
Software Packages in Physics
Mid-term Exam: Model Solutions and Marks
2nd semester 2004-2005
9-May-2005

ü Each problem below was marked out of 10.

Name: 

Problem 1: The Hydrogen Ion

ü Statement of the problem

Using the variational  principle,  find the ground-state  energy for  a hydrogen ion H2
+  made up of  two protons  and a single

electron, then comment on your result.

ü Physics of the problem

The  use  of  the  variational  principle  in  quantum  mechanics  is  based  on  a  theorem  that  states  that  using  a  guessed  (trial
wavefunction) for a system whose actual wavefunction is unknown, we can say that:

Eg § Xy » H » y\ ª XH\

Based on the LCAO (Linear Combination of Atomic Orbitals) technique, a suitable trial wavefunction for the hydrogen ion
is a linear combination of the ground states of the two protons:

y = A@ygHr1L + ygHr2LD

To solve the problem, we first normalize this wavefunction, by solving the following equation for A:

1 = ‡ » y »2  d3 r

where, r1  and r2  are the vectors separating the electron from the two protons, such that R  is the distance between the two
protons.  We substitute the resulting value of  A  into our  original  function,  and  then calculate the expectation value of  the
Hamiltonian of the system:
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After calculating the relevant integrals, we end up with an expression for the total energy of the system as a function of R.
In units of -E1, and expressed as a function of x ª R ê a (where a is Bohr's radius), the total energy function FHxL reads:

FHxL = -1 +
2
ÅÅÅÅÅ
x

 9 H1 - H2 ê 3L x2L e-x + H1 + xL e-2 x
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E1 mentioned above is the ground-state energy for the hydrogen atom:
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ü Proposed steps for solution

1. Define the function FHxL as a Mathematica function.
2. Plot that function in the range x œ @0.5, 7D.
3. Differentiate FHxL with respect to x, and find the zero of the derivative using FindRoot[].
4. Substitute the zero of F£HxL back into FHxL and transform the answer to become in units of electron-volt. (To do this last
step, you might find the values of constants in the packages Miscellaneous`PhysicalConstants` to be useful.
5. Comment on the physical significance of the value of x that minimizes the energy function FHxL, and the value of energy
(in eV) you get by minimization.

ü Your solution of problem 1:

H∗Here' s a definition of F HxL:∗L

F@x_D := −1 +
2

x
 
H1 − H2 ê3L x2L −x + H1 + xL −2 x

1 + H1 + x + H1ê3L x2L −x

H∗Now its plot in the designated range:∗L

Plot@F@xD, 8x, 0.5, 7<D;
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H∗The derivative of F@xD with respect to x:∗L

d = D@F@xD, xD
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H∗From the plot,
one can see that the root resulting in minimum energy is somewhere near x=2.5,
therefore:∗L

e = FindRoot@d 0, 8x, 2.5<D

8x → 2.49283<

H∗The value of the function F@xD at this root is:∗L

f = F@xD ê. e

−1.12966

H∗We now call the package PhysicalConstants to calculate the value of the ground−

state energy of a hydrogen atom E1 in electron volts:∗L

<< Miscellaneous`PhysicalConstants`

E1 = −
ElectronCharge2

4 π VacuumPermittivity
 

1

2 BohrRadius
êê.

9Ampere →
Coulomb

Second
, Coulomb → Jouleê Volt, Joule →

Coulomb

ElectronCharge
 eV=

−13.6057 eV

H∗And finally, we transform our answer into electron volts:∗L

f ∗H−E1L

−15.3698 eV

Problem 2: The Function Divisors[]

ü Statement of the problem

Build a Mathematica function in the style of procedural programming, that calculates the divisors of an integer, and outputs
them as a list in ascending order (from lowest to highest).
Then use that function to calculate the divisors of 3628800. Use an appropriate Mathematica built-in function to count how
many numbers your resulting list has.
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Mathematica  already has a built-in function that calculates divisors, it is called Divisors[]. Here's how it is used to find
the divisors of 120:

Divisors@120D

81, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120<

Your function should be able to do the same.

