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Abstract

In this paper we will examine the following problem: What is the min-
imum number of unit edges required to construct k identical size regular
polygons in the plane if sharing of edges is allowed?

1 Introduction

In this paper we will examine the following problem:

Question 1 What is the minimum number of sides required to construct k iden-
tical size regular polygons in the plane if sharing of sides is allowed?

In the world of mathematics, there are just three regular polygons which tes-
sellate the plane: the square, equilateral triangle, and regular hexagon. We will
answer Question 1 for these shapes. This had already been done by Harary and
Harborth [3] however, we had not found that reference until later1. As usual
when one finds one has been beaten to the punch we hope that this may be of
some value.

1.1 The Square

Consider the series of objects in Figure 1 which show a minimal configuration
of edges to construct one to twelve squares. For the first square we can do no
better than 4 unit edges. For the second and third squares we can share at most
1 edge each thus requiring three extra edges each. But for the fourth square
we can share two edges thus requiring only two extra edges. Note that some
minimal configurations are not unique, for example three squares can also be
constructed with 10 edges as in Figure 2. Notice that each edge appears in either
one or two squares. Let S(n, p) denote the number of edges in a configuration
with n squares and p edges on the perimeter. Then

S(n, p) =
4n− p

2
+ p

1In fact, not until 2008.
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Figure 1: Minimal edge configurations for 1 to 12 squares

10 20 22

Figure 2: Alternate minimal configurations for 3,7 and 8 squares

= 2n + p/2.

Clearly, for a fixed number of squares the only way to minimise the number
of edges is to minimise the perimeter. If we let Smin(n) denote the minimum
number of edges required to construct n unit squares then,

Smin(n) = min
p≤2n+2

{S(n, p)}.

Now a lower bound on the perimeter is given by a circle of area n. Thus we
have n = πr2 and p ≥ 2πr implies that p ≥ 2

√
πn. So

Smin(n) ≥ 2n +
√

πn.

Furthermore, since a square is the shape which minimises the perimeter of fixed
area rectangles one sees that for n = m2 we have

Smin(m2) = 2m2 + 2m.

At this stage one conjectures that the addition of the next square in a spiral
pattern produces a minimal configuration for each n. To prove that this is in
fact the case first note that for any particular (not necessarily convex) collec-
tion of squares, the perimeter is greater than or equal to that of the smallest
aligned rectangle which can be drawn around it. Thus in Figure 3 we see that
the perimeter of the solid configuration is ≥ 2a + 2b. This is clear since the
bounding dashed rectangle is oriented identically to the square in the solid con-
figuration. With the reduction of an arbitrary configuration to its bounding
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a

b

Figure 3: Minimal containing rectangle

rectangle now clear, all that is required is to make a comparison between a rect-
angular configuration and a corresponding configuration, with the same number
of squares, obtained from the spiral algorithm.

Lemma 1 Any rectangle, of size ab, containing the same number of unit squares
as some configuration obtained using the spiral algorithm, has a perimeter greater
than or equal to that of the perimeter of the spiral configuration.

Proof : In the spiral algorithm an L-shaped gnomon of unit squares takes us
from one completed square to the next. We break the proof in two subcases
which correspond to the first and second legs of the gnomon respectively.

Case (i). If ab = m2 + t, where 1 ≤ t ≤ m then

(
√

m2 + t− a)(
√

m2 + t− b) < 0

m2 + t− (a + b)
√

m2 + t + ab < 0

(a + b)
√

m2 + t > 2(m2 + t)

a + b > 2
√

m2 + t

a + b > 2m.

Since 2(a+b) ≥ 4m+2, the rectangles perimeter is no smaller than the perimeter
of the corresponding spiral configuration.

Case (ii). If ab = m(m + 1) + t, where 1 ≤ t ≤ m + 1 then

(
√

m(m + 1) + t− a)(
√

m(m + 1) + t− b) < 0

m(m + 1) + t− (a + b)
√

m(m + 1) + t + ab < 0

(a + b)
√

m(m + 1) + t > 2(m(m + 1) + t)

a + b > 2
√

m(m + 1) + 1
a + b > 2m + 1.

So 2(a+ b) ≥ 4m+3 and again the rectangles perimeter is no smaller than that
of the spiral configuration. �
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Hence the spiral algorithm (Figure 4) always does at least as well as any
other rectangular configuration and so provides a minimal configuration for any
number of squares. In fact,

Proposition 1 Smin(n) = d2n + 2
√

ne.

