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Abstract

We consider the problem of classifying all univariate polynomials, defined over a

domain k, with the property that they and all their derivatives have all their roots

in k. This leads to a number of interesting sub-problems such as finding k-rational

points on a curve of genus 1 and rational points on a curve of genus 2.
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1 Introduction

Consider the polynomial x3− 33x2 + 216x and its first two derivatives, namely,

y = x3 − 33x2 + 216x = x(x− 9)(x− 24),

y′ = 3x2 − 66x+ 216 = 3(x− 4)(x− 18),
y′′ = 6(x− 11).

Notice that the roots of y, y′, and y′′ are all integers. In this paper we generalize
this observation and consider the problem of finding such polynomials defined
over specific domains.

Definition : Let D(n, l, k) denote the set of polynomials of degree n with
coefficients in some domain k, such that they and their first l derivatives have
all their roots in k.

One can extend the above definition by letting l be an n-long binary vector
describing which derivatives are required to have their roots in k. It should
be clear from context when this extension is being used. We will also restrict
∗Revision : June 24, 2001
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ourselves to certain cases in which k is either an integral domain or a field. We
call any polynomial in D(n, l, k) an (n, l, k)-derived polynomial or just a derived
polynomial if the context is clear.

Given an arbitrary derived polynomial we have available a number of transfor-
mations (from the group of so-called axial deformation transformations of [22]),
which do not produce an essentially different polynomial, namely,

• reflection about the lines x = t or y = t for some t ∈ k, denoted by Rxt and
Ryt where

Rxt : x 7→ 2t− x, Ryt : y 7→ 2t− y,

• scaling the x-axis or y-axis by some t ∈ k∗ = k\{0}, denoted by Sxt and
Syt , where

Sxt : x 7→ tx, Syt : y 7→ ty,

• translation parallel to the x-axis or y-axis by some t ∈ k, denoted by T xt
and T yt where

T xt : x 7→ x+ t, T yt : y 7→ y + t.

Some axial deformations may not preserve the property of being a k-derived
polynomial, so a little care is needed. Recall that arbitrary reflections (in lines
perpendicular to a given line) can be expressed in terms of a single reflection (in
a line perpendicular to the given line) and a translation (parallel to the given
line) e.g. Rxt = T x2t ◦ Rx0 . Furthermore Rx0 and Ry0 both preserve the k-derived
polynomial property. Next, a non-zero scaling of the y-axis does not move any
of the roots of p(x) or its derivatives while an x-axis scaling does. If k is a field
then Sxt (p(x)) is still k-derived whenever p(x) is k-derived for any t ∈ k∗. But
when k is an integral domain the only scalings, Sxt , which preserve k-derived
polynomials are those for which t divides the greatest common divisor of all the
roots of p(x) and all its specified derivatives. Finally, any translation parallel
to the x-axis leaves a polynomial k-derived, while a translation parallel to the
y-axis may or may not. This last translation T yt creates the most difficulty.

Accordingly, we define the generating sets

X = {Rx0 , R
y
0}∪{Sxt | t ∈ k∗, p ∈ D → Sxt (p) ∈ D}∪{Syt | t ∈ k∗}∪{T xt | t ∈ k}

and
X∗ = X ∪ {T yt | t ∈ k, p ∈ D → T yt (p) ∈ D}.

We will consider only those polynomials which are distinct modulo any com-
bination of the transformations in X or X∗ and call these sets D(n, l, k) and
D∗(n, l, k) respectively. Thus we have

D(n, l, k) =
D(n, l, k)
〈X〉

and D∗(n, l, k) =
D(n, l, k)
〈X∗〉

.

First, we make a number of elementary observations.
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1. All polynomials in Z[x] are Q-derived.

2. The polynomial xn is k-derived for any number field k.

3. For any polynomial, y say, there exists a number field, k, such that y ∈
D(n, l, k).

4. D(n, l, k) = D(n, n− 1, k) for all l ≥ n− 1.

5. D(n, n− 2, k) = D(n, n− 1, k) if k is a field.

6. #D(n, l,Z) ≥ 2 for all n > l ≥ 1.

7. D(n, l, k) ⊆ D(n, l,K) for any k ⊆ K.

8. D(n, l,Zk) = D(n, l, k) for any number field k.

The first three items are really included simply to demonstrate the existence of
(n, l, k)-derived polynomials. Note that in item 3, a bound for the degree of the
number field would be given by an extension of Q, by the roots of y and all its
derivatives, of degree at most 1!2!3! . . . n!. The eighth item is a generalisation of
an observation, by Don Zagier, that any Q-derived polynomial can be rescaled
to produce a Z-derived polynomial.

To simplify the notation somewhat we will write D(n, k), D(n, k) and D∗(n, k)
whenever l ≥ n− 1 for an integral domain or l ≥ n− 2 for a field. If k = Q then
we will simply write D(n), D(n) and D∗(n) respectively in these cases.

