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Abstract

In this paper we present a proof that there exist infinitely many rational sided
triangles with two rational medians and rational area. These triangles correspond
to rational points on an elliptic curve of rank one. We also display three triangles
(one previously unpublished) which do not belong to any of the known infinite
families.
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1 Introduction

A triangle with sides denoted by (a, b, c) has medians, (k, l,m) say, given by

k =
1

2

√
2b2 + 2c2 − a2

l =
1

2

√
2c2 + 2a2 − b2

m =
1

2

√
2a2 + 2b2 − c2. (1)

All rational sided triangles with two rational medians (see [BUC 89]) are completely
parametrised (up to similarity) by the following equations

a = (−2φθ2 − φ2θ) + (2θφ− φ2) + θ + 1

b = (φθ2 + 2φ2θ) + (2θφ− θ2)− φ+ 1

c = (φθ2 − φ2θ) + (θ2 + 2θφ+ φ2) + θ − φ (2)

for rational φ and θ such that 0 < θ, φ < 1 and φ+2θ > 1. While the sides and two
of the medians, namely k and l, are forced to be rational this is not necessarily the
case for the area. Recall that Heron’s formula for the area, ∆ say, of the triangle
(a, b, c) is given by

∆ =
√
s(s− a)(s− b)(s− c) (3)

where s = (a + b + c)/2 is called the semiperimeter. We will call any rational
sided triangle with rational area a Heron triangle. In [BR 97] the authors present
numerical evidence supporting the conjecture that all the rational points on five
curves C1, . . . , C5, in the region defined by 0 < θ, φ < 1 and φ+ 2θ > 1 correspond
(via equations (2)) to Heron triangles with two rational medians.
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The equations of these five elliptic curves are given by

C1 : 27θ3φ3 − θφ(θ − φ)(8θ2 + 11θφ+ 8φ2)− 3θφ(5θ2 − θφ+ 5φ2)

− (θ − φ)(θ2 + 4θφ+ φ2)− (3θ2 − 7θφ+ 3φ2)− 3(θ − φ)− 1 = 0,

C2 : 3θ2φ2 − 2θφ(θ − φ)− (θ2 + 6θφ+ φ2) + 1 = 0,

C3 : θφ(θ − φ)3 − (θ4 + 11θ3φ+ 3θ2φ2 + 11θφ3 + φ4) (4)

− 2(θ3 − φ3) + 10θφ+ 2(θ − φ) + 1 = 0,

C4 : θφ(θ − φ) + θφ+ 2(θ − φ)− 1 = 0,

C5 : (θ − 1)3φ2 + 2(θ + 1)(θ3 + 2θ2 − 2θ + 1)φ+ (2θ − 1)(θ + 1)3 = 0.

If we solve equations (2) for θ, φ in terms of a, b, c one obtains

θ± =
c− a±

√
2c2 + 2a2 − b2

a+ b+ c
and φ± =

b− c±
√

2b2 + 2c2 − a2

a+ b+ c
. (5)

Now we bootstrap the process by substituting from equation (2) back into equa-
tions (5) via (a, b, c) = (a(θ, φ), b(θ, φ), c(θ, φ)). The pair of equations for (θ−, φ+)
lead to the identities θ− = θ and φ+ = φ. However, the other pair leads to the
transformation1 d : Q×Q 7→ Q×Q given by

d(θ, φ) =

(
θφ+ 2φ2 − θ − φ− 1

3θφ+ θ − φ+ 1
,
−2θ2 − θφ− θ − φ+ 1

3θφ+ θ − φ+ 1

)
.

This maps a point in the θφ-plane to a related point which corresponds to the
same triangle. (Geometrically, this amounts to simply flipping the triangle about
the third median, i.e. interchanging sides a and b and simultaneously medians k
and l.) We call such points “dual” points and under this mapping the curves C1

and C2 are dual as are C3 and C4, while C5 is self-dual. This implies that it is
sufficient to prove that all rational points on just the curves C2, C4 and C5 say,
correspond to Heron triangles with two rational medians.

Furthermore, we now show that C2, C4 and C5 are all birationally equivalent
to the same elliptic curve so we will just prove the main theorem for curve C4.
Notice that the former three curves are quadratic in φ so that when we calculate
the discriminant of each (with respect to φ) we obtain

Disc(C2) = 4(4θ4 + 8θ3 + 5θ2 − 2θ + 1)

Disc(C4) = θ4 + 2θ3 + 5θ2 − 8θ + 4

Disc(C5) = 4θ2(θ + 1)2(θ4 + 2θ3 + 5θ2 − 8θ + 4).

