References
[1] L.F. Pau C.H. Chen and P.S.P. Wang. Handbook of Pattern Recognition and Computer Vision. World Scientifc, 1993.
[2] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis. Wiley, New York, 1973.
[3] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, 1990.
[4] T.Y. Youngand K.S. Fu. Handbook of Pattern Recognition and Image Processing. Academic Press,1986.
[5] S. Haykin, Neural Networks, 2nd ed. (A comprehensive foundation, 1999).
[6] Turing, A. 1950. Computing machinery and itelligence. Mind 59. Reprinted in J. Haugeland, Ed., Mind Design II, MIT Press, 1997.
[7] R.C. Gonzales, R.E. Woods, Digital Image Processing (Addison-Wesley, 1992).
[8] John R. Anderson. Cognitive Psychology and Its Implications. Worth Publishers, New York,fifth edition, 2000.
[9] Stephen K. Reed. Psychological Processes in Pattern Recognition. Academic Press, New York, 1973.
[10] P. R. Krishnaiah and L. N. Kanal, editors. Classification, Pattern Recognition, and Reduction of Dimensionality, volume 2 of Handbook of Statistics. North-Holland, Amsterdam, 1982.
[11] Morton Nadler and Eric P. Smith. Pattern Recognition Engineering. Wiley, New York, 1993.
[12] Tzay Y. Young and King-Sun Fu, editors. Handbook of Pattern Recognition and Image Processing. Academic Press, Orlando, Florida, 1986.
[13] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, Boston, second edition, 1990.
[14] J.F. Martlnez-Trinidad, A. Guzman-Arenas, The logical combinatorial approach to pattern recognition, an overview through selected works, Pattern Reconition 34 (2001) 741-751.
[15] J.F. Martlnez-Trinidad, J. Ruiz-Shulcloper, Fuzzy clustering of sematics spaces, Pattern Reconition (2000).
[16] J.F. Martlnez-Trinidad, J. Ruiz-Shulcloper, M. Lazo-Cortes, Structuralization of universes, Fuzzy Sets amd Systems 112 (3) (2000) 485-500.
[17] J.F. Martlnez-Trinidad, J.R. Garc¶1a-Serrano, A new C-Means algorithm using similarity functions, Int. J. Math. Modeling Comput. (1999), submitted for publication.
[18] J. Ozols, A. Borisov, Fuzzy classification based on pattern projections analysis, Pattern Recognition 34 (2001) 763-781.
[19] Y. Ozols, A. Borisov, A comparative analysis of the features in the fuzzy pattern classification. Proceedings of the Fourth European (EUFIT'96), Aachen, Germany, September 2-5, 1996, pp. 1690-1694.
[20] Lev Goldfarb. A Unified Approach to Pattern Recognition. Pattern Recognition, 17(5):575582, 1984.
[21] Richard O. Duda, Peter E. Hart, and David E. Stork. Pattern Classification. Wiley, New York, second edition, 2001.
[22] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4 37, January 2000.
[23] E.A. El-Kwae, M.R. Kabuka, Binary object representation and recognition using the Hilbert morphological skeleton transform, Pattern Recognition 33 (2000) 1621-1636.
[24] P.E. Tranhanias, Binary shape recognition using the morphological skeleton transform, Pattern Recognition 25 (1) (1992) 1277-1288.
[25] A.A. Sewisy, F. Leberl, Detection ellipses by finding lines of symmetry in the images via an hough transform applied to straight lines, Image and Vision Computing 19 (2001) 857-866.
[26] A.A. Sewisy, Graphical techniques for detecting line with hough transform, Int. J. Comput. Math. (2001)(in Press).
[27] K. Hattori, M. Takahashi, A new edited k-nearest neighbor rule in the pattern classification problem, Pattern Recognition 33 (2000) 521-528.
[28] P.A. Devijver, J. Kittler, Pattern Recognition: A statistical Approach, Prentice-Hall, London, 1982.
[29] B. Moghaddam, T. Jebara, A. pentland, Bayesian face recognition, Pattern Recognition 33 (2000) 1771-1782.
[30] B. Moghaddam, C. Nastar, A. Pentland, A bayesian similarity measures for direct image matching, International Conference on Pattern Recognition, Vienna, Austria, August 1996.
[31] A. Simo, E. De Ves, Segmentation of macular fluorescein angiographies. A statistical approach, Pattern Recognition 24 (2000) 795-809.
[32] K. Jain, R.C Dubes, Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, NJ, 1998.
[33] K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.
[34] Rafael C. Gonzalez and Michael G. Thomason. Syntactic Pattern Recognition: An Introduction. Addison-Wesley, Reading, Massachusetts, 1978.
[35] T. Pavlidis. Structural Pattern Recognition. Springer-Verlag, Berlin, 1977.
[36] Edward R. Dougherty. An Introduction to Morphological Image Processing. SPIE Optical Engineering Press, Bellingham, Washington, 1992.
[37] Charles R. Giardina and Edward R. Dougherty. Morphological Methods in Image and Signal Processing. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.
[38] G.A. Carpenter and S. Grossberg, Amssively parallel architecture for a self-organizing neural pattern recognition machine, Computer Vision, Graphics and Image Processing, Vol. 37, pp. 54-115, 1987.
[39] M.M.A Hashem, Adaptive Resonance Theory: Characterization of ART1 and Development of Similarity Measure, Master Thesis Asian Institute of Technology, Bangkok, 1993.
