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1 Introduction

In 1992 the first author ([Buc ‘92]) considered the problem of finding arbitrary
tetrahedra with integer edges, faces and volume as well as the generalisation
of this problem to n-dimensions. For a 2-dimensional simplex one can simply
resort to Heron’s formula for the area of a triangle with sides a, b, c given by

Area =
√

s(s− a)(s− b)(s− c)

where s = (a + b + c)/2 is the semiperimeter. If we square this and expand the
right hand side we obtain

16Area2 = 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

which can be written in vector-matrix form as

16Area2 =
[
a2 b2 c2

] −1 1 1
1 −1 1
1 1 −1

a2

b2

c2

 .

Now, in 3 dimensions, the volume of an arbitrary triangular pyramid when
expressed in matrix form, as 144V 2 = XtMX, is not nearly as symmetric as
the 2-dimensional case. Furthermore the matrix M no longer contains simply
coefficients of appropriate monomials but squares of edge lengths. Compared
to this, the 4 dimensional case is a complete mess.

This made the task of extending the results to higher dimensions rather
imposing. However, in recent discussions the second author suggested that the
symmetry could be restored by using tensor notation. Here we present the
results found by exploring that comment.

2 Tensor version for low dimensional cases

The two dimensional case is already symmetric and so simply required transla-
tion to tensor notation as

16Area2 = T ijXiXj
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where X =
[
a2 b2 c2

]
and

T ij =

{
−1 if i = j

1 otherwise.

Throughout this paper we use the Einstein summation convention which requires
that there be an implicit summation over the range of any index appearing twice
in a term, once as a superscript and once as a subscript.

Next we consider the 3-dimensional case (see Figure 1). The volume of an
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Figure 1: An arbitrary tetrahedron

arbitrary tetrahedron [Som ‘58] is given by

144V 2 =(a2 + d2)(−a2d2 + b2e2 + c2f2) + (b2 + e2)(a2d2 − b2e2 + c2f2)

+ (c2 + f2)(a2d2 + b2e2 − c2f2)− a2b2c2 − a2e2f2 − b2d2f2 − c2d2e2.

After a little experimentation (which involved recognising the monomials, of the
expression above, as graphs related to a labelled K4) we managed to convert
this case into a symmetric form, namely,

V =
1

12
√

2

(
T ijkXiXjXk

)1/2
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where the tensor is a 6× 6× 6 coefficient array of the monomials given by

T =


0 0 0 −2/3 0 0
0 0 −1/3 1/3 1/3 0
0 −1/3 0 1/3 0 1/3

−2/3 1/3 1/3 −2/3 1/3 1/3
0 1/3 0 1/3 0 −1/3
0 0 1/3 1/3 −1/3 0




0 0 −1/3 1/3 1/3 0
0 0 0 0 −2/3 0

−1/3 0 0 0 1/3 1/3
1/3 0 0 0 1/3 −1/3
1/3 −2/3 1/3 1/3 −2/3 1/3
0 0 1/3 −1/3 1/3 0




0 −1/3 0 1/3 0 1/3
−1/3 0 0 0 1/3 1/3

0 0 0 0 0 −2/3
1/3 0 0 0 −1/3 1/3
0 1/3 0 −1/3 0 1/3
1/3 1/3 −2/3 1/3 1/3 −2/3




−2/3 1/3 1/3 −2/3 1/3 1/3
1/3 0 0 0 1/3 −1/3
1/3 0 0 0 −1/3 1/3
−2/3 0 0 0 0 0
1/3 1/3 −1/3 0 0 0
1/3 −1/3 1/3 0 0 0




0 1/3 0 1/3 0 −1/3
1/3 −2/3 1/3 1/3 −2/3 1/3
0 1/3 0 −1/3 0 1/3
1/3 1/3 −1/3 0 0 0
0 −2/3 0 0 0 0

−1/3 1/3 1/3 0 0 0




0 0 1/3 1/3 −1/3 0
0 0 1/3 −1/3 1/3 0
1/3 1/3 −2/3 1/3 1/3 −2/3
1/3 −1/3 1/3 0 0 0
−1/3 1/3 1/3 0 0 0

0 0 −2/3 0 0 0


The observant reader will have noticed that the sum of all the entries of the
tensor is 4=3+1. This is intimately connected to the degenerate case of regular
simplices which we consider later. Also, since this tensor is symmetric about
the planes i = j, i = k and j = k we have considerable redundancy and so can
compress the description of it substantially. In fact we found that

T (Γ) =


−2/3 Γ ∼= K2 + P1

−1/3 Γ ∼= K3

1/3 Γ ∼= P3

0 otherwise

where Γ is a graph containing 3 edges (possibly repeated) chosen from a labelled
complete graph on 4 vertices. The only graphs providing a non-zero contribution
are the three cases shown, namely a 2-circuit with an edge, a 3-circuit, and a
3-edge path. Notice that none of these have a vertex with valency larger than
2. We conjectured that this would be true in general.

