return to main page
 
ATTENTION !  May be best viewed by INTERNET EXPLORER 5.0 or HIGHER
THEOREM OF  EL'KAYYUM  STATES  THAT ;



 

The   function   Kayyum(m,n,t,d) , (where   t  ,  d   are  any  integers ) and
n is an integer going to infinity  then the function ,     Kayyum(m,n,t,d) --> m
where   Kayyum(m,n,t,d)   is  described  as below.

  Binomial coefficient  C(x,y)  is given by --->    


 
Please click  here  to see the related Mathematica program.
as  n -->Infinity,  Kayyum(m,n,t,d) --> md / t

It is obvious that anybody may play with the summation limits , since it doesn't make any difference as one of the variables
in the summation limits goes to infinity. But before doing this we strongly advice to think carefully. Because  there is a
reason for these strange limits; as you approximate one or two of the variables to one or  zero , you may lose some of the
correct answers on  singular  points ;  Such as  (d=1 , t=1 , n=1 ) . You will discover some additional singular points as
you exprience  more ond more on these functions. After all , the success of a theorem or a formula depends on the output
that it produces on any odd or singular input that is given to it.


 

Some  interpretations  of  the Theorem  of  El'kayyum;

A-  We may express  the rational  power of  any real  number , by El'kayyum
      quite  accurately  as  following. Please observe  the fact that the left hand
      side doesn't carry any root terms, but only power terms  which  facilitates
      the computation and  is a rational number .

 
But actually , there is no need for  n ,  to  go  to  Infinity.
Quite a high value will suffice for a good approximation.
 
To  compute 78.4534 3 / 7 , (m=78.4534 , d=3 , t=7)  n=601  ;  is  enough  for
an  accuracy  of   25  digits . This  will  give ;
 
series ratio computing = 6.485992956804802
stndr. math computing = 6.485992956804799
 
This  accuracy   is  more  than  enough   for  many calculations.
Please click  here  for  real values of  (m)
Please click  here  for  complex values of  (m)



 

B-The converse  is  also true ; we may express  any integer  number , by El'kayyum
       quite accurately  as  following.

Express the number  1001 with El'kayyum ratio, 
we   may   write  1001   quite  accurately    as ;

          = 1001.000000000000000000118. . . . . . . . . . . . . . .

in here ;
m=5   ,   d=254656936483  ,    t=59323936271  and substituting
the values to the formula will yield ;

 
In  here,   n  should  be  approximately  at  least  in  the order  of  100  times  of  d  or  t.
 

            Attention !  we  think  that  we  may  use  this  for  some  purposes   (Guess what purposes)



 
C-   Now comes  an interesting  example from ancient   Pythagoreans  .
The left hand side is a ratio of  two integers going to infinity, each
such that ;  this  ratio  gives   2  when  squared .  Now ,  does  this
remind you of  something.


D-   A new   theorem    to find   (n!)   by the relations of e ,  p ,  i  and the Gamma function. If (e) is eulers constant, i =Ö -1 and , G [f(x)] stands for Gamma function , then we have the following relation as (n-->¥ ).
 
Please click here for a math2.1 tryup for the formula. The right side is a complex number , as (n) increases the real part of the complex number converges to (n!) ; while the coefficient of the imaginary part converges to zero. You may extract this theorem from Euler's famous formula combining (e , p , i , -1) and applying the principles relating the theorem of El'Kayyum.

 return to main page