First square - 4 edges

Shaded square - add 3 edges

White square - add 2 edges
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Figure 4: Square spiral algorithm

Finally, for squares it is not too hard to characterize all minimal configurations.
How thin can a rectangle be and still be a minimal configuration? First recall
that a square with m unit squares on a side which has t unit squares added in
the next layer has a perimeter given by

psquare+t =


4m for t = 0
4m + 2 for 1 ≤ t ≤ m

4m + 4 for m + 1 ≤ t ≤ 2m + 1.

So we are looking for solutions to the simultaneous equations

nrectangle = nsquare+t

prectangle = psquare+t.

Case 1. If t = 0 then we have a + b = 2m and ab = m2 which have the unique
solution a = b = m and so there are no other minimal configurations.

Case 2. If 1 ≤ t ≤ m then we have the pair of equations

2(a + b) = 4m + 2

ab = m2 + t.

Eliminating b by substituting the second equation into the first leads to the
quadratic equation

a2 − (2m + 1)a + (m2 + t)

which has the solutions

a =
2m + 1±

√
(2m + 1)2 − 4(m2 + t)

2

=
2m + 1±

√
4m− 4t + 1
2

.
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Thus any factorisation of m2 + t into ab such that

2m + 1−
√

4m− 4t + 1
2

≤ a ≤ 2m + 1 +
√

4m− 4t + 1
2

leads to a minimal rectangle.
Case 3. If m + 1 ≤ t ≤ 2m + 1 then we have the pair of equations

2(a + b) = 4m + 4

ab = m2 + t.

These have the solutions

a = m + 1±
√

2m− t + 1.

Thus any factorisation of m2 + t into ab such that

m + 1−
√

2m− t + 1 ≤ a ≤ m + 1 +
√

2m− t + 1

leads to a minimal rectangle in this case.
For example for a collection of 5016 unit squares we have 5016 = 702 + 116

and since 116 > 70 we are in case 2. Thus m = 70, t = 116 and we calculate

71−
√

25 ≤ a ≤ 71 +
√

25

66 ≤ a ≤ 76.

Hence a rectangle 66 by 76 has the same perimeter as a 70 by 70 square with
116 unit squares in the next layer. However a 57 by 88, 44 by 114 or thinner
rectangles are not minimal.

1.2 Equilateral Triangles

Since both the equilateral triangle and regular hexagon can tile the infinite plane
we can pose analogous questions to those for the square.

Let E(n, p) denote the number of edges contained in a configuration of n
equilateral triangles with p edges along the perimeter. Then

E(n, p) =
3n− p

2
+ p

=
3
2
n +

p

2
.

So, as before, one needs to minimise the perimeter to minimise the number of
edges. Comparison with a circle gives us the lower bound

Emin(n) ≥ 3
2
n +

√√
3πn

4
.
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As before, we note that any configuration of triangles can be surrounded by a
minimal aligned irregular hexagon, I say, such that the perimeter of the con-
figuration is greater than or equal to that of the hexagon (see Figure 5). Note
that we have the relationships

a + b = d + e

a + f = c + d

e + f = b + c.

Hence the number of triangles nI , and the perimeter pI of I are given by

nI = 2(a + b)(c + d)− a2 − d2

pI = a + 2(b + c) + d.

Now does a collection of triangles in a regular hexagon, R say of side length

a

f

e

d

c

b

Figure 5: Minimal containing hexagon

m, minimise the perimeter over all possible hexagons with the same area? Now
when a = b = c = d we have nR = 6m2 and pR = 6m so the question becomes
: Does nI = nR imply that pI ≥ pR?. That is, does

2(a + b)(c + d)− a2 − d2 = 6m2

imply a + 2(b + c) + d ≥ 6m.

First let α = a + b, β = c + d and γ = e + f . Then three copies of the above
area constraint leads to

2αβ − a2 − d2 = 6m2

2αγ − b2 − e2 = 6m2

2βγ − c2 − f2 = 6m2.

Hence
2αβ + 2αγ + 2βγ = 18m2 + a2 + b2 + c2 + d2 + e2 + f2.

Now since pI = α + β + γ one obtains

p2
I = 18m2 + a2 + b2 + c2 + d2 + e2 + f2 + α2 + β2 + γ2.
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Next pI = a+ b+ c+ d+ e+ f implies that a2 + b2 + c2 + d2 + e2 + f2 ≥ 6(pI

6 )2,
and α2 + β2 + γ2 ≥ 3(pI

3 )2 which leads to

p2
I

(
1− 1

6
− 1

3

)
≥ 18m2

pI ≥ 6m = pR.

So a complete regular hexagon full of triangles is a minimal configuration i.e.
for nR = 6m2, we have shown that

Emin(6m2) = 9m2 + 3m.

