginning with 
positive in the upper-left 
corner of the matrix. 

where 

a b c

B d e f

g h i

 
 =  
  

, 

adj 

T
e f d f d e e f b c b c

h i g i g h h i h i e f

b c a c a b d f a c a c

h i g i g h g i g i d f

b c a c a b d e a b a b

e f d f d e g h g h d e

   
− −   

   
   
   = − − = − −
   
   
   − −
      

B
 

INVERTIBLE MATRICES 
A matrix is invertible if it is a square matrix with a determinant not equal to 0.  The reduced row echelon 
form of an invertible matrix is the identity matrix  rref(A) = In.  The determinant of an inverse matrix is 
equal to the inverse of the determinant of the original matrix:  det(A-1) = 1/det(A).  If  A  is an invertible 
n × n matrix then  rank(A) = n,  im(A) = Rn,  ker(A) = {0},  the vectors of  A  are linearly independent,  0 
is not an eigenvalue of  A,  the linear system  Ax = b  has a unique solution  x, for all  b  in Rn. 

THE INVERSE TRANSFORMATION 
If  A  is an invertible matrix, the inverse matrix could be 
used to transform b into x,  Ax = b,  A-1b = x.  An invertible 
linear transform such as this is called an isomorphism. 

0 1 3

2 2 1

3 1 2

 
 =  
  

A
     1

0.23 0.08 0.38

0.08 0.69 0.46

0.31 0.23 0.15

−

− − 
 ≅ − 
 − 

A
 

 
A matrix multiplied by its inverse yields the identity matrix.   
BB-1 = In 

1 1 1

2 3 2

3 8 2

10 6 1

2 1 0

7 5 1

1 0 0

0 1 0

0 0 1

















−
−
− −

















=
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FINDING THE INVERSE MATRIX – Method 1 
To calculate the inverse 
matrix, consider the 
invertible 3×3 matrix  B.   

1 1 1

2 3 2

3 8 2

 
 =  
  

B  
1) Rewrite the matrix, 

adding the identity 
matrix to the right. 

1 1 1

2 3 2

3 8 2

1 0 0

0 1 0

0 0 1

















 
2) Perform row operations on the 3×6 matrix to put  B  in rref form.  Three 

types of row operations are:  1) Each element of a row may be multiplied or 
divided by a number, 2) Two rows may exchange positions, 3) a multiple of 
one row may be added/subtracted to another. 

1 0 0

0 1 0

0 0 1

10 6 1

2 1 0

7 5 1

−
−
− −

















 
3) The inverse of  B  is now 

in the 3×3 matrix to the 
right. 

1

10 6 1

2 1 0

7 5 1

−

− 
 = − 
 − − 

B  
 

If a matrix is orthogonal, its inverse can be found simply by taking the transpose. 

FINDING THE INVERSE MATRIX – Method 2 
To calculate the 
inverse matrix, 
consider the invertible 
3×3 matrix  B.   

1 1 1

2 3 2

3 8 2

 
 =  
  

B  

 1) First we must find the adjoint of 
matrix B.  The adjoint of B is the 
transpose of matrix B after all 
elements have been replaced by their 
cofactors.  (The method of finding the 
adjoint of a 2×2 matrix is different; 
see page 4.)  The | | notation means 
"the determinant of". 

3 2 2 2 2 3

8 2 3 2 3 8

1 1 1 1 1 1
adj 

8 2 3 2 3 8

1 1 1 1 1 1

3 2 2 2 2 3

T
 

− 
 
 
 = − −
 
 
 −
  

B

 
2) Calculating the 

determinants we get. 
10 2 7

adj 6 1 5

1 0 1

T− 
 = − − 
 − − 

B  

3) And then taking the 
transpose we get. 

10 6 1

adj 2 1 0

7 5 1

− − 
 = − 
 − − 

B

 
4) Now we need the 

determinant of B. 
1 1 1

det 2 3 2 3 2 2 3 2 8 3 3 2 8 2 2 1

3 8 2

 
  = × + × + × − × − × − × = − 
  

 

 
 The formula for the 

inverse matrix is 

1 adj 
det

− =
B

B
B

 

 5) Filling in the values, 
we have the solution. 