[40] R. Sadananda and G.R.M. Sudhakara Rao, ART: Model Algorithm Characterization and New Similarity Metric Proposition in the Novelty Detector, Proc. IEEE Neural Network Conference (perth), Causal Productions, Australia, 1995.
[41] E.E. Khin, A. Shrestha, R. Sadananda, ART1: Similarity Measures, Neural Processing Letters 6: 109-117, 1997.
[42] S. Belongie, J. Malik, and J. Puzicha, Shape matching and object recognition using shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 24 April 2002.
[43] S. Belongie, J. Malik, and J. Puzicha, Matching shapes, Proc. Eighth Int'l. Conf. Computer Vision, pp. 454-461, July 2001.
[44] S. Belongie, J. Malik, and J. Puzicha, Shape context: A new Descriptor for Shape Matching and Object Recognition, Advances in Neural Information Processing Systems 13: Proc. 2000 Conf., T.K. Leen, T.G. Dietterich, and V. Tresp, eds.. pp. 831-837, 20001.
[45] H. Chui, A. Rangarajan, A new Algorithm for Non-Rigid Point Matching, Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 44-51, June 2000.
[46] R.J. Schalkoff, Artificial neural networks (McGraw-Hill, international ed., 1997).
[47] B.D. Ripley, Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
[48] P.K. Simpson, Artificial Neural Systems. Pergamon Press,1990.
[49] W.S. McCulloch and Walter Pitts, Alogical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics (5):115 -133,1943.
[50] D.O. Hebb, The Organization of Behavior Wiley,1949. 154
[51] F. Rosenblatt, Two theorems of statistical reparability in the perceptron. Symposium on the Mechanization of Thought Processes pages 421-456, 1959.
[52] M.L. Minsky and S.A.Papert.Perceptrons: An introduction to Compuational Geometry MIT Press,1988.
[53] D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing: Explorations in the Microstructure of Cognition MIT Press, 1986.
[54] J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci-Biophysics (79):2554-2558, 1982.
[55] T.Kohonen, Self-Organization and Associative Memory. Springer-Verlag, 1987.
[56] G.E. Hinton D.E.Rumelhart and R.J. Willians, Learning representations by back-propagating erros. Nature 323(9):533 -536, 1986.
[57] B. Widrow and M.E. Hoff, Adaptive switching circuits. 1960 IRE WESCON Convention Record, Part 4, Aug, 1960, pp. 96-104.
[58] K. Fukushima, Necognition: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biol. Cybernet. 36, (4) (April 1980) 193-202.
[59] K. Fukushima, A neural network model for selective attention in visual pattern recognition and associative recall, Applied Optics 26 (23) (Nov. 1987) 4985-4992.
[60] K. Fukushima, Necognition: A hierarchical neural network capable of visual pattern recognition, Neural Networks, 1 (2) (April 1988) 119-130.
[61] D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction and fuctional architecture in the cat's visual cortex, J. Physiology. 1 (1962) 106-154.
[62] D.H. Hubel, T.N. Wiesel, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat, J.Neurophysiol. 28 (1965) 229-289.
[63] K.J. Cios, I. Shin, Image recognition neural network:IRNN, Neurocomputing 7 (1995) 159-185.
[64] M. Arai, Bounds on the number of hidden units in binary valued three-layer neural networks, Neural Networks, 6 (1993) 855-860.
[65] B. Wang, Z. He, Can the classification capability of network be further improved by using quadratic sigmoidal neurons, Pattern Recognition 33 (2000) 1395-1399.
[66] H. Freeman, On the encoding of arbitrary geometric configurations, IRE Trans. Electron. Comput. EC-10 (1961) 260-268.
[67] M.D. Levine, Vision in Man and Machine, McGraw-Hill Publishing Company, New York, USA, 1985.
[68] H. Freeman, Computer processing of line drawing images, ACM Comput. Surveys 6 (1974) 47-97. [69] A. Blumenkrans, Two-dimensional object recognition using a two-dimensional polar transformation, Pattern Recognition 24 (1991) 879-890.
[70] E.Bribiesca, A geometric structure for two-dimensional shapes and three-dimensional surfaces, Pattern Recognition 25 (1992) 483-496.
[71] S. Papert, Uses of technology to enhance education. Technical Report 298, AI Lab, MIT, 1973.
[72] E. Bribiesca, A new chain code, Pattern Recognition 32 (1999) 235-251.
[73] H. Freeman, Techniques for the digital computer analysis of chain-encoded arbitrary plane curves, Proc. Natn. Electron. Conf. 18 (1961) 312-324.
[74] Wagner, R., Fischer, M.: The string-to correction problem, Journal of the ACM, Vol.21, No.1, 1974, pp 168-173.
[75] Chen, S.W., Tung, S.T., Fang, C.Y., Cherng, S., Jain, A.: Extended attributed string matching for shape recognition, Computer Vision and Image Understanding, Vol.70, No.1, 1998, pp 36-50.
[76] Bunke, H., ZumbÄuhl, M.: Acquisition of 2D shape models from scense with overlapping objects using string matching, Pattern Analysis and Application Vol.2, No.1, 1999, pp2-9.
[77] Llados, J., Bunke, H., Marti, E.: Finding rotational symmetries by cyclic string matching, Pattern Recognition Letters, Vol.18, No.14, 1997.
[78] Lopresti, D., Zhou, J.: Using consensus sequence voting to correct OCR errors, Comp. Vision adn Image Understanding, Vol.67, No.1, 1997, pp 39-47.