3 General case

First we make a number of notational definitions. Recall that for an arbitrary
graph G the set of edges and the set of vertices are denoted by EG and V G
respectively.

Definition Take formal sums (allowing repetition) of edges of some graph G to
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be
Γ =

∑
e∈EG

ce · e

where ce ∈ N.
Of course, we are secretly thinking of these formal sums as graphs in their

own right. However, they are not necessarily subgraphs of G due to the fact
that multiple copies of an edge of G are allowed in Γ.

Definition Let Lm(G) denote the set of all such m-long formal sums of edges of
G, i.e.

Lm(G) =

{ ∑
e∈EG

ce · e |
∑

ce = m

}
.

With these definitions out of the way we can state the general result.

Theorem 1 The volume of an n-dimensional simplex is given by

V(n) =
1

n!2n/2

(
T i1···inXi1 · · ·Xin

)1/2

where X =
[
a2
1 · · · a2

n(n+1)/2

]
is a vector containing the squares of the edge

lengths, and for all Γ ∈ Ln(Kn+1) the tensor entry corresponding to Γ is given
by

TΓ =

{
−1#loops(Γ) × 2#components(Γ)/n! if valency(Γ) ≤ 2,
0 otherwise.

The maximal valency constraint implies that each Γ is just a disjoint union of
paths and circuits. Before proceeding with the proof of this theorem we first
show it in action in the 6-dimensional case. For a regular n-simplex (i.e. all

Γ # labellings # orderings regular contribution
C6 420 720 −840

C5 ∪ P1 252 720 −1008
C4 ∪ P2 315 720 −1260
C4 ∪ C2 315 360 630
C3 ∪ C3 70 720 280
C3 ∪ P3 420 720 −1680

C3 ∪ C2 ∪ P1 210 360 840
P6 2520 720 5040

P4 ∪ C2 1260 360 −2520
P2 ∪ C2 ∪ C2 315 180 630
C2 ∪ C2 ∪ C2 105 90 −105

Table 1: Valency 2 graphs for a 6-dimensional simplex
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edges equal in length) it is relatively easy to prove ([Buc ‘92, p.367]) that the
volume is given by

V(n) =
an

n!

√
n + 1
2n

where a is the common edge length. Now the regular contribution is obtained
by #labellings × #orderings × TΓ and so for n = 6 we must (and in fact do)
have ∑

regular contribution = 7.

Using a little graph theory we can in fact directly prove the following.

Theorem 2 For the tensor defined in the previous theorem we have∑
T i1···in = n + 1

where the sum is taken over all the tensor entries.

Proof : Let l(Γ), l2(Γ), c(Γ), r(Γ) and s(Γ) denote the # circuits, # 2-circuits,
# components, rank and co-rank of Γ respectively. Then∑

T i1···in =
∑

Γ∈Ln(Kn+1)

TΓ n!
2l2(Γ)

.

Now replacing TΓ on the right leads to∑
T i1···in

=
∑

Γ∈Ln(Kn+1)

(−1)l(Γ)2c(Γ)−l2(Γ)

= (−1)n
∑

Γ∈Ln(Kn+1)

(−1)r(Γ)2s(Γ)+|V Γ|−|EΓ|−l2(Γ)

=
(−1)n

2n

∑
Γ∈Ln(Kn+1)

(−1)r(Γ)2s(Γ)+|V Γ|

2l2(Γ)

=
(−1)n

2n


∑

Γ∈Ln(Kn+1)
|V Γ|=n+1

(−1)r(Γ)2s(Γ)+|V Γ|

2l2(Γ)
+

∑
Γ∈Ln(Kn+1)

|V Γ|=n

(−1)r(Γ)2s(Γ)+|V Γ|

2l2(Γ)


= (−1)n

2
∑

Γ∈Ln(Kn+1)
|V Γ|=n+1

(−1)r(Γ)2s(Γ)

2l2(Γ)
+

∑
Γ∈Ln(Kn+1)

|V Γ|=n

(−1)r(Γ)2s(Γ)

2l2(Γ)


= (−1)n

{
2(−1)n n(n + 1)

2
+ (−1)n−1(n2 − 1)

}
= n + 1.

•proof of general case.
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