Since we are searching for rational points on each of the curves we require the
corresponding discriminants of each to be a rational square. All the rational points
which force this correspond to rational points on the elliptic curve

Y 2 = X4 + 2X3 + 5X2 − 8X + 4

since we can map X to −1/θ for C2, while for C4 and C5 we just map X to θ.

1Note that this corrects the transformation given in [BR 97].
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2 Proof of rational area

In this section we prove our main result.

Theorem 1 Every rational point on the curve

C4 : θ2φ− θφ2 + θφ+ 2θ − 2φ− 1 = 0

such that 0 < θ < 1 and 0 < φ < 1 and 2θ + φ > 1 corresponds to a triangle with
rational sides, rational area, and two rational medians.

Outline of proof:

(i) The inequalities for θ and φ are simply obtained from the triangle inequalities.

(ii) Reduce the squarefree part of the square of the area from degree 11 to degree
8.

(iii) Show that all but finitely many points on C4 can be obtained from the rational
points on an elliptic curve E say.

(iv) Finally we use induction in the group E(Q). We show that any point which
corresponds to a triangle with rational area leads, in all possible ways, to
another point with rational area. Another way of viewing this step is that
the group operation on E preserves the rationality of the square root of the
degree 8 polynomial (mentioned in (ii)) and hence the rationality of the area.

(i) Recall that the sides of a triangle corresponding to a point (θ, φ) ∈ C4(Q) are
given by equations (2). These equations immediately imply that the sides and two
medians are rational so we need only check the area ∆ and whether or not (a, b, c)
form a proper triangle. Substituting (2) into the triangle inequalities provide the
following inequalities in terms of θ and φ:

a+ b ≤ c⇐⇒ (θ − 1)(φ+ 1)(θ − φ+ 1) ≥ 0,

b+ c ≤ a⇐⇒ φ(θ + 1)(2θ + φ− 1) ≤ 0,

c+ a ≤ b⇐⇒ θ(φ− 1)(θ + 2φ+ 1) ≥ 0.

These define excluded regions in which proper triangles cannot form. The remain-
ing four regions contain copies of the same set of triangles and so it is sufficient to
just consider one of them, for example the one in the positive quadrant.

(ii) Again using equations (2), in Heron’s formula this time, we can calculate the
area of the corresponding triangle as ∆ =

√
g(θ, φ) where

g(θ, φ) = θφ(1− θ2)(1− φ2)(3θφ+ θ − φ+ 1)(2θ + φ− 1)(θ + 2φ+ 1)(θ − φ+ 1).

The squarefree part of g(θ, φ) can be reduced to degree 8 on C4 by the following
simple lemma.

Lemma 1 Let (θ, φ) be a point on C4(Q) and

f(θ, φ) = θφ(1− θ2)(1− φ2)(2θ + φ− 1)(θ + 2φ+ 1).

Then g(θ, φ) is a rational square iff f(θ, φ) is a rational square.
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Figure 1: The excluded regions of the θφ-plane

Proof : The curve C4 is equivalent to θ − φ + 1 = 3/(θφ + 2) which when
substituted into g(θ, φ) gives

g(θ, φ) = θφ(1− θ2)(1− φ2)

(
3θφ+

3

θφ+ 2

)
(2θ + φ− 1)(θ + 2φ+ 1)

3

(θφ+ 2)

= θφ(1− θ2)(1− φ2)(θφ(θφ+ 2) + 1)(2θ + φ− 1)(θ + 2φ+ 1)
32

(θφ+ 2)2

= θφ(1− θ2)(1− φ2)(2θ + φ− 1)(θ + 2φ+ 1)

[
3(θφ+ 1)

(θφ+ 2)

]2

= f(θ, φ)

[
3(θφ+ 1)

(θφ+ 2)

]2

.�

�

(iii) At this stage it is sufficient to prove that all rational points in C4(Q) preserve
f(θ, φ) = r2 for some r ∈ Q. To describe all rational points on C4 we note that
the mapping a : E 7→ C4 defined by

a(X,Y ) =

(
2X3 +X2 − 8X + 4− Y 2 − 2Y

(3X − 2 + Y )(X + Y )
,

2X3 − 5X2 + 2X − Y 2 − 2XY

(3X − 2 + Y )(X + Y )

)
leads to the elliptic curve

E : Y 2 +XY = X3 +X2 − 2X

which has rank 1 and torsion subgroup isomorphic to Z/2Z. The group of rational
points is given by E(Q) = 〈(0, 0), (2, 2)〉 (see [CRE 92]) where (0, 0) is the order 2
generator and (2, 2) is the torsion-free generator.
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Now we find that all except a finite number of rational points on E correspond
to rational points on C4 and vice versa. Clearly, the rational points on E given by

(X,Y ) = (−2, 2), (0, 0), (1,−1) and (2,−4)

are all the singularities of the mapping a(X,Y ) and so all other rational points,
on E, correspond to rational points on C4(Q).