2 Rational Derived Polynomials

From a number theoretic perspective, the most interesting cases for this problem
are k = Z or k = Q and in this section we restrict to the latter since property (5)
means we have one less derivative to consider. It is already known (for example
see [4], [7], [10], [15], [16], [20], [33]) that

D(1) = {x},
D(2) = {x2, x(x− 1)},

D(3) = {x3} ∪ {x(x− 1)(x− a) | a = w(w−2)
w2−1 , w ∈ Q},

D(4) ⊇ {x4} ∪ {x2(x− 1)(x− a) | a = 9(2w+z−12)(w+2)
(z−w−18)(8w+z) , (w, z) ∈ E(Q)},

D(n) ⊇ {xn, xn−1(x− 1)} for n ≥ 5,

where E denotes the elliptic curve z2 = w(w − 6)(w + 18) which has infinitely
many rational points. In fact the smallest non-trivial solution was first found
by Carroll in 1989.

We note in passing that for D(3) the root a = w(w−2)
w2−1 corresponds (by ho-

mogenizing the numerator and denominator) to four consecutive terms of an
arbitrary arithmetic progression W − 2Z, W −Z, W , W +Z. As far as we can
tell this was first observed as early as 1960 by Chapple.
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We can classify any polynomial on the basis of the multiplicity of each distinct
root such that a type p(m1,m2,... ,mr) polynomial has r distinct roots where mi

is the multiplicity of the i-th root. Clearly, we have that m1 + m2 + · · · + mr

is just the degree of p. For example, all quartics belong to one of the categories
of Table 1, which are in 1-1 correspondence with the partitions of four.

type representative Q-derived
p(1,1,1,1) x(x− 1)(x− a)(x− b) no - Conjecture 1
p(2,1,1) x2(x− 1)(x− a) yes
p(2,2) x2(x− 1)2 no -

√
3 6∈ Q

p(3,1) x3(x− 1) yes
p(4) x4 yes

Table 1: Quartic polynomial classification

Checking all derivatives shows that type p(4) and type p(3,1) polynomials are
both rational-derived while the second derivative alone reveals that the type
p(2,2) polynomial is not. With a little more effort (e.g., [4], [20], [33]) one can
show that the p(2,1,1) type leads to infinitely many distinct Q-derived polyno-
mials. The only unresolved case for quartic polynomials is the p(1,1,1,1) type.
These lead to a pair of elliptic surfaces which we describe in Section 2.2.

Similarly, quintics belong to one of the seven types shown in Table 2. This
time the unresolved cases are the p(3,1,1) type and the polynomials obtained
by integrating the p(1,1,1,1) type. The p(3,1,1) quintics lead to a genus 2 curve
which we explore a little more in Section 2.3. The p(3,2) quintics are fairly easily
disposed of while the p(2,2,1) quintics require the following.

Theorem 1 No p(2,2,1) quintic can be rational derived.

Proof : Consider the generic type p(2,2,1) quintic and its first three derivatives,

y = x2(x− 1)2(x− a),

y′ = x(x− 1)(5x2 − (4a+ 3)x+ 2a),

y′′ = 20x3 − 12(a+ 2)x2 + 6(2a+ 1)x− 2a,

y′′′ = 6(10x2 − 4(a+ 2)x+ (2a+ 1)).

Now, if the first and third derivatives have rational roots then the product of the
two discriminants (of the quadratic factors) must be a rational square, namely,

(4a2 − 4a+ 6)(16a2 − 16a+ 9) = �.

However, a simple run through apecs in Maple reveals that this is birationally
equivalent to a rank zero elliptic curve and hence has only one rational solution,
a = 1/2, which does not lead to a rational-derived quintic. �
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If there are no solutions for either of the p(1,1,1,1) or p(3,1,1) cases then it is
possible to classify all rational-derived polynomials. In fact there would turn
out to be no new ones to add to the list of already known ones above.

Conjecture 1 No polynomial of type p(1,1,1,1) is rational derived.

Conjecture 2 No polynomial of type p(3,1,1) is rational derived.

type representative Q-derived
p(1,1,1,1,1) x(x− 1)(x− a)(x− b)(x− c) no - Conjecture 1
p(2,1,1,1) x2(x− 1)(x− a)(x− b) no - Conjecture 1
p(2,2,1) x2(x− 1)2(x− a) no - Theorem 1
p(3,1,1) x3(x− 1)(x− a) no - Conjecture 2
p(3,2) x3(x− 1)2 no -

√
6 6∈ Q

p(4,1) x4(x− 1) yes
p(5) x5 yes

Table 2: Quintic polynomial classification

Evidence for Conjecture 1 is admittedly extremely sparse and in fact it is little
more than wishful thinking on the part of those of us with a perverse desire to
classify everything in sight. It has been shown (see [6]) that symmetric quartic
polynomials, which are equivalent to x(x−1)(x−a)(x−a−1), cannot be rational-
derived. We provide an example of another infinite set of inequivalent quartics,
which are not rational-derived, at the end of section 2.2.2. Furthermore, it seems
almost pointless to mention any computational searches done and despite the
fact that there are 4 + 3 + 2 = 9 constraints on such quartics their existence
relies on the intersection of two elliptic surfaces.