ü Proposed steps for solution

Let m be the integer whose divisors we are looking for. The basic idea then is to form a loop that will check every number
n œ @1, mD; if n divides m then it is included in our list, if not, then it is discarded.

A useful function that checks if a number n divides another m is Mod[], which calculates the remainder of dividing m by n.
If n  divides m,  then clearly the answer of M[m,n]  is  zero. If  n  does not divide m  then the answer is the remainder of the
division:

Mod@4, 2D

0

Mod@4, 3D

1

If in a given loop, n divides m, then n needs to be appended to an accumulator (the list which will eventually be given as
output). You can use Append[] or AppendTo[] for that purpose. 

Your accumulator needs to be initialized in order to be usable, here's how to do it:

y = 8<

Notice the following snippet:

y = 81, 2<; AppendTo@y, 3D; y

81, 2, 3<

It is a good idea to do all this within a Module[].

ü Your solution of problem 2:

OurDivisors@x_D := Module@8y = 8<, i<, Do@If@Mod@x, iD 0, AppendTo@y, iDD, 8i, x<D; yD
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OurDivisors@3628800D
Length@%D

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35,
36, 40, 42, 45, 48, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 100, 105,
108, 112, 120, 126, 128, 135, 140, 144, 150, 160, 162, 168, 175, 180, 189, 192, 200,
210, 216, 224, 225, 240, 252, 256, 270, 280, 288, 300, 315, 320, 324, 336, 350, 360,
378, 384, 400, 405, 420, 432, 448, 450, 480, 504, 525, 540, 560, 567, 576, 600,
630, 640, 648, 672, 675, 700, 720, 756, 768, 800, 810, 840, 864, 896, 900, 945,
960, 1008, 1050, 1080, 1120, 1134, 1152, 1200, 1260, 1280, 1296, 1344, 1350, 1400,
1440, 1512, 1575, 1600, 1620, 1680, 1728, 1792, 1800, 1890, 1920, 2016, 2025, 2100,
2160, 2240, 2268, 2304, 2400, 2520, 2592, 2688, 2700, 2800, 2835, 2880, 3024, 3150,
3200, 3240, 3360, 3456, 3600, 3780, 3840, 4032, 4050, 4200, 4320, 4480, 4536, 4725,
4800, 5040, 5184, 5376, 5400, 5600, 5670, 5760, 6048, 6300, 6400, 6480, 6720, 6912,
7200, 7560, 8064, 8100, 8400, 8640, 8960, 9072, 9450, 9600, 10080, 10368, 10800,
11200, 11340, 11520, 12096, 12600, 12960, 13440, 14175, 14400, 15120, 16128, 16200,
16800, 17280, 18144, 18900, 19200, 20160, 20736, 21600, 22400, 22680, 24192,
25200, 25920, 26880, 28350, 28800, 30240, 32400, 33600, 34560, 36288, 37800,
40320, 43200, 44800, 45360, 48384, 50400, 51840, 56700, 57600, 60480, 64800,
67200, 72576, 75600, 80640, 86400, 90720, 100800, 103680, 113400, 120960, 129600,
134400, 145152, 151200, 172800, 181440, 201600, 226800, 241920, 259200, 302400,
362880, 403200, 453600, 518400, 604800, 725760, 907200, 1209600, 1814400, 3628800<

270

Mid-term Practical Exam 5

2004/2005 Instructor: Usama al-Binni Department of Physics, University of Jordan



Software Packages in Physics
Mid-term Exam: Model Solutions and Marks
2nd semester 2004-2005
10-May-2005

Name: 

Problem 1: Calculating The Ground-State Energy For The Harmonic 
Oscillator Using The Variational Principle

ü Statement of the problem

Using  the  variational  principle,  find  the  ground-state  energy  for  the  one-dimensional  harmonic  oscillator  using  the  trial
wavefunction yHx; bL = A e-b x4 , where A is the normalization constant, and b is an adjustable parameter. Then comment on
your result.