Next we shall show that an incomplete hexagon full of triangles is also a
minimal configuration. But first we require the following

Lemma 2 For a given collection of triangles, C say, let nC denote the number
of triangles and pC denote the perimeter of C. Then we have

nC ≡ pC(mod 2).

Proof : The addition of one triangle to C either increases the perimeter by
one or decreases the perimeter by one. So if pC is even then pC′ is odd while if
pC is odd then pC′ is even. In other words the addition of one triangle changes
the parity of the perimeter. Since an isolated triangle has an odd perimeter the
result follows. �

Proposition 2 : If nI = nR+t where 1 ≤ t ≤ 12m + 6 then pI ≥ pR+t where
nR+t denotes the number of triangles in a regular hexagon with t triangles added
in a spiral manner in the next layer.

Proof : Consider odd and even t along each of the six sides of the regular
hexagon.

Side 1. Now nR+t = 6m2 + t where 1 ≤ t ≤ 2m while the perimeter is given
by

pR+t =

{
6m + 2 for even t

6m + 1 for odd t.

For t odd we have nR+t ≥ 6m2 + 1 while by symmetry we note that

nI =
1
3
[2(a+b)(c+d)+2(a+b)(e+f)+2(c+d)(e+f)−a2−b2−c2−d2−e2−f2].

If α = a + b, β = c + d, γ = e + f and pI = α + β + γ then nI = nR+t implies
that

2(αβ + αγ + βγ) ≥ 3(6m2 + 1) + a2 + b2 + c2 + d2 + e2 + f2.
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Therefore we have

p2
I ≥ 18m2 + 3 + a2 + b2 + c2 + d2 + e2 + f2 + α2 + β2 + γ2

≥ 18m2 + 3 + p2
I/6 + p2

I/3

≥ 36m2 + 6.

Hence pI > 6m and so pI ≥ 6m + 1 = pR + t.

For t even we have nR+t ≥ 6m2 + 2. Then nI = nR+t implies that p2
I ≥

6(6m2 + 2) and so as above pI > 6m thus pI ≥ 6m + 1. By the lemma above
we must have pI ≡ nI(mod 2) but nI ≡ nR+t ≡ 0(mod 2) hence pI ≥ 6m + 2 =
pR+t.

Side 2. This time nR+t = 6m2 + t where 2m + 1 ≤ t ≤ 4m + 1 while the
perimeter is given by

pR+t =

{
6m + 2 for even t

6m + 3 for odd t.

For t odd we have nR+t ≥ 6m2 + 2m + 1. Then nI = nR+t implies that

p2
I ≥ 6(6m2 + 2m + 1)

≥ 36m2 + 12m + 6

≥ (6m + 1)2 + 5.

So as before we find that pI ≥ 6m + 2 but pI ≡ nI ≡ 1(mod 2) implies that
pI ≥ 6m + 3 = pR+t.

For t even we have nR+t ≥ 6m2 + 2m + 2. Then nI = nR+t implies that

p2
I ≥ 6(6m2 + 2m + 2)

≥ 36m2 + 12m + 12

≥ (6m + 1)2 + 11.

Hence pI ≥ 6m + 2 = pR+t and the result follows. The other four sides are
entirely similar. �

Finally, we can piece together all the above observations to yield:

Proposition 3 The spiral algorithm applied to the regular triangular tiling pro-
vides a minimal configuration for any number of triangles with the number of
edges given by

Emin(n) =

⌈
3n

2
+

√
3n

2

⌉
.
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First triangle - 3 edges

White triangle - add 2 edges

Shaded triangle - add 1 edge
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Figure 6: Triangular spiral algorithm

1.3 Regular Hexagons

Let H(n, p) denote the number of edges contained in a configuration of n unit-
hexagons with p edges along the perimeter. Then

H(n, p) =
6n− p

2
+ p

= 3n +
p

2
.

As before comparison with a circle gives us the lower bound

Hmin(n) ≥ 3n +

√
3
√

3πn

2
.

One can surround an arbitrary collection of hexagons, C say, with an irregular
hexagon, I say, full of unit-hexagons such that the perimeter of I is less than
or equal to the perimeter of C. Now if the number of unit-hexagons along each
of the sides of I are denoted by a, b, c, d, e, f then the number of equilateral
triangles contained in I is given by

nI = 2(
√

3(a− 1) +
√

3(b− 1))(
√

3(c− 1) +
√

3(d− 1))− (
√

3(a− 1))2

− (
√

3(d− 1))2 + 3(a− 1) + 1 + 3(b− 1) + 1 + · · ·+ 3(f − 1) + 1,

= 3(2(a− 1 + b− 1)(c− 1 + d− 1)− (a− 1)2 − (d− 1)2) + 3p− 12.

