Software Packages in Physics
 Mid-term Exam: Model Solutions and Marks
 2nd semester 2004-2005
 9-May-2005

- Each problem below was marked out of 10.

Name:

Problem 1: The Hydrogen Ion

- Statement of the problem

Using the variational principle, find the ground-state energy for a hydrogen ion H_{2}^{+}made up of two protons and a single electron, then comment on your result.

- Physics of the problem

The use of the variational principle in quantum mechanics is based on a theorem that states that using a guessed (trial wavefunction) for a system whose actual wavefunction is unknown, we can say that:
$E_{g} \leq\langle\psi| H|\psi\rangle \equiv\langle H\rangle$
Based on the LCAO (Linear Combination of Atomic Orbitals) technique, a suitable trial wavefunction for the hydrogen ion is a linear combination of the ground states of the two protons:
$\psi=A\left[\psi_{g}\left(r_{1}\right)+\psi_{g}\left(r_{2}\right)\right]$

To solve the problem, we first normalize this wavefunction, by solving the following equation for A :
$1=\int|\psi|^{2} d^{3} \mathbf{r}$
where, \mathbf{r}_{1} and \mathbf{r}_{2} are the vectors separating the electron from the two protons, such that R is the distance between the two protons. We substitute the resulting value of A into our original function, and then calculate the expectation value of the Hamiltonian of the system:
$\langle H\rangle=\langle\psi|-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{e^{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)|\psi\rangle$
After calculating the relevant integrals, we end up with an expression for the total energy of the system as a function of R. In units of $-E_{1}$, and expressed as a function of $x \equiv R / a$ (where a is Bohr's radius), the total energy function $F(x)$ reads:
$F(x)=-1+\frac{2}{x}\left\{\frac{\left(1-(2 / 3) x^{2}\right) e^{-x}+(1+x) e^{-2 x}}{1+\left(1+x+(1 / 3) x^{2}\right) e^{-x}}\right\}$
E_{1} mentioned above is the ground-state energy for the hydrogen atom:
$E_{1}=-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{2 a}$

- Proposed steps for solution

1. Define the function $F(x)$ as a Mathematica function.
2. Plot that function in the range $x \in[0.5,7]$.
3. Differentiate $F(x)$ with respect to x, and find the zero of the derivative using FindRoot [].
4. Substitute the zero of $F^{\prime}(x)$ back into $F(x)$ and transform the answer to become in units of electron-volt. (To do this last step, you might find the values of constants in the packages Miscellaneous`PhysicalConstants` to be useful.
5. Comment on the physical significance of the value of x that minimizes the energy function $F(x)$, and the value of energy (in eV) you get by minimization.

- Your solution of problem 1:

