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1940

In the following we prove the proposition:

Postulate 1 Let S2,S3, . . . ,Sn, . . . be a sequence of configurations of points,
composed of 2, 3, . . . , n, . . . points respectively, and which all lie in a region
of area T . Then in every Sn one can choose a pair of points with a gap of
dn in such a way that

lim sup
n→∞

nd2
n ≤

2
√

3
3

T

ensues.

The constant 2
√

3
3 cannot be replaced by anything smaller.1

To prove our proposition we find the pair of points in Sn with the small-
est gap, dn, and place circular disks Ki (i = 1, 2, . . . , n) with a common
radius ρn =

√
3

3 dn at each point in the configuration with the point at the
centre of the disk.2 It is clear that no point in the plane can be covered by
more than two circular disks. The total area of Tn =

∑n
i=1 Ki, i.e. that of

the circular disk covered region of the plane, is therefore

Tn =
n∑

i=1

(t1i +
1
2
t2i )

∗Translation of “Über einen geometrischen Satz” by Ralph H. Buchholz : April 8, 2006
1One considers a pair of points with the smallest separation amongst a configuration

with a given number of points, in a circular or square region. Mr D. Lázár made me aware
of the problem of determining the configuration of points for which this gap attains a
maximum value.

2If one considers an equilateral triangle with side-length dn then ρn =
√

3
3

dn is the
radius of the circumcircle.
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where t1i denotes the singly covered area and t2i denotes the doubly covered
piece of the area of Ki.3 However, for every i it turns out that t1i + 1

2 t2i ≥
3
√

3
2 ρ2

n. This follows from the fact that t2 attains its maximum when six other
circles intrude into Ki. The centres of these circles lie at the vertices of a
regular hexagon which is concentric with Ki and has side length dn (see Fig-
ure 1).4 We therefore obtain Tn ≥ 3

√
3

2 nρ2
n, which since T ≥ lim supn→∞ Tn

ρn

dn

Figure 1:
3Let G1, G2, . . . , Gk denote a finite number of arbitrary partial or fully overlapping

regions, then the content of the combined area is
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k
tk
i

«
,

where tl
i denotes the l-fold covered region of Gi.

4Ki can also possess 7 overlapping circular disks. However, these can only cover
an extremely small piece of Ki. To clarify this, we denote the centres of Ki and
the 7 overlapping circular disks respectively by O, O1, O2, . . . , O7. It turns out that
dn =

√
3ρn ≤ OOl ≤ 2ρn, OlOl+1 ≥

√
3ρn (l = 1, 2, . . . , 7; O8 ≡ O1). From this, it

directly follows that the septagon O1O2 . . . O7 is convex. Thus for an arbitrary l the
interval OOl attains its minimum if O1O2 . . . O7 is equilateral and for k 6= l we have
OOk = 2ρn. Therefore one obtains, through a simple calculation, the inequality

OOl ≥ [(4 cos2 5α− 1)1/2 − 2 cos 5α]ρn > 1.97ρn

where sin α =
√

3
4

; from which one easily obtains the completely rough estimate t2i < 1
40

ρ2
n.

Furthermore, it is clear that Ki can be overlapped by at most 7 circles, since in an annulus
bounded by the concentric circles of radii

√
3ρn and 2ρn one can place at most 7 points

such that the smallest gap between any two is
√

3ρn.
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leads to the inequality T ≥
√

3
2 lim supn→∞ nd2

n, as above.

Therefore, if we wish to distribute n points in a region in such a way
that each point lies as far as possible from every other point then one must
“tile” the region with congruent equilateral triangles with side lengths dn ∼√

2
√

3T
3n and place the points at the vertices of the triangles.

It is very likely that the shortest path connecting all the points attains its
maximum length by using the same asymptotic distribution. This leads to
the following conjecture (which has the previous statement as a corollary):
If n points lie in a region of area T then they can be connected with a path

of length Ln ∼
√

2
√

3T
3n .

We do not wish to consider the analogous problems in 3-space too closely.
However, consider the point distribution from above, i.e. the triangular
tiling, and construct a regular tetrahedron above every triangle by a lift
and parallel translation of the distribution. If we take the vertices of the
tetrahedra which lie in the original plane then we recover the original point
distribution. If one continues in such a way then one expects to obtain a
distribution of points in 3-space which asymptotically represents the best
possible distribution for the corresponding problem in three dimensions.
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