On the other hand, Conjecture 2 is far more plausible. First we will show that
there are at most finitely many such quintics and that one can effectively bound
their number. Furthermore, an efficient search has been made which has so far
failed to reveal any examples. Based on discussions with Joseph Wetherell it
seems likely that a proof of non-existence (using the techniques from [32]) is
just around the corner.

Somewhat optimistically, we make the following conclusion which is no more
than a slight correction to Carroll’s observation [7].

Theorem 2 If Conjectures 1 and 2 are true then

D(n) = {xn, xn−1(x− 1)}

for all n ≥ 5.

Proof : If n = 5 we have {x5, x4(x − 1)} ⊆ D(5). Also type p(3,2) 6∈ D(5)
by checking the second derivative while p(3,1,1) 6∈ D(5) by Conjecture 2. The
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p(2,2,1) type is not rational-derived by Theorem 1. The remaining quintics of
type p(1,1,1,1,1) and p(2,1,1,1) both have a first derivative of type p(1,1,1,1) and
so cannot be rational derived by Conjecture 1. Assume that the theorem holds
for (n − 1)-degree polynomials then all polynomials of degree n with at most
an (n − 2) multiplicity factor have a first derivative with at most an (n − 3)
multiplicity factor. But none of these derivatives are rational derived and so we
obtain the result by induction. �

2.1 Cubics with three distinct roots

In this section we make a simple geometric observation about cubic polynomials
which we prove algebraically. A similar observation for quartics is true, but by
no means obvious—so this proof is used as a stepping stone for the quartic
analog.

First recall that the discriminant of any polynomial, f say, provides us with
information about the common roots of f and f ′, or equivalently, information
about repeated roots of f . It can be calculated via

∆(f) = Resultant(f(x), f ′(x), x)

= −
∏
i 6=j

(xi − xj)2.

where the xi are the roots of f(x).

Now consider an arbitrary rational-derived cubic f(x) = x(x − 1)(x − a) with
three distinct roots. Since f is rational-derived it is clear that the x-coordinate
of the maximum, xmax say, is rational and hence the corresponding y-coordinate,
f(xmax), is also rational. If we simply translate this cubic parallel to the y-axis
by f(xmax) then the maximum becomes a (rational) double root and the third
root, r say, of the cubic is forced to be rational—since the sum of the roots
is rational. In other words, any rational-derived cubic with 3 distinct roots
can be transformed into one with a double root by allowing a rational vertical
translation (see Figure 1).

Suppose we translate f(x) by b ∈ Q to get

F (x) = x3 − (a+ 1)x2 + ax+ b.

Then F (x) has a repeated root if and only if ∆(F ) = 0. So we require

∆(F ) = Resultant(F, F ′)

= 27b2 − 2(a− 2)(a+ 1)(2a− 1)b− a2(a− 1)2

= 0

which has rational solutions for a and b only when the discriminant of the
quadratic in b is a rational square, i.e.

∆(∆(F )) = 16(a2 − a+ 1)3 = �.
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0 1 ax_{max} r

Figure 1: Vertical translate of a cubic

Clearly, this is equivalent to (a2−a+1) = �. However, recalling that a = w(w−2)
w2−1

where w ∈ Q∗ for all rational-derived cubics (with three distinct roots) we
substitute into this expression to find that

a2 − a+ 1 =
(
w2 − w + 1
w2 − 1

)2

namely ∆(∆(F )) is identically a square. This proves that all such rational-
derived cubics can be transformed into one equivalent to x2(x − 1) and hence
D∗(3) = {x3, x2(x− 1)}.

2.2 Quartics with four distinct roots

There are at least two possible approaches to the p(1,1,1,1) quartic. One is to
force the quartic through the origin while the second (suggested by Scott Sciffer
in [28]) is to force the first derivative to pass through the origin. For the former
approach we find it convenient to work over the integers while for the latter we
work over the rationals.

In the first approach we start with a generic quartic (rescaled to avoid fractions)
and consider its first three derivatives

y = x(x− 4a)(x− 4b)(x− 4c),

y′ = 4x3 − 12(a+ b+ c)x2 + 32(ab+ ac+ bc)x− 16abc,

y′′ = 12x2 − 24(a+ b+ c)x+ 32(ab+ ac+ bc),
y′′′ = 24x− 24(a+ b+ c).
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Translating by x 7→ x + (a + b + c) leaves the quartic with four integer roots
and simplifies the conditions y′ = 0 = y′′ by removing the quadratic and linear
terms respectively, to produce

x3 − px+ q = 0,

3x2 − p = 0, (1)

where p = (−a+ b+ c)2 + (a− b+ c)2 + (a+ b− c)2 and q = 2(−a+ b+ c)(a−
b+ c)(a+ b− c).

2.2.1 Quartics with just the second derivative

We consider each of the equations in (1) separately before trying to combine the
two constraints. For the D(4, [1, 0, 1],Q) case we make a linear transformation
so that

A := −a+ b+ c, B := a− b+ c, C := a+ b− c,

then the second derivative constraint becomes

3x2 = A2 +B2 + C2.