(*Here's a definition of $F(x): *)$
$F\left[x_{-}\right]:=-1+\frac{2}{x} \frac{\left(1-(2 / 3) x^{2}\right) e^{-x}+(1+x) e^{-2 x}}{1+\left(1+x+(1 / 3) x^{2}\right) e^{-x}}$
(*Now its plot in the designated range:*)
Plot[F[x], \{x, 0.5, 7\}];


```
(*The derivative of \(F[x]\) with respect to \(x: *)\)
\(\mathrm{d}=\mathrm{D}[\mathrm{F}[\mathrm{X}], \mathrm{x}]\)
\(-\left(2\left(e^{-2 x}(1+x)+e^{-x}\left(1-\frac{2 x^{2}}{3}\right)\right)\left(e^{-x}\left(1+\frac{2 x}{3}\right)-e^{-x}\left(1+x+\frac{x^{2}}{3}\right)\right)\right) /\left(x\left(1+e^{-x}\left(1+x+\frac{x^{2}}{3}\right)\right)^{2}\right)+\)
\(\frac{2\left(e^{-2 x}-\frac{4 e^{-x} x}{3}-2 e^{-2 x}(1+x)-\mathbb{e}^{-x}\left(1-\frac{2 x^{2}}{3}\right)\right)}{x\left(1+e^{-x}\left(1+x+\frac{x^{2}}{3}\right)\right)}-\frac{2\left(e^{-2 x}(1+x)+e^{-x}\left(1-\frac{2 x^{2}}{3}\right)\right)}{x^{2}\left(1+e^{-x}\left(1+x+\frac{x^{2}}{3}\right)\right)}\)
(*From the plot,
    one can see that the root resulting in minimum energy is somewhere near \(\mathrm{x}=2.5\),
    therefore:*)
e = FindRoot \([\mathrm{d}=\mathbf{=} 0\), \(\{\mathrm{x}, 2.5\}]\)
\(\{x \rightarrow 2.49283\}\)
(*The value of the function \(F[x]\) at this root is:*)
\(\mathrm{f}=\mathrm{F}[\mathrm{x}] / \mathrm{e}\)
\(-1.12966\)
(*We now call the package PhysicalConstants to calculate the value of the ground-
    state energy of a hydrogen atom \(E_{1}\) in electron volts:*)
<< Miscellaneous`PhysicalConstants`
E1 \(=-\frac{\text { ElectronCharge }^{2}}{4 \pi \text { VacuumPermittivity }} \frac{1}{2 \text { BohrRadius }} / /\).
    \(\left\{\right.\) Ampere \(\rightarrow \frac{\text { Coulomb }}{\text { Second }}\), Coulomb \(\rightarrow\) Joule /Volt, Joule \(\rightarrow \frac{\text { Coulomb }}{\text { ElectronCharge }}\) eV \}
-13.6057 eV
(*And finally, we transform our answer into electron volts:*)
\(f\) * (-E1)
-15.3698 eV
```


Problem 2: The Function Divisors[]

- Statement of the problem

Build a Mathematica function in the style of procedural programming, that calculates the divisors of an integer, and outputs them as a list in ascending order (from lowest to highest).
Then use that function to calculate the divisors of 3628800 . Use an appropriate Mathematica built-in function to count how many numbers your resulting list has.

Mathematica already has a built-in function that calculates divisors, it is called Divisors[]. Here's how it is used to find the divisors of 120 :

```
Divisors[120]
```

```
{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}
```

Your function should be able to do the same.

- Proposed steps for solution

Let m be the integer whose divisors we are looking for. The basic idea then is to form a loop that will check every number $n \in[1, m]$; if n divides m then it is included in our list, if not, then it is discarded.

A useful function that checks if a number n divides another m is Mod[], which calculates the remainder of dividing m by n. If n divides m, then clearly the answer of $\boldsymbol{M}[\mathbf{m}, \mathbf{n}]$ is zero. If n does not divide m then the answer is the remainder of the division:

```
Mod[4, 2]
0
Mod[4, 3]
1
```

If in a given loop, n divides m, then n needs to be appended to an accumulator (the list which will eventually be given as output). You can use Append [] or AppendTo[] for that purpose.

Your accumulator needs to be initialized in order to be usable, here's how to do it:

$$
y=\{ \}
$$

Notice the following snippet:

$$
\begin{aligned}
& y=\{1,2\} ; \text { AppendTo }[y, 3] ; y \\
& \{1,2,3\}
\end{aligned}
$$

It is a good idea to do all this within a Module[].

- Your solution of problem 2:

```
OurDivisors[x_] := Module[{y={}, i}, Do[If[Mod[x, i] == 0, AppendTo[y, i]], {i, x}]; y]
```


OurDivisors[3628800] Length [\%]