1

10 6 1

2 1 0
10 6 1

7 5 1
2 1 0

1
7 5 1

−

− − 
 −  − 
 − −   = = − −

 − 

B
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SYMMETRIC MATRICES 
A symmetric matrix is a square matrix that can be flipped across the diagonal without 
changing the elements, i.e. A = AT.  All eigenvalues of a symmetric matrix are real.  
Eigenvectors corresponding to distinct eigenvalues are mutually perpendicular. 

1 4 5

4 2 6

5 6 3

















 

A skew-symmetric matrix has off-diagonal elements mirrored by their negatives across the 
diagonal.  AT = -A. 

















−−
−

3

2

1

cb

ca

ba

MISCELLANEOUS MATRICES 
The transpose of a 
matrix A is written AT 
and is the n × m matrix 
whose ijth entry is the 
jith entry of A. 

1 2 3

9 7 5
 

=  
 

A     
1 9

2 7

3 5

T

 
 =  
  

A  
A diagonal matrix is composed 
of zeros except for the diagonal 
and is commutative with another 
diagonal matrix, i.e.  AB = BA. 

1 0 0

0 2 0

0 0 3

















 
A diagonal matrix of 
equal elements 
commutes with any 
matrix, i.e.  AB = BA. 

2 0 0

0 2 0

0 0 2

 
 =  
  

A  
A lower triangular matrix has above the 
diagonal.  Similarly an upper triangular matrix 
has 0's below. 

1 0 0

12 1 0

5 7 1−

















IMAGE OF A TRANSFORMATION 
The image of a transformation is its possible values.  
The image of a matrix is the span of its columns.  
An image has dimensions.  For example if the 
matrix has three rows the image is one of the 
following: 

1) 3-dimensional space, det(A) ≠ 0, rank = 3 
2) 2-dimensional plane, det(A) = 0, rank = 2 
3) 1-dimensional line, det(A) = 0, rank = 1 
4) 0-dimensional point at origin, A = 0 

Given the matrix:
0 1 3

2 2 1

3 1 2

 
 =  
  

A
 of the transforma-

tion  Ax, the image consists of all combinations of 
its (linearly independent) column vectors. 
















+
















+

















2

1

3

1

2

1

3

2

0

321 xxx  

SPAN OF A MATRIX 
The span of a matrix is all of the linear combinations of its 
column vectors.  Only those column vectors which are 
linearly independent are required to define the span. 

1 2 3

0 1 3 0 1 3

2 2 1 span 2 2 1

3 1 2 3 1 2

c c c

       
       = = + +       
              

A

KERNAL OF A TRANSFORMATION 
The kernal of a transformation is the set of vectors that 
are mapped by a matrix to zero.  The kernal of an 
invertible matrix is zero.  The dimension of a kernal is 
the number of vectors required to form the kernal.   

T C

x

x

x

( )x x= =

































=
1 1 1

1 2 3

1 3 5

0
1

2

3

       kernal x = −

















1

2

1

LINEAR INDEPENDENCE 
A collection of vectors is linearly independent if none of them are a multiple of another, and none of them 
can be formed by summing multiples of others in the collection. 
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BASIS 
A basis of the span of a matrix is a group of linearly independent vectors which span the matrix.  These 
vectors are not unique.  The number of vectors required to form a basis is equal to the rank of the matrix.  
A basis of the span can usually be formed by incorporating those column vectors of a matrix corresponding 
to the position of leading 1’s in the rref matrix; these are called pivot columns.  The empty set  θ  is a basis 
of the space {0}.  There is also basis of the kernal, basis of the image, eigenbasis, orthonormal basis, etc.  
In general terms, basis infers a minimum sample needed to define something. 

TRACE 
A trace is the sum of the diagonal elements of a square matrix and is written tr(A). 

ORTHONORMAL VECTORS 
Vectors are orthonormal if they are all unit vectors (length =1) and are orthogonal (perpendicular) to one 
another.  Orthonormal vectors are linearly independent.  Their dot product of orthogonal vectors is zero. 