Notice that (A,B,C, x) = (1, 1, 1, 1) is a particular solution and since this is
a homogeneous quadratic we can use the chord method (mentioned in [12]) to
parametrize all solutions as

dA = −u2 + v2 + w2 − 2uv − 2uw,

dB = u2 − v2 + w2 − 2uv − 2vw,

dC = u2 + v2 − w2 − 2uw − 2vw,

dx = u2 + v2 + w2. (2)

where d = gcd(r.h.s′s) and u, v, w ∈ Z. By solving these equations for a, b, c we
obtain the following characterization.

Theorem 3 All integer quartics with four distinct roots such that the second
and third derivatives have all their roots in Z are equivalent to one given by
y = x(x− 4a)(x− 4b)(x− 4c) where

da = u(u− v − w)− 2vw,
db = v(−u+ v − w)− 2uw,
dc = w(−u− v + w)− 2uv

such that
(u− v)(u− w)(v − w)(u+ v + w) 6= 0.
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2.2.2 Quartics with just the first derivative

The more difficult constraint, for the D(4, [1, 1, 0],Q) case, is the requirement
that all the roots of the cubic in (1) lie in Z. From a paper by Schulz, [27], we
find the result that

Theorem 4 (Schulz) A cubic of the form f(x) = x3 +Px+Q has three rational
roots if and only if the following two conditions hold

there exists one rational root, and

−3((P/3)3 + (Q/2)2) is a perfect rational square.

Note that, since ∆(f) = 108((P/3)3 + (Q/2)2), Schulz’ second condition is
clearly equivalent to

∆(f) = −�,

which we use from now on. For our particular cubic we require a refinement of
Schulz’ result which removes the first condition and works over the integers. But
before stating it we recall a theorem of Mordell, [21], on non-equivalent binary
cubics and their covariants which will be needed in the proof of Theorem 6.

Theorem 5 (Mordell) All the solutions to the equation

X2 + 27Y 2 = Z3, (X,Z) = 1

are given by (X,Y, Z) = ( 1
2G(x, y), 1

3f(x, y),H(x, y)) where

f(x, y) = 9x3 + 147x2y + 798xy2 + 1440y3,

G(x, y) = 20x3 + 294x2y + 1428xy2 + 2288y3,

H(x, y) = 7x2 + 74xy + 196y2

for arbitrary integers x and y.

Now we are in a position to state our refinement of Schulz’s result.

Theorem 6 Any cubic equation of the form x3 − px + q has three distinct,
relatively prime, integer roots if and only if

4p3 − 27q2 = r2, (p, q) = 1, and 2 | q

where r is non-zero.

Proof: First we assume the cubic has 3 distinct, relatively prime roots, a′, b′, c′

and then
x3 − px+ q = (x− a′)(x− b′)(x− c′)
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implies that a′+ b′+ c′ = 0, p = −(a′2 +a′b′+ b′
2) and q = a′b′(a′+ b′). Clearly,

we observe that 2 | q and that a′, b′, c′ are pairwise co-prime. Furthermore

(p, q) = (a′2 + a′b′ + b′
2
, a′

2
b′ + a′b′

2) | (a′3, b′3) | (a′, b′)3 = 1

A simple calculation reveals that

4p3 − 27q2 = [(a′ − b′)(a′ − c′)(b′ − c′)]2

which completes the implication in this direction.

In the reverse direction we require the solutions to

4p3 − 27q2 = r2, (p, q) = 1, and 2 | q.

Without loss of generality we can set q = 2Q and r = 2R, then this equation
becomes

p3 = 27Q2 +R2, (p,Q) = 1

which by Mordell’s theorem has the solutions (p,Q) = (H(u, v), 1
3f(u, v)) for

arbitrary integers u and v. Now we find that our cubic factorizes as

x3 −H(u, v)x+
2
3
f(u, v) = [x− (2u+ 10v)][x− (u+ 6v)][x+ (3u+ 16v)]

and checking the three possible pairwise identifications of the roots leads to
u/v = −4,−5,−6. Each of these in turn contradict (p,Q) = 1 which completes
the proof in the reverse direction. �

Finally, we can substitute our values for p and q into Theorem 6 to find that
Caldwell’s so-called nice quartics, [6], are characterized by the integer points on
the surface :

� = 9(a2 − ab+ b2)c4

− (14a3 − 3a2b− 3ab2 + 14b3)c3

+ 3(3a4 + a3b− a2b2 + ab3 + 3b4)c2

− 3(3a4b− a3b2 − a2b3 + 3ab4)c

+ (9a4b2 − 14a3b3 + 9a2b4). (3)

We can obtain two infinite families of values for a and b such that this mul-
tiquartic condition, symmetric in a, b and c, becomes an elliptic surface. If
we dehomogenize at c = 1 (which is equivalent to dividing by c6 for non-zero
c and mapping (a, b) 7→ (a/c, b/c)) then we have an elliptic surface whenever
a2 − a+ 1 = � or 9a2 − 14a+ 9 = �. Despite this we cannot always reduce it
to an elliptic surface. For example, if we set a = 2, c = 1 then we obtain

� = 27b4 − 108b3 + 171b2 − 126b+ 68

which has no rational solutions, when considered 3-adically, and so is not an
elliptic curve.
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2.2.3 Rational-derived quartics

If we combine the parametrization of Theorem 3 and the condition of Theorem 6
we obtain the requirement that

A4(u, v, w)A6(u, v, w) = B2.

where A4 and A6 are homogeneous polynomials of degree 4 and 6 respectively.
Hence we can divide by w10 and set U := u/w, V := v/w to get a degree 10
hyperelliptic surface

A4(U, V )A6(U, V ) = B
2
.