$\{1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,27,28,30,32,35$, $36,40,42,45,48,50,54,56,60,63,64,70,72,75,80,81,84,90,96,100,105$, $108,112,120,126,128,135,140,144,150,160,162,168,175,180,189,192,200$, $210,216,224,225,240,252,256,270,280,288,300,315,320,324,336,350,360$, 378, 384, 400, 405, 420, 432, 448, 450, 480, 504, 525, 540, 560, 567, 576, 600, 630, 640, 648, 672, 675, 700, 720, 756, 768, 800, 810, 840, 864, 896, 900, 945, 960, 1008, 1050, 1080, 1120, 1134, 1152, 1200, 1260, 1280, 1296, 1344, 1350, 1400, 1440, 1512, 1575, 1600, 1620, 1680, 1728, 1792, 1800, 1890, 1920, 2016, 2025, 2100, 2160, 2240, 2268, 2304, 2400, 2520, 2592, 2688, 2700, 2800, 2835, 2880, 3024, 3150, 3200, 3240, 3360, 3456, 3600, 3780, 3840, 4032, 4050, 4200, 4320, 4480, 4536, 4725, 4800, 5040, 5184, 5376, 5400, 5600, 5670, 5760, 6048, 6300, 6400, 6480, 6720, 6912, 7200, 7560, 8064, 8100, 8400, 8640, 8960, 9072, 9450, 9600, 10080, 10368, 10800, $11200,11340,11520,12096,12600,12960,13440,14175,14400,15120,16128,16200$, 16800, 17280, 18144, 18900, 19200, 20160, 20736, 21600, 22400, 22680, 24192, 25200, 25920, 26880, 28350, 28800, 30240, 32400, 33600, 34560, 36288, 37800, 40320, 43200, 44800, 45360, 48384, 50400, 51840, 56700, 57600, 60480, 64800, 67200, 72576, 75600, 80640, 86400, 90720, 100800, 103680, 113400, 120960, 129600, 134400, 145152, 151200, 172800, 181440, 201600, 226800, 241920, 259200, 302400, 362880, 403200, 453600, 518400, 604800, 725760, 907200, 1209600, 1814400, 3628800\}

270

Software Packages in Physics Mid-term Exam: Model Solutions and Marks
 2nd semester 2004-2005
 10-May-2005

Name:

Problem 1: Calculating The Ground-State Energy For The Harmonic Oscillator Using The Variational Principle

- Statement of the problem

Using the variational principle, find the ground-state energy for the one-dimensional harmonic oscillator using the trial wavefunction $\psi(x ; b)=A e^{-b x^{4}}$, where A is the normalization constant, and b is an adjustable parameter. Then comment on your result.

- Physics of the problem

The use of the variational principle in quantum mechanics is based on a theorem that states that using a guessed (trial wavefunction) for a system whose actual wavefunction is unknown, we can say that:
$E_{g} \leq\langle\psi| H|\psi\rangle \equiv\langle H\rangle$
We are given a trial wavefunction to use:
$\psi=A e^{-b x^{4}}$

To solve the problem, we first normalize this wavefunction, by solving the following equation for A :
$1=\int|\psi|^{2} d^{3} \mathbf{r}$
Then, we find the expectation value of the Hamiltonian. For the problem at hand, the Hamiltonian operator is:
$\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} \hat{x}^{2}$
and its expectation value is then:
$\langle\hat{H}\rangle=\langle\psi|-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} \hat{x}^{2}|\psi\rangle$
The result of calculating this expectation value is a function of b. According to the theorem we mentioned at the start, to get an estimate of the ground-state energy, we should minimize the resulting function with respect to b.

- Proposed steps for solution

1. Calculate the normalization integral using Integrate[] (along with appropriate Assumptions), and set it to 1 , then use Solve [] on the resulting equation to find A.
2. Construct the normalized wavefunction as function of b.
3. Find the expectation value of the Hamiltonian $E(b)=\int \psi^{*}(x ; b) \hat{H} \psi(x ; b) d x$. The result should be a function of b.
4. Minimize $E(b)$ with respect to b. You can do that by differentiating $E(b)$, then setting the result to zero, and solving the resulting equation with the help of Solve[], then substituting that value back in the expression for $E(b)$.
5. The resulting expression may appear complicated; to simplify it you can apply one (or all) of the following functions on it:

Simplify [], FullSimplify[], PowerExpand[], and N[].