ü Physics of the problem

The  use  of  the  variational  principle  in  quantum  mechanics  is  based  on  a  theorem  that  states  that  using  a  guessed  (trial
wavefunction) for a system whose actual wavefunction is unknown, we can say that:

Eg § Xy » H » y\ ª XH\

We are given a trial wavefunction to use:

y = A e-b x4

To solve the problem, we first normalize this wavefunction, by solving the following equation for A:

1 = ‡ » y »2  d3 r

Then, we find the expectation value of the Hamiltonian. For the problem at hand, the Hamiltonian operator is:

H
`

= -
Ñ2

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

 
d2

ÅÅÅÅÅÅÅÅÅÅÅÅ
dx2 +

1
ÅÅÅÅÅ
2

 m w2 x̀2

and its expectation value is then:
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The result of calculating this expectation value is a function of b. According to the theorem we mentioned at the start, to get
an estimate of the ground-state energy, we should minimize the resulting function with respect to b.

ü Proposed steps for solution

1.  Calculate the  normalization integral  using  Integrate[]  (along  with  appropriate  Assumptions),  and  set  it  to  1,  then
use Solve[] on the resulting equation to find A.
2. Construct the normalized wavefunction as function of b.
3. Find the expectation value of the Hamiltonian EHbL = Ÿ y*Hx; bL H`  yHx; bL dx. The result should be a function of b.
4. Minimize EHbL with respect to b. You can do that by differentiating EHbL, then setting the result to zero, and solving the
resulting equation with the help of Solve[], then substituting that value back in the expression for EHbL.
5. The resulting expression may appear complicated; to simplify it you can apply one (or all) of the following functions on
it:

Simplify[], FullSimplify[], PowerExpand[], and N[].

ü Your solution of problem 1:

H∗We start with the normalization integral:∗L

normalization = IntegrateAIA −b x4M2
, 8x, −∞, ∞<E

A2 IfARe@bD > 0,
23ê4 Gamma@ 5

4 D
b1ê4 , IntegrateA −2 b x4

, 8x, −∞, ∞<, Assumptions → Re@bD ≤ 0EE

H∗The assumption Re@bD>0 needs to be added:∗L

normalization = IntegrateAIA −b x4M2
, 8x, −∞, ∞<, Assumptions → Re@bD > 0E

23ê4 A2 Gamma@ 5
4 D

b1ê4

H∗Therefore, the normalization constant is:∗L

norm = Solve@normalization 1, AD

99A → −
b1ê8

23ê8 "########################Gamma@ 5
4 D

=, 9A →
b1ê8

23ê8 "########################Gamma@ 5
4 D

==

H∗And the normalized wavefunction reads:∗L

ψ@x_, b_D := A −b x4 ê. norm@@2DD
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H∗Our choice of positive solution was conventional,
since a wavefunction' s phase will have no effect on our calculations. Moving now

to the expectation value of the Hamiltonian using our trial wavefunction:∗L

Energy@b_D :=
−—2

2 m
 Integrate@ψ@x, bD D@ψ@x, bD, 8x, 2<D, 8x, −∞, ∞<, Assumptions → Re@bD > 0D

1

2
 ω2 m Integrate@x2 ψ@x, bD2, 8x, −∞, ∞<, Assumptions → Re@bD > 0D

H∗Differentiating, setting to zero, then solving for b,
we get the value of b that minimizes the expectation value of the Hamiltonian:∗L

a = Solve@D@Evaluate@Energy@bDD, bD 0, bD

99b →
m2 ω2 Gamma@ 3

4 D Gamma@ 5
4 D

—2 Gamma@ 1
4 D H3 Gamma@ 3

4 D − 2 Gamma@ 7
4 DL

==

PowerExpand@Energy@bD ê. aD êê N

80.585414 ω —<

H∗As expected, this value is above the true value obtained analytically,
which is 0.5 ω —. Our value is slightly above the true value,

because −b x4 behaves very similar to the true solution −b x2 ,
and therefore, upon minimization, we get a really close answer.∗L

Problem 2: Taylor Expansions

ü Statement of the problem

Build a Mathematica function that calculates the Taylor expansion of a function f HxL up to order n, i.e. returning a polyno-
mial of degree n in the variable x.
Mathematica already offers the function Series[] to perform this task.
Use  your  function  to  find  the first  10  terms in  the expansion  of  the  function  hHxL = sin 

è!!!!!!!!!!!!!x2 + 1  around x = 1,  and  check
your answer with that of Series[].