Rational points on this surface correspond to rational derived quartics.

Now we consider an alternative approach to the p(1,1,1,1) quartic (borrowing
heavily from [28]) by letting the quartic have a zero at x = 1 and forcing
the first derivative through the origin. This time we work exclusively over the
rationals to get

y = (x− 1)(x− a)(x− b)(x− c),
= x4 − σ1x

3 + σ2x
2 − σ3x+ σ4,

y′ = 4x3 − 3σ1x
2 + 2σ2x− σ3,

y′′ = 12x2 − 6σ1x+ 2σ2,

where σi is the sum of the products of the roots of y taken i at a time. If we set
the constant term in y′ to zero our problem is simplified to a pair of quadratics.
Now σ3 = 0 is equivalent to

c =
−ab

ab+ a+ b
.

This identity maintains the rationality of all the roots of the quartic while
the first and second derivatives have all rational roots if and only if the two
discriminants are rational squares i.e.

9σ2
1 − 32σ2 = r2, and 9σ2

1 − 24σ2 = s2.

Substituting for σ1 and σ2 in terms of a and b and clearing the denominator
leads to the two multiquartic equations

r4b
4 − r3b

3 + r2b
2 + r1b+ r0 = �,

s4b
4 − s3b

3 + s2b
2 + s1b+ s0 = �,

where

r4 = 9a2 + 18a+ 9, s4 = 9a2 + 18a+ 9,

r3 = 14a3 + 10a2 + 10a+ 14, s3 = 6a3 − 6a2 − 6a+ 6,

r2 = 9a4 − 10a3 − 6a2 − 10a+ 9, s2 = 9a4 + 6a3 + 18a2 + 6a+ 9,

r1 = 18a4 − 10a3 − 10a2 + 18a, s1 = 18a4 + 6a3 + 6a2 + 18a,

r0 = 9a4 − 14a3 + 9a2, s0 = 9a4 − 6a3 + 9a2.
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Since the coefficient of b4 in both cases is a perfect square we can transform so
that the equations become monic. Then we remove the cubic term in b which is
followed by Mordell’s transformation, [21], into an elliptic curve with coefficients
which are polynomials in one parameter, namely a. Both these elliptic curves
have an order two point and so we make a final transformation into the form

Er[a] : z2 = w(w2 +R2w +R4),

Es[a] : Z2 = W (W 2 + S2W + S4),

where the coefficients are given by

R2 = 9(9a4 + 32a3 − 18a2 + 32a+ 9), S2 = 27(3a4 + 8a3 − 6a2 + 8a+ 3),

R4 = −2734a2(a− 1)2(a2 + 4a+ 1), S4 = −2536a2(a4 + 2a3 + 2a+ 1).

Since all these transformations were birational we have shown that any rational
points (w, z) ∈ Er[a](Q) and (W,Z) ∈ Es[a](Q) which correspond to the same
value of b provide a rational derived quartic.

2.2.4 Vertical translation of a quartic

If we now allow our rational-derived quartics to undergo a vertical translate by a
rational distance, so that the (highest) local minimum, xmin say, is moved up to
become a double root, then the remaining two roots, r and s say, of the quartic
could possibly lie in a quadratic extension of Q. Certainly, we have no a priori
reason to expect the extra roots to be rational (see Figure 2). None-the-less, in
this section we show that the latter is precisely the case.

0 1 a b
x_{min} r s

Figure 2: Vertical translate of a quartic
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Consider a rational-derived quartic, f(x) say, given by

f(x) = x(x− 1)(x− a)(x− b),

which is to be translated by a rational amount, c say, parallel to the y-axis. We
assume that the resulting quartic, F (x) say, given by

F (x) = x(x− 1)(x− a)(x− b) + c (4)

is rational-derived and has a double root. As before, we require ∆(F ) = 0 so
we calculate

∆(F ) = Resultant(F, F ′)

= 256c3 + p4(a, b)c2 + p5(a, b)c+ p6(a, b)
= 0.

The number of real roots of this cubic is determined by its discriminant, so in
this case we have

∆(∆(F )) = −212(a− b− 1)2(a− b+ 1)2(a+ b− 1)2D6(a, b)3

where D6(a, b) is a multisextic polynomial in a and b given by

D6(a, b) = 9a4b2 − 14a3b3 + 9a2b4

− (9a4b− 3a3b2 − 3a2b3 + 9ab4)

+ 9a4 + 3a3b− 3a2b2 + 3ab3 + 9b4

− (14a3 − 3a2b− 3ab2 + 14b3)

+ 9a2 − 9ab+ 9b2.

Note that we will define ∆F := ∆(∆(F )) to ease notation. Now the number
of real roots of the equation ∆(F ) = 0 is precisely 1, 2, or 3 according as the
discriminant is ∆F > 0, ∆F = 0, or ∆F < 0 respectively.