- Your solution of problem 1:

```
(*We start with the normalization integral:*)
normalization = Integrate[(A e-b x ( )
A}\operatorname{Aff[\operatorname{Re}[b]>0,}\frac{\mp@subsup{2}{}{3/4}\operatorname{Gamma[\frac{5}{4}]}}{\mp@subsup{b}{}{1/4}},\operatorname{Integrate[ [\mp@subsup{e}{}{-2b\mp@subsup{x}{}{4}},{x,-\infty,\infty}, Assumptions }->\operatorname{Re}[b]\leq0]
(*The assumption Re[b]>0 needs to be added:*)
normalization = Integrate[(A e b ( x 4 )
\frac{23/4}{\mp@subsup{A}{}{2}Gamma[\frac{5}{4}]}
(*Therefore, the normalization constant is:*)
norm = Solve[normalization == 1, A]
{{A->-\frac{\mp@subsup{\textrm{b}}{}{1/8}}{\mp@subsup{2}{}{3/8}\sqrt{}{\operatorname{Gamma[\frac{5}{4}]}}}},{\textrm{A}->\frac{\mp@subsup{\textrm{b}}{}{1/8}}{\mp@subsup{2}{}{3/8}\sqrt{}{\operatorname{Gamma[\frac{5}{4}]}}}}}
(*And the normalized wavefunction reads:*)
\psi[\mp@subsup{x}{-}{\prime},\mp@subsup{b}{-}{\prime}]:=A A e
```

```
(*Our choice of positive solution was conventional,
    since a wavefunction's phase will have no effect on our calculations. Moving now
        to the expectation value of the Hamiltonian using our trial wavefunction:*)
Energy[b_] := - \\hbar\mp@subsup{\hbar}{}{2}
        \frac{1}{2}}\mp@subsup{\omega}{}{2}m\mathrm{ Integrate [x
(*Differentiating, setting to zero, then solving for b,
    we get the value of b that minimizes the expectation value of the Hamiltonian:*)
a = Solve[D[Evaluate[Energy[b]], b] == 0, b]
{{b b \frac{\mp@subsup{m}{}{2}\mp@subsup{\omega}{}{2}\operatorname{Gamma}[\frac{3}{4}]\operatorname{Gamma [\frac{5}{4}]}}{\mp@subsup{\hbar}{}{2}\operatorname{Gamma}[\frac{1}{4}](3\operatorname{Gamma}[\frac{3}{4}]-2\operatorname{Gamma}[\frac{7}{4}])}}}
PowerExpand [Energy[b] /. a] // N
{0.585414\omega \hbar}
(*As expected, this value is above the true value obtained analytically,
    which is 0.5 \omega h. Our value is slightly above the true value,
    because e eb x
    and therefore, upon minimization, we get a really close answer.*)
```


Problem 2: Taylor Expansions

- Statement of the problem

Build a Mathematica function that calculates the Taylor expansion of a function $f(x)$ up to order n, i.e. returning a polynomial of degree n in the variable x.
Mathematica already offers the function Series [] to perform this task.
Use your function to find the first 10 terms in the expansion of the function $h(x)=\sin \sqrt{x^{2}+1}$ around $x=1$, and check your answer with that of Series[].

- Review

Recall that the Taylor expansion of a function $f(x)$ about a point $x=x_{0}$ has the form:
$f(x)=\sum_{p=0}^{\infty} \frac{f^{(p)}\left(x_{0}\right)}{p!}\left(x-x_{0}\right)^{p}$
If only terms of degrees not exceeding n are kept, this series is truncated, and the result is:
$f(x) \simeq \sum_{p=0}^{n} \frac{f^{(p)}\left(x_{0}\right)}{p!}\left(x-x_{0}\right)^{p}$

- Proposed steps for solution

1. Build a function TaylorExpansion [$\mathbf{f}_{-},\left\{\mathbf{x}_{-}, \mathbf{x} \boldsymbol{0}_{-}, \mathbf{n}_{-}\right\}$], where \mathbf{f} is the name of the function.
2. Make the function first test whether $f(x)$ is already a polynomial; if it is, let your function display a message notifying the user that the input funcion is already in polynomial form. You may find the function PolynomialQ[] useful in doing this.
3. Perform a Taylor expansion on the function. You may find Sum[] to be useful here.
4. To write the j th derivative of f at $x=x_{0}$, you can use the function Derivative[].