ü Review

Recall that the Taylor expansion of a function f HxL about a point x = x0 has the form:

f HxL = „
p=0

¶
f HpLHx0LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p!
 Hx - x0Lp

If only terms of degrees not exceeding n are kept, this series is truncated, and the result is:
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f HxL >„
p=0

n
f HpLHx0LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p!
 Hx - x0Lp

ü Proposed steps for solution

1. Build a function TaylorExpansion[f_,{x_,x0_,n_}], where f is the name of the function.
2. Make the function first test whether f HxL  is already a polynomial; if it is, let your function display a message notifying
the user that the input funcion is already in polynomial form. You may find the function PolynomialQ[]  useful in doing
this.
3. Perform a Taylor expansion on the function. You may find Sum[] to be useful here. 
4. To write the jth derivative of f  at x = x0, you can use the function Derivative[].

Here is an example of how your function should operate:

g@x_D := LegendreP@2, xD
TaylorExpansion@g, 8x, x0, 5<D

g is already a polynomial in x.

−
1
2
+

3
2
Hx − x0L2 + 3 Hx − x0L x0 +

3 x02

2

And here is another example:

g@x_D := Sin@xD
TaylorExpansion@g, 8x, 0, 7<D

x −
x3

6
+

x5

120
−

x7

5040

ü Your solution of problem 2:

TaylorExpansion@f_, 8x_, x0_, n_<D :=

i
k
jjIf@PolynomialQ@f@xD, xD, Print@f, " is already a polynomial in ", x, "."DD;

SumA Derivative@iD@fD@x0D
i!

 Hx − x0Li, 8i, 0, n<Ey
{
zz

h@x_D := SinAè!!!!!!!!!!!!!
x2 + 1 E

Mid-term Practical Exam 9

2004/2005 Instructor: Usama al-Binni Department of Physics, University of Jordan



TaylorExpansion@h, 8x, 1, 10<D

H−1 + xL CosAè!!!2 E
è!!!2

+
H−1 + xL8 J− 3059 CosAè!!!!2 E

128 è!!!!2 −
13285 SinAè!!!!2 E

128 N
40320

+

1
720

H−1 + xL6 i
k
jjjj−

15 CosAè!!!2 E
32 è!!!2

−
169 SinAè!!!2 E

32
y
{
zzzz +

1
6
H−1 + xL3 i

k
jjjj−

5 CosAè!!!2 E
4 è!!!2

−
3 SinAè!!!2 E

4
y
{
zzzz +

1
2
H−1 + xL2 i

k
jjjj

CosAè!!!2 E
2 è!!!2

−
SinAè!!!2 E

2
y
{
zzzz +

1
120

H−1 + xL5 i
k
jjjj

19 CosAè!!!2 E
16 è!!!2

+
5 SinAè!!!2 E

16
y
{
zzzz +

SinAè!!!2 E + 1
24

H−1 + xL4 i
k
jjjj−

3 CosAè!!!2 E
8 è!!!2

+
11 SinAè!!!2 E

8
y
{
zzzz +

H−1 + xL7 J 307 CosAè!!!!2 E
64 è!!!!2 +

1701 SinAè!!!!2 E
64 N

5040
+

H−1 + xL9 J 9403 CosAè!!!!2 E
256 è!!!!2 +

40797 SinAè!!!!2 E
256 N

362880
+
H−1 + xL10 J 218385 CosAè!!!!2 E

512 è!!!!2 +
976439 SinAè!!!!2 E

512 N
3628800

Series@h@xD, 8x, 1, 10<D − TaylorExpansion@h, 8x, 1, 10<D

O@x − 1D11
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