A routine analysis of the surface defined by z = D6(a, b) reveals that it has
three stationary points shown in Table 3. Since D6(0, 0) = D6(1, 1) = 0, and

(a, b) ∂2z/∂a2 ∂2z/∂a∂b ∂2z/∂b2 type
(0, 0) 18 -9 18 minimum

(1/2, 1/2) 9/8 -39/8 9/8 saddle
(1, 1) 18 -9 18 minimum

Table 3: Stationary points of z = D6(a, b)

D6(1/2, 1/2) = 1/2 it is clear that D6(a, b) ≥ 0 which implies that ∆F ≤ 0 and
so Eq. (4) can never have precisely 1 real root.

In the case that ∆F = 0 we have one of
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• a− b− 1 = 0,
• a− b+ 1 = 0,
• a+ b− 1 = 0, or
• D6(a, b) = 0.

The first three cases immediately lead to a symmetric quartic which cannot
be rational-derived. To deal with the fourth condition, we note the somewhat
surprising result that D6(a, b) is related to the discriminant of f ′(x), c.f., Eq. (3).
In particular we find that

∆(f ′) = −16D6(a, b)

so if D6(a, b) = 0 then ∆(f ′) = 0 which implies that f ′(x) would have a double
root. This is impossible since we are assuming that f(x) has four distinct roots.

The only remaining case occurs when ∆F < 0 which can only occur when
D6(a, b) > 0. We appeal to the same observation used above, namely that

∆F = 28(a− b− 1)2(a− b+ 1)2(a+ b− 1)2∆(f ′)3.

If ∆F 6= −� then ∆(f ′) 6= −� and hence f ′(x) will not have three rational
roots by Theorem 4. Conversely, if ∆F = −� then ∆(f ′) = −� leading to
three distinct roots for f ′ as expected.

Previously one may have thought that the class of rational derived quartics with
four distinct roots split into two types: those obtainable by a rational vertical
translate from a p(2,1,1) quartic and those not so obtainable. The result of all the
previous work shows that the latter class is empty and so any rational-derived
quartic with four distinct roots can be vertically translated into a rational-
derived quartic with a double root. Hence these are equivalent to one of the
p(2,1,1) quartics for which we already have a complete description. In other
words we can see that we have proven

Theorem 7 All rational-derived quartics are equivalent, modulo 〈X∗〉, to one
of the polynomials in the set

D∗(4) = {x4} ∪ {x2(x− 1)(x− a) | a = 9(2w+z−12)(w+2)
(z−w−18)(8w+z) , (w, z) ∈ E(Q)}.

where E denotes the curve z2 = w(w − 6)(w + 18).

2.3 Quintics with a triple root

Consider the generic p(3,1,1) quintic polynomial and its first three derivatives

y = x3(x− 1)(x− a),

y′ = x2(5x2 − 4(a+ 1)x+ 3a),

y′′ = 2x(10x2 − 6(a+ 1)x+ 3a),

y′′′ = 6(10x2 − 4(a+ 1)x+ a).

14



Now the first three derivatives have rational roots if and only if the discriminant
of each quadratic factor is a rational square. Clearly, it is sufficient to find all
values of a ∈ Q such that ∆(y′)∆(y′′)∆(y′′′) ∈ Q2. In other words we require
the rational solutions of

(4a2 − 7a+ 4)(9a2 − 12a+ 9)(4a2 − 2a+ 4) = b2. (5)

Using the transformation a := (w − 1)/(w + 1), b := 2z/(w + 1)3 we find it is
equivalent to searching for rational points on the hyperelliptic curve

C : z2 = 9w6 + 195w4 + 975w2 + 1125.

By Faltings’ theorem this curve contains only finitely many rational points
(which had already been observed by Zagier in [33]). In fact, Bombieri showed
(see [2]), that we can effectively bound their number by the rank of the Jaco-
bian, J(Q), and the size of the torsion subgroup. Thus there are at most finitely
many p(3,1,1) type rational-derived quintics.

It turns out that the Jacobian is degenerate since the three discriminants are
linearly dependent. This implies (as observed by Flynn, [14]) that the Jacobian
J(Q) is isogenous to the direct product of two elliptic curves given by

E1 : z2 = 9w3 + 195w2 + 975w + 1125,

E2 : z2 = 1125w3 + 975w2 + 195w + 9.

Rescaling to make both cubics monic, translating to remove the constant and
rescaling again to remove redundant factors leads to

E1 : z2 = w(w + 30)(w + 120),

E2 : z2 = w(w − 150)(w + 450).

Applying Tate’s Theorem, [29], to these shows that they both have rank 1 and
their torsion is just the Klein 4 group. Thus

J(Q)/Jtors(Q) ∼= Z
2.

Unfortunately, since the rank of the Jacobian is greater than one, we are not in
a position to apply Chabauty’s theorem, as suggested in [9], which provides an
effective method for finding all rational points on the curve C.

As for the torsion subgroup of the Jacobian we first transform our curve C, via
(w, z) = (x/3, y/9), into the curve

D : y2 = (x2 + 15)(x2 + 45)(x2 + 135) = f(x)

with discriminant 226 · 322 · 515. A short search revealed the rational points
(±3,±432) on the curve. Now the Weierstraß points of D are just given by
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the roots of the three quadratics which gives us the divisors comprising the full
2-torsion of J(Q), namely

A = {(
√
−15, 0), (−

√
−15, 0)},

B = {(
√
−45, 0), (−

√
−45, 0)},

C = {(
√
−135, 0), (−

√
−135, 0)}.

Next we use the injective homomorphism of reduction by a prime not dividing
twice the discriminant of f(x). With p = 7 and p = 41 we get #J̃(F7) = 64
and #J̃(F41) = 1296 respectively. Thus we conclude that Jtors(Q) injects into
a group of order 16. At this point we know that

{O,A,B,C} ⊆ Jtors(Q) and #Jtors(Q) | 16.

To pin this down we search for an order 4 element of the Jacobian. Now D ∈
Jtors(Q) has order 4 if and only if 2D is one of the order 2 divisors, A,B,C.
Equivalently, Jtors(Q) has order 4 elements if and only if one of A, B or C lie
in 2J(Q).

The original approach we used, to prove that this could never happen, was
essentially to attempt to halve each of A, B and C by brute force. We assumed
that 2D = A where D = {(w1, z1), (w2, z2)} and w1 6= w2 and then intersected
the curve D with the unique cubic defined by the points in D and those in
A. This led, via resultants, to a degree 5448 polynomial in a single variable
(amongst other conditions) which provided no new divisors. We then had to
check the case of w1 = w2 and finally repeat the whole process for the other 2
divisors.

The following approach was suggested by a referee and borrows heavily from
correspondence with E. V. Flynn. Consider the Cassels map, defined in [9],
specialised to a curve of the form y2 = (x2 − a)(x2 − b)(x2 − c) for which1

µ : J(Q) −→ K∗1/(K
∗
1 )2 ×K∗2/(K∗2 )2 ×K∗3/(K∗3 )2

Q
∗

where K1 = Q(
√
a), K2 = Q(

√
b), and K3 = Q(

√
c). Furthermore µ acts on

J(Q) via

D 7→ [(x1 −
√
a)(x2 −

√
a), (x1 −

√
b)(x2 −

√
b), (x1 −

√
c)(x2 −

√
c)]

where D = {(x1, y1), (x2, y2)}. Now since 2J(Q) ⊆ ker(µ) it is sufficient to
show that none of A, B or C lie in ker(µ). Picking on A first one finds that

A ∈ ker(µ)↔ [(a− b)(c− a), b− a, c− a] = [1, 1, 1]
↔ [a− b, (a− b)(a− c), 1] = [1, 1, 1]

↔ a− b ∈ (K∗1 )2 and (a− b)(a− c) ∈ (K∗2 )2 OR

c(a− b) ∈ (K∗1 )2 and c(a− b)(a− c) ∈ (K∗2 )2.

1Of course we are secretly thinking of a, b and c as corresponding to the divisors A, B and
C respectively.
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Translating this last condition from the quadratic extensions to the rationals
leads to the requirement that at least one of the following eight elements

[a− b, a− c], [a(a− b), a(a− c)],
[b(a− c), a− b], [ab(a− c), a(a− b)],
[c(a− b), a− c], [ac(a− b), a(a− c)],

[b(a− c), c(a− b)], [ab(a− c), ac(a− b)]

lie in (Q∗)2 × (Q∗)2. A simple check now shows that this fails for a = −15,
b = −45 and c = −135 and hence that A 6∈ ker(µ).

This proves that A 6∈ 2J(Q). A similar argument shows that B,C 6∈ 2J(Q) and
so the torsion subgroup is just the Klein 4 group. So we have

J(Q) ∼= Z/2Z× Z/2Z× Z2.

Using the notation of [2] we find that either the height of the rational points on
D is less than γ(D) or the number of rational points on D is bounded by

#D(Q) < 4 · 72 · (1 + log2 γ(D))

where γ(D) is an effectively computable constant.

3 UFD-derived quartics

When we try to extend the results to quadratic fields we automatically inherit
all Q-derived polynomials by property (7). So the type p(4) and p(3,1) quartics
are k-derived for all k = Q(

√
m). Next a check of the first two derivatives of

the p(2,2) polynomial shows that it is Q(
√

3)-derived.

Now we consider the case of quartics with three distinct roots contained in
D(4,Q(

√
m)). Let k = Q(

√
m), then we denote the ring of integers of k by

Zk = Z[α] where

α =

{√
m if m ≡ 2, 3 (mod 4)

1+
√
m

2 if m ≡ 1 (mod 4).
(6)

As in [4], [20] and [33] we require that the discriminants of the first and second
derivatives of such a quartic be squares over k. Thus, given the quartic

y = x2(x− 1)(x− a),

we require that 9a2−6a+9 = c2 and 9a2−14a+9 = d2 for some integers c and
d. Using the chord method to solve the first constraint leads to a = 2(p2−3pq)

3(p2−q2) for
arbitrary integers p and q of Zk. Substituting this into the second discriminant
condition and clearing denominators gives us

81q4 − 252q3p+ 246q2p2 + 36qp3 + 33p4 = �.
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Now we dehomogenize the left hand side and then use Mordell’s transformation
to obtain the elliptic curve

E : z2 = w(w − 6)(w + 18).