Here is an example of how your function should operate:

```
g[x_] := LegendreP[2, x]
TaylorExpansion[g, {x, x0, 5}]
```

g is already a polynomial in x .
$-\frac{1}{2}+\frac{3}{2}(x-x 0)^{2}+3(x-x 0) x 0+\frac{3 x 0^{2}}{2}$

And here is another example:
g[x_] := Sin[x]
TaylorExpansion[g, \{x, 0, 7\}]
$x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040}$

- Your solution of problem 2:

```
TaylorExpansion[f_, \(\left.\left\{\mathbf{x}_{-}, \mathbf{x} 0_{-}, \mathbf{n}_{-}\right\}\right]:=\)
    (If[PolynomialQ[f[x], \(x]\), Print[f, " is already a polynomial in ", x, "."]];
    \(\left.\operatorname{Sum}\left[\frac{\operatorname{Derivative}[i][f][x 0]}{i!}(x-x 0)^{i},\{i, 0, n\}\right]\right)\)
\(h\left[x_{-}\right]:=\operatorname{Sin}\left[\sqrt{x^{2}+1}\right]\)
```

TaylorExpansion[h, \{x, 1, 10\}]

$$
\begin{aligned}
& \frac{(-1+x) \cos [\sqrt{2}]}{\sqrt{2}}+\frac{(-1+x)^{8}\left(-\frac{3059 \cos [\sqrt{2}]}{128 \sqrt{2}}-\frac{13285 \sin [\sqrt{2}]}{128}\right)}{40320}+ \\
& \frac{1}{720}(-1+x)^{6}\left(-\frac{15 \operatorname{Cos}[\sqrt{2}]}{32 \sqrt{2}}-\frac{169 \operatorname{Sin}[\sqrt{2}]}{32}\right)+\frac{1}{6}(-1+x)^{3}\left(-\frac{5 \operatorname{Cos}[\sqrt{2}]}{4 \sqrt{2}}-\frac{3 \operatorname{Sin}[\sqrt{2}]}{4}\right)+ \\
& \frac{1}{2}(-1+x)^{2}\left(\frac{\operatorname{Cos}[\sqrt{2}]}{2 \sqrt{2}}-\frac{\sin [\sqrt{2}]}{2}\right)+\frac{1}{120}(-1+x)^{5}\left(\frac{19 \operatorname{Cos}[\sqrt{2}]}{16 \sqrt{2}}+\frac{5 \operatorname{Sin}[\sqrt{2}]}{16}\right)+ \\
& \operatorname{Sin}[\sqrt{2}]+\frac{1}{24}(-1+x)^{4}\left(-\frac{3 \operatorname{Cos}[\sqrt{2}]}{8 \sqrt{2}}+\frac{11 \operatorname{Sin}[\sqrt{2}]}{8}\right)+\frac{(-1+x)^{7}\left(\frac{307 \cos [\sqrt{2}]}{64 \sqrt{2}}+\frac{1701 \sin [\sqrt{2}]}{64}\right)}{5040}+ \\
& \frac{(-1+x)^{9}\left(\frac{9403 \cos [\sqrt{2}]}{256 \sqrt{2}}+\frac{40797 \sin [\sqrt{2}]}{256}\right)}{362880}+\frac{(-1+x)^{10}\left(\frac{218385 \cos [\sqrt{2}]}{512 \sqrt{2}}+\frac{976439 \sin [\sqrt{2}]}{512}\right)}{3628800}
\end{aligned}
$$

Series[h[x], \{x, 1, 10\}] - TaylorExpansion[h, \{x, 1, 10\}]
$0[x-1]^{11}$