ORTHOGONAL MATRIX 
An orthogonal matrix is composed only of orthonormal vectors; it has a determinant of either 1 or -1.  An 
orthogonal matrix of determinant 1 is a rotation matrix.  Its use in a linear transformation is called a 
rotation because it rotates the coordinate system.  Matrix A  is orthogonal iff ATA = In, or equivalently  A-

1 = AT. 

ORTHOGONAL PROJECTION 
V is an n × m matrix.  v1, v2, … vm are an orthonormal basis of V.  For any vector x in ℜn there is a unique 
vector w in V such that x ⊥ w.  The vector w is 
called the orthogonal projection of x onto V.  
see also Gram-Schmidt.pdf 

EIGENVECTORS AND EIGENVALUES 
Given a square matrix A, an eigenvector is any vector v such that Av is a scalar multiple of A.  The 
eigenvalue would be the scalar for which this is true.  = λAv v .  To determine the eigenvalues, solve the 
characteristic polynomial  det(λIn - A) = 0  for values of λ.  Then convert to rref form and solve for the 
coefficients as though it was a matrix of simultaneous equations.  This forms a column vector which is an 
eigenvector.  Where there are 0's, you can let the coefficient equal 1. 

EIGENSPACE 
The eigenspace associated with an eigenvalue λ of an n × n matrix is the kernal of the matrix A - λIn and 
is denoted by Eλ.  Eλ consists of all solutions v of the equation  Av = λv.  In other words, Eλ consists of all 
eigenvectors with eigenvalue λ, together with the zero vector. 

EIGENBASIS 
An eigenbasis of an n × n matrix A is a basis of Rn consisting of unit eigenvectors of A.  To convert a 
vector to a unit vector, sum the squares of its elements and take the inverse square root.  Multiply the 
vector by this value. 

GEOMETRIC MULTIPLICITY 
The geometric multiplicity for a given eigenvalue λ is the dimension of the eigenspace Eλ; in other words, 
the number of eigenvectors of Eλ.  The geometric multiplicity for a given λ is equal to the number of 
leading zeros in the top row of  rref(A - λIn).. 

ALGEBRAIC MULTIPLICITY 
The algebraic multiplicity for a given eigenvalue λ is the number of times the eigenvalue is repeated.  For 
example if the characteristic polynomial is (λ-1)2(λ-2)3 then for λ = 1 the algebraic multiplicity is 2 and for 
λ = 2 the algebraic multiplicity is 3.  The algebraic multiplicity is greater than or equal to the geometric 
multiplicity. 

ORTHOGONAL PROJECTION OF x ONTO V 

mmV vxvvxvxw )(...)(proj 11 ⋅++⋅==  
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LAPLACE EXPANSION BY MINORS 
This is a method for finding the determinant of larger matrices.  The process is simplified if some of the 
elements are zeros.  1) Select the row or column with the most zeros.  2) Beginning with the first element of 
this selected vector, consider a submatrix of all elements that do not belong to either the row or column that 
this first element occupies.  This is easier to visualize by drawing a horizontal and a vertical line through 
the selected element, eliminating those elements which do not belong to the submatrix.  3) Multiply the 
determinant of the submatrix by the value of the element.  4) Repeat the process for each element in the 
selected vector.  5) Sum the results according to the rule of signs, that is reverse the sign of values 
represented by elements whose subscripts i & j sum to an odd number. 

DIAGONALIZABLE 
If an n × n matrix has n distinct eigenvalues, then it is diagonalizable. 

NULLITY 
The nullity of a matrix is the number of columns in the result of the matlab command  null(A). 

SINGULAR MATRIX 
A singular matrix is not invertible. 

SIMILARITY 
Matrix A is similar to matrix B if  S-1AS = B.  Similar matrices have the same eigenvalues with the same 
geometric and algebraic multiplicities.  Their determinants, traces, and rank are all equal 

REFLECTION 
Given that L is a line in ℜn, v is a vector in ℜn and u 
is a unit vector along L in ℜn, the reflection of v in L 
is: 

DOT PRODUCT 
The dot product of two matrices is equal to 
the transpose of the first matrix multiplied by 
the second matrix. 