While the perimeter of I is given by

pI = 2(a− 1) + 1 + 2(b− 1) + 1 + · · ·+ 2(f − 1) + 1
= 2p− 6

where p = a + b + c + d + e + f .
If I is regular with m unit-hexagons along each side then the formulæabove

become
nR = 6(3m2 − 3m + 1), and
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pR = 6(2m− 1).

a

b

c
d

e

f

Figure 7: Minimal containing hexagon

Lemma 3 If nI = nR then pI ≥ pR.

Proof : Let α = a− 1 + b− 1, β = c− 1 + d− 1 and γ = e− 1 + f − 1 then
the above equations become

6αβ = 6(3m2 − 3m + 1) + 3(a− 1)2 + 3(d− 1)2 − (3p− 12)

6αγ = 6(3m2 − 3m + 1) + 3(b− 1)2 + 3(e− 1)2 − (3p− 12)

6βγ = 6(3m2 − 3m + 1) + 3(c− 1)2 + 3(f − 1)2 − (3p− 12).

Next since p = α + β + γ + 6 we get pI − 6 = 2(α + β + γ) which leads to

(pI − 6)2 =4((a− 1)2 + (b− 1)2 + (c− 1)2 + (d− 1)2 + (e− 1)2 + (f − 1)2)

+ 24(3m2 − 3m + 1) + 4(α2 + β2 + γ2)− (12p + 48).

But (a− 1)2 +(b− 1)2 +(c− 1)2 +(d− 1)2 +(e− 1)2 +(f − 1)2 ≥ 6(p−6
6 )2 while

α2 + β2 + γ2 ≥ 3(p−6
3 )2 so that

(pI − 6)2(1− 1
3
− 1

6
) ≥ 24(3m2 − 3m + 1)− 6(pI − 6)− 24

(pI − 6)2 + 12(pI − 6) ≥ 122(m2 −m)

pI ≥ 12m− 6 = pR.

�

From this we immediately obtain the minimal number of edges used to con-
struct 3m2 − 3m + 1 hexagons, namely:
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Figure 8: Perimeter change on addition of unit hexagons

Proposition 4 Hmin(3m2 − 3m + 1) = 3(3m2 − 3m + 1) + 3(2m− 1).

As for the square and equilateral tilings if we add unit hexagons to the
outside of a complete hexagon the number of edges used remains minimal.

Proposition 5 Let 1 ≤ t ≤ 6m. Let nR+t be the number of triangles in a
regular hexagon with t hexagons added around the outside. Let nI = nR+t.
Then pI ≥ pR+t.

Proof : Consider each of the six sides separately.
Side 1. If nR+t = 6(3m2−3m+1)+6t where 1 ≤ t ≤ m−1 then nI = nR+t

implies that nI ≥ 6(3m2 − 3m + 2). So as before we get

1
2
(pI − 6)2 ≥ 24(3m2 − 3m + 2)− 6(pI − 6)− 24

which leads to the quadratic inequality

(pI − 6)2 + 12(pI − 6)− 48(3m2 − 3m + 1) ≥ 0.

Hence

pI ≥
√

62 + 48(3m2 − 3m + 1)

≥
√

(12m− 6)2 + 48
≥ 12m− 5.

But recall that pI is even which implies that pI ≥ 12m − 4. Furthermore
pR+t = 6(2m − 1) + 2 since only the first hexagon changes the perimeter (by
two) while the rest leave it unchanged. So pI ≥ pR+t and the spiral algorithm
is minimal down the first side of the hexagon.

Side 2. Now nR+t = 6(3m2 − 3m + 1) + 6t where m ≤ t ≤ 2m − 1 then
nI = nR+t implies that nI ≥ 6(3m2 − 2m + 1). So this time we get

(pI − 6)2 + 12(pI − 6)− 48(3m2 − 2m) ≥ 0.
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Hence

pI ≥
√

62 + 48(3m2 − 2m)

≥
√

(12m− 4)2 + 20
≥ 12m− 3.

Again pI being even implies that pI ≥ 12m − 2 = pR+t. The remaining four
sides are similar and so the spiral algorithm is minimal for the entire hexagon
i.e. for any number of unit hexagons. �

For the regular hexagon we have

Hmin(n) = d3n +
√

12n− 3e.

First hexagon - 6 edges

Green hexagon - add 4 edges

Yellow hexagon - add 3 edges

Second hexagon - add 5 edges
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Figure 9: Hexagonal spiral algorithm
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