Furthermore, the only rational points which may be missed on C4 are

(θ, φ) = (1, 1), (−1,−1)

which are obtained from the singularities of the inverse mapping a−1 : C4 7→ E
given by

a−1(θ, φ) =

(
2(θφ− φ2 + φ+ 1)

(θ − φ)2
,

2(2− θ2 − θ − 2φ2 + 3φ+ 3θφ− φ(θ − φ)2)

(θ − φ)3

)
.

However, it turns out that (θ, φ) = (−1,−1) = a(1, 0) while using homogeneous
coordinates one finds that (θ, φ) = (1, 1) corresponds to (X,Y ) = (1,−1). We will
ignore the latter fact and just treat (θ, φ) = (1, 1) separately when the time comes.

(iv) The final part of the proof requires the following three lemmas. The first one
covers the case of negation of points on E.

Lemma 2 If (X,Y ) ∈ E(Q) such that f(a(X,Y )) = r2 and (X ′, Y ′) = −(X,Y )
then f(a(X ′, Y ′)) = R2.

Proof : First we use E to remove all powers of Y greater than the first from
the squarefree part of f(a(X,Y )) to get

f(a(X,Y )) =

(
8X(X − 1)(X − 2)(X + 1)

(3X + Y − 2)4(X + Y )4

)2

(p7(X) · p6(X) · Y + p15(X))

where

p7(X) = 12X7 − 96X6 − 96X5 + 444X4 − 161X3 − 276X2 + 204X − 32,

p6(X) = 2X6 − 8X5 − 70X4 + 102X3 + 45X2 − 108X + 36 and

p15(X) = 4X15 + 21X14 − 984X13 + 2918X12 + 17862X11 − 37355X10

− 58326X9 + 166369X8 − 25775X7 − 194595X6 + 153070X5

+ 26088X4 − 80512X3 + 37392X2 − 6432X + 256.

Next, note that on E we have (X ′, Y ′) = (X,−X − Y ) so that we get

f(a(X ′, Y ′)) =

(
8X(X − 1)(X − 2)(X + 1)

(2X − Y − 2)4Y 4

)2

(−p7(X) · p6(X) · Y + q15(X))

where q15(X) = p15(X) − X · p7(X) · p6(X). Now, rather surprisingly, when
we multiply the two squarefree parts of f(a(X,Y )) and f(a(X ′, Y ′)) together we
obtain a perfect square, namely

(p7(X) · p6(X) · Y + p15(X))(−p7(X) · p6(X) · Y + q15(X)) = [r15(X)]2
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where r15(X) = (4X+1)(X−8)(X+1)(X+2)2(X−2)3(X−1)7. Clearly, we now
have f(a(X ′, Y ′)) = K2/f(a(X,Y )) and so the assumption that f(a(X,Y )) = r2

proves lemma 2. �

Now we need to consider what happens when we add the infinite order generator
(namely (2, 2)) to a point on E(Q).

Lemma 3 : If (X,Y ) ∈ E(Q) and (X ′, Y ′) = −{(X,Y )+(2, 2)} then there exists
R ∈ Q such that f(a(X ′, Y ′)) = R2.

Proof : First we intersect the line through (X,Y ) and (2, 2) with E to find
that

(X ′, Y ′) =

(
2X2 + 4X − 4− 6Y

(X − 2)2
,
−4X3 − 18X2 + 12X + 8 + 18XY

(X − 2)3

)
for all (X,Y ) except (2, 2). Substituting this into the expression for f(a(X ′, Y ′))
and using E to reduce powers of Y leads to

f(a(X ′, Y ′)) =

(
3X(X − 1)(X − 2)(X + 2)(X + 1)2

(X + 1)4

)2

.

Note that −2 ∗ (2, 2) = (1, 0) on E and so we have f(a(−{(2, 2) + (2, 2)})) =
f(a(1, 0)) = f(−1,−1) = 02. �

Combining Lemma 2 with Lemma 3 immediately implies that (X,Y ) + (2, 2)
also preserves the rationality of the area.

Finally, we need to ensure that adding the order two point to any point on
E(Q) preserves the rationality of the area. To ease the proof we use that fact that
on E we have (0, 0) + (2, 2) = (−1, 2) which leads to the identity

(x, y) + (0, 0) = −{−{(x, y) + (−1, 2)}+ (2, 2)}.

Thus it is sufficient to check addition of the point (−1, 2) to arbitrary points on
E(