 
T⋅ =A B A B  Example:  [ ] 3
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ORTHOGONAL DIAGONALIZATION 
A matrix A is diagonalizable if and only if A is symmetric.  1−=D S AS   where D is a diagonal matrix 
whose diagonal is composed of the eigenvalues of A with the remainder of the elements equal to zero, S is 
an orthogonal matrix whose column vectors form the eigenbasis of A.  To find D we need only find the 
eigenvalues of A.  To find S we find the eigenvectors of A.  If A has distinct eigenvalues, the unit 
eigenvectors form S, otherwise we have more work to do.   

For example if we have a 3 × 3 matrix with eigenvalues 9, 0, 0, we first find a linearly independent 
eigenvector for each eigenvalue.  The eigenvector for λ = 9 (we'll call it y) will be unique and will become a 
vector in matrix S.  We must choose eigenvectors for λ = 0 so that one of them is orthogonal (we'll call it x) 
to the eigenvector y from λ = 9, by keeping in mind that the dot product of two orthogonal vectors is zero.  
The remaining non-orthogonal eigenvector from λ = 9 we will call v.  Now from the eigenspace  x, v  we 
must find an orthogonal vector to replace v.  Using the formula for orthogonal projection  

vxvxw )(proj ⋅== V ,  we plug in our values for x and v and obtain vector w, orthogonal to x.  Now matrix 

S = [w x y].  We can check our work by performing the calculation  S-1AS  to see if we get matrix D. 

PRINCIPLE SUBMATRICES 

Give a matrix:  

















987

654

321
,  the principle submatrices are:  [ ]1 ,  








54

21 ,  and 

















987

654

321
 

 

vuvuvvv −⋅=−= )(2)proj(2ref LL  
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COORDINATE VECTOR 
If we have a basis B consisting of vectors b,1 b2, · · ·  bn, then 
any vector x in Rn can be written as: 

The vector 



















=

nc

c

c

M
2

1

c  is the coordinate vector of x and: 

 

nnccc bbbx +++= L2211  

 
 

=Bc x  

Determining the Coordinate Vector 
Given B and x, we find c by forming an augmented matrix from B and x, taking it to rref form and 
reading c from the right-hand column. 

QUADRATIC FORM 
A function such as  2

221
2

121 876),()( xxxxxxqq +−==x   is called 

a quadratic form and may be written in the form  xxx Aq ⋅=)( .  
Notice in the example at right how the  -7x1x2  term is split in half 
and used to form the "symmetric" part of the symmetric matrix. 

POSITIVE DEFINITE:  Matrix A is positive definite if all 
eigenvalues are greater than 0, in which case q(x) is positive for all 
nonzero x, and the determinants of all principle submatrices will 
be greater than 0. 

NEGATIVE DEFINITE:  Matrix A is negative definite if all 
eigenvalues are less than 0, in which case q(x) is negative for all 
nonzero x. 

INDEFINITE:  Matrix A is indefinite if there are negative and 
positive eigenvalues in which case q(x) may also have negative and 
positive values. 

What about eigenvalues which include 0?  The definition here 
varies among authors. 

 
Example: 
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2
121 876),()( xxxxxxqq +−==x  

xxx Aq ⋅=)(  
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DISTANCE OF TWO ELEMENTS OF AN INNER PRODUCT 
 [ ]∫ −=−=

b

a
dttgtfgfgf, 2)()()(dist  

INNER PRODUCT 
An inner product in a linear space V is a rule that assigns 
a real scalar (denoted by gf ,  to any pair f, g of elements 

of V, such that the following properties hold for all f, g, h in 
V, and all c in R.  A linear space endowed with an inner 
product is called an inner product space. 

 a. fggf ,, =  

b. hghfhgf ,,, +=+  

c. gfcgcf ,, =  

d. 0, >ff  for all nonzero f in V. 

 
Two elements  f, g  of an inner product space are orthogonal if: 0, =gf  
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NORM 
The norm of a vector is its length: 22

2
2

1 nvvv +++= Lv  

 

The norm of an element   f  of an inner product space is: ∫==
b

a
dtffff 2,  

 
 
 


