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1 Introduction

The first time I encountered “powerful numbers” was in 1980 while reading an
early Mathematical Games column by Martin Gardner (see [1]). Such numbers
have the property that they are equal to the sum of the p-th power of each digit
for some positive integer p, e.g. 33 + 73 + 13 = 371.

A few years later I read an article (see [2]) on the Steinhaus Problem which
described progress on the very same problem. Upon reading this article I con-
ceived the following analogous problem.

“Do there exist positive integers equal to the sum of the digits of its p-th
power?”

If we let fp(n) = Σdigits(np) then we are looking for solutions to the equa-
tion fp(n) = n. Clearly fp(0) = 0 and fp(1) = 1 for all p > 0 and hence, such
numbers exist. I call them p-pseudopowerful (or just pseudopowerful) and im-
mediately searched for non-trivial solutions turning up those in Table 1. Note

p n : Σdigitsnp = n
1 2,3,4,5,6,7,8,9
2 9
3 8,17,18,26,27
4 7,22,25,28,36
5 28,35,36,46
6 18,45,54,64
7 18,27,31,34,43,53,58,68
8 46,54,63
9 54,71,81
10 82,85,94,97,106,117

Table 1: Pseudopowerful numbers

that one could define1 fp(n) = (Σdigitsn)p and find solutions to fp(n) = n. It
turns out that there is a one to one correspondence between fixed points of fp

1Which is precisely what I originally did. However the numbers became a tad large —
hence the modification.
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and those of fp. If fp(n) = n then it is easy to show that fp(Σdigitsn) = Σdigitsn.
Similarly, if fp(n) = n then fp(np) = np, so it is sufficient to study fp itself.

2 Main Theorems

The first useful fact one uncovers is that, just as for powerful numbers, there
are only finitely many pseudopowerful numbers for each given exponent p.

Theorem 1 There exist no pseudopowerful numbers for n > nmax = 9r∞ where
r∞ is defined by r∞ = 1 + p log10(9r∞) .

Proof: Suppose we let the r digits of np be denoted by d0, d1, . . . , dr−1 where d0

is the least significant digit. Then the defining equation for a p-pseudopowerful
number, namely fp(n) = n, is equivalent to

(1) (d0 + d1 + . . .+ dr−1)p = d0 + 10d1 + . . .+ 10r−1dr−1.

If we assume that dr−1 is non-zero, so that we have a proper r-digit number,
then the maximum that the left-hand-side of equation (1) can reach occurs when
all the digits are nine, i.e. (9r)p. Meanwhile the minimum of the right-hand-side
of equation (1) is 10r−1. Clearly, for a fixed p we have

(9r)p < 10r−1

for sufficiently large r so that equation (1) is never solvable if r > r∞ where r∞
is the solution to (9r∞)p = 10r∞−1. QED

The form of the defining equation for r∞ lends itself well to an iterative solution
technique. Thus for each exponent p one need simply evaluate r∞ and then
check each integer from 2 up to 9r∞ to find all p-pseudopowerful numbers. It
is possible to improve this finite search by using the following result.
Theorem 2 If n is p-pseudopowerful then np ≡ n (mod 9).

Proof: The result follows by simply considering equation (1) modulo 9 and

observing that n = d0 + d1 + . . .+ dr−1. QED

The point is that for each chosen p we need only consider the restricted values
of n which satisfy Theorem 2. For example, if p = 2, then we need only check
values of n which are zero or one modulo 9. Similarly, since φ(9) = 6 the
modulo 6 character of p will tell us precisely which values of n can satisfy np ≡ n
(mod 9) as in Table 2 and hence possibly be pseudopowerful. Using Theorem 2
one can eliminate about 61% of the integers in the range n ∈ [2, . . . , 9r∞] with
the resultant cutdown in search time. The results given in Tables 4, 5, and 6 of
the Appendix show the erratic behaviour of the function

ν(p) := #{n : fp(n) = n} − 2

namely the number of non-trivial pseudopowerfuls for each p.
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p(mod 6) : p ≥ 2 n : np ≡ n (mod 9)
0 0,1
1 0,1,2,4,5,7,8
2 0,1
3 0,1,8
4 0,1,4,7
5 0,1,8

Table 2: Modular restrictions

3 Open Questions

A number of interesting questions arose early in the exploration of this problem.

Do there exist exponents for which there are no non-trivial pseudopowerful
numbers? Yes, since ν(105) = 0. Do there exist infinitely many such exponents?
Probably not! Since the number of possibilities increases with each p.

Next, if we consider the number of modular solutions in Table 2, we ask if it
is possible that min{ν(p) : p ≡ 1 (mod 6)} ≥ max{ν(p) : p 6≡ 1 (mod 6)}.
Despite the fact that it holds for all of Table 4 it does not hold in general, since
ν(55) = 2 while ν(54) = 5.

Is the number of solutions bounded independently of p? This is not as implau-
sible as it seems at first sight. If we model fp as a random mapping then the
expected number of fixed points is one. Furthermore, the maximum number of
solutions, namely 13, has already occurred as early as p = 25.