The transformation a : E(k) −→ k given by

a((w, z)) =
9(2w + z − 12)(w + 2)
(z − w − 18)(8w + z)

provides the correspondence between all k-rational points on the curve E and
all k-derived quartics. Finding all k-rational points on E in turn requires the
determination of the rank of E over such number fields. Since the curve E has
an order 2 point we initially used the usual technique of searching for solutions
to the corresponding homogeneous spaces of E(k) and its 2-isogenous curve,
E(k), given by

E : Z2 = W (W 2 − 24W + 576).

We were able to resolve the rank for all fields except those with a radicand
of −67, −163, 57 and 73. Fortunately, Andrew Bremner suggested using the
method first mentioned by Birch (see [26]). This involves calculating the Q-rank
of E and its twist by the radicand of the quadratic field.

So, in particular, we let

Em : mz2 = w(w − 6)(w + 18)

denote the various twists of E. Then by Birch’s result we have

rk[E/Q(
√
m)] = rk[Em/Q] + rk[E1/Q].

Since we already know that rk[E1/Q] = 1 it is sufficient to calculate the ranks
of Em/Q for each quadratic field. By a number of applications of apecs we
were able to complete the unruly number fields (see Table 4). Note that we

m 2 3 U/U2 rk[E/Q(
√
m)]

−1 u(1 + α)2 3 〈α〉 1
−2 −α2 (1 + α)(1− α) 〈−1〉 1
−3 2 −(−1 + 2α)2 〈−1〉 1
−7 αα 3 〈−1〉 1
−11 2 αα 〈−1〉 3
−19 2 3 〈−1〉 3
−43 2 3 〈−1〉 3
−67 2 3 〈−1〉 1
−163 2 3 〈−1〉 1

Table 4: Rank of E over complex quadratic fields with class number 1

have included the factorization properties of 2 an 3 as well as the unit group
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modulo squared units (U/U2), since these provide a measure of the number
of homogeneous spaces associated to E. It seems likely, (see [11]), that there
are infinitely many real quadratic fields with class number 1 and so we restrict
our attention to just the finite list of euclidean fields. Using the same notation
as that for the complex quadratic fields we find (again using apecs) the ranks
of E over real euclidean fields (see Table 5). We illustrate the previous work

m 2 3 U/U2 rk[E/Q(
√
m)]

2 α2 3 〈−1, 1 + α〉 1
3 u(1 + α)2 α2 〈−1, 2 + α〉 1
5 2 3 〈−1, α〉 2
6 u(2 + α)2 u(3 + α)2 〈−1, 5 + 2α〉 1
7 u(3 + α)2 −(2 + α)(2− α) 〈−1, 8 + 3α〉 2
11 u(3 + α)2 3 〈−1, 10 + 3α〉 2
13 2 −αα 〈−1, 1 + w〉 2
17 −(1 + α)(1 + α) 3 〈−1, 3 + 2α〉 2
19 u(13 + 3α)2 −(4 + α)(4− α) 〈−1, 170 + 39α〉 2
21 2 u(1 + α)2 〈−1, 2 + α〉 1
29 2 3 〈−1, 2 + α〉 2
33 −(2 + α)(2 + α) u(5 + 2α)2 〈−1, 19 + 8α〉 2
37 2 −(2 + α)(2 + α) 〈−1, 5 + 2α〉 2
41 (3 + α)(3 + α) 3 〈−1, 27 + 10α〉 2
57 −(3 + α)(3 + α) u(13 + 4α)2 〈−1, 131 + 40α〉 1
73 (4 + α)(4 + α) −(15 + 4α)(15 + 4α) 〈−1, 943 + 250α〉 2

Table 5: Rank of E over real euclidean quadratic fields

by giving an example of a Q(
√

3)-derived quartic which is not Q-derived. Let
k = Q(

√
3). During the search of the homogeneous spaces we found the point

P = (w, z) = (18− 12α, 144− 72α) on the curve E(k). We note that a(P ) = 1
which corresponds to a degenerate k-derived quartic. However, since P is an
infinite order point on E(k) we can map any multiple of it. For instance,

a(−1 ∗ P ) = a((w,−z)) =
37− 20α

13
.

This implies that the quartic

y = x2(x− 1)
(
x− 37− 20α

13

)
is a non-trivial Q(

√
3)-derived polynomial, as is easily verified.

4 Conclusion

While we have not settled the classification problem our work shows that its
solution is intimately bound to the case of the quartic with four distinct roots.
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Any progress in this area presumably requires either a new insight into elliptic
surfaces, to determine all their rational points, or an efficient computational
procedure to possibly uncover the existence of such a rational derived quartic.

Note Added in Proof : The authors have recently received (June 1999) a
manuscript from E. V. Flynn which claims to prove Conjecture 2.
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