Can a pseudopowerful number equal the sum of two distinct pseudopowerful
numbers? This leads to the equation

Σdigits(ap) + Σdigits(bp) = Σdigits(cp)

where fp(a) = a, fp(b) = b, fp(c) = c which is reminiscent of Fermat’s equation.
It is possible to find non-trivial solutions to this equation for a number of values
of p which are shown in Table 3. Attempting to determine whether or not

p (a, b, c) : fp(a) + fp(b) = fp(c)
1 (2,3,5),(2,4,6),(2,5,7),(2,6,8),(2,7,9)

(3,4,7),(3,5,8),(3,6,9),(4,5,9)
3 (8,18,26)
7 (27,31,58)
13 (20,86,106),(20,106,126),(20,126,146),(40,86,126),(40,106,146)

Table 3: Pseudopowerful numbers satisfying a+ b = c

these are the only solutions would require good lower and upper bounds on
p-pseudopowerful numbers — which I do not yet have in hand. Note that if
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we replace fp(x) by fp(x) then there are no solutions since we are led to the
equation

(Σdigitsa)p + (Σdigitsb)p = (Σdigitsc)p

which is impossible by Wiles’ proof of Fermat’s Last theorem.
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p nmax n : Σdigitsnp = n
1 30 2,3,4,5,6,7,8,9
2 57 9
3 86 8,17,18,26,27
4 117 7,22,25,28,36
5 149 28,35,36,46
6 182 18,45,54,64
7 216 18,27,31,34,43,53,58,68
8 250 46,54,63
9 285 54,71,81
10 320 82,85,94,97,106,117
11 355 98,107,108
12 392 108
13 428 20,40,86,103,104,106,107,126,134,135,146
14 465 91,118,127,135,154
15 502 107,134,136,152,154,172,199
16 539 133,142,163,169,181,187
17 577 80,143,171,216
18 615 172,181
19 653 80,90,155,157,171,173,181,189,207
20 691 90,181,207
21 730 90,199,225
22 769 90,169,193,217,225,234,256
23 808 234,244,271
24 847 252,262,288
25 886 140,211,221,236,256,257,261,277,295,296,298,299,337
26 926 306,307,316,324
27 966 305,307
28 1006 90,160,265,292,301,328
29 1046 305,314,325,332,341
30 1086 396
31 1126 170,331,338,346,356,364,367,386,387,443
32 1167 388
33 1207 170,352,359,378,406,422,423
34 1248 387,412,463
35 1289 378,388,414,451,477
36 1330 388,424
37 1371 414,421,422,433,469,477,485,495
38 1412 468,469
39 1453 449,523
40 1495 250,441,468,486,495,502

Table 4: Pseudopowerful numbers for p = 1 . . . 40
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p nmax n : Σdigitsnp = n
41 1536 432
42 1578 280,487,523,531
43 1620 461,499,508,511,526,532,542,548,572
44 1662 280,523,549,576,603
45 1704 360,503,523
46 1746 360,478,514,522,544,558,574,592
47 1788 350,559,567,575,576,595,603,666
48 1830 370,513,631,667
49 1872 270,290,340,350,360,533,589,637,648,661,695
50 1915 685
51 1957 360,666,685
52 2000 625,688,736,739
53 2043 648,683,703,746
54 2085 370,603,657,667,739
55 2128 677,683
56 2171 684
57 2214 370,460,719,748,793,802
58 2257 667,721,754
59 2300 370,440,693,845
60 2343 694,784,792,793
61 2387 440,490,758,815,833
62 2430 855,865
63 2474 827,836,846
64 2517 430,793,829,871
65 2561 818,856,891,928
66 2604 837,864,927
67 2648 450,859,865,866,869,874,926,934
68 2692 837
69 2735 540,936,962,963,1016
70 2779 540,882,909
71 2823 917,991
72 2867 901,1062
73 2911 853,882,928,1006,1015
74 2955 936,1008,1009,1018
75 3000 630,964,999,1016,1053
76 3044 1044,1075,1093
77 3088 1061,1062,1088
78 3132 964,1117,1126,1134
79 3177 610,1031,1043,1054,1064,1091,1108,1133
80 3221 1044,1071,1134,1144

Table 5: Pseudopowerful numbers for p = 41 . . . 80
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p nmax n : Σdigitsnp = n
81 3266 1062,1196
82 3310 1048,1111,1134,1231
83 3355 730,1115,1151,1207
84 3400 1188
85 3444 1051,1103,1165,1183,1277
86 3489 1134,1225
87 3534 1187,1216,1224,1232,1278,1288
88 3579 730,1084,1147,1183,1186,1206
89 3624 1151,1232,1358
90 3669 1306,1422
91 3714 720,1208,1233,1253,1258,1261,1278
92 3759 720,1296,1359
93 3804 810,820,1396
94 3849 1285,1287,1303,1327,1332,1339,1341,1444
95 3894 820,1323,1342,1351,1385
96 3939 1387
97 3985 1237,1322,1324,1361,1367,1397,1442
98 4030 1359
99 4075 1322,1403,1405,1441
100 4121 1363,1378,1408,1414,1489
101 4166 1423,1468
102 4212 1359,1432,1611
103 4257 1379,1445,1476,1477,1484,1486,1495,1496,1523
104 4303 1377,1476
105 4348 —
106 4394 1444,1456,1458,1474,1546,1552,1558,1567,1573
107 4440 1574,1691
108 4486 1486,1621,1639,1648
109 4531 1507,1523,1562,1565,1585,1603,1628,1642
110 4577 1459
111 4623 910,1539,1548,1647,1682
112 4669 990,1030,1504,1519
113 4715 1548,1674,1738
114 4761 1521
115 4807 1080,1526,1546,1553,1634,1636,1656,1684,1714,1717,1823
116 4853 1621,1647,1693
117 4899 1773
118 4945 1674,1764
119 4991 1665,1673
120 5037 1657,1702

Table 6: Pseudopowerful numbers for p = 81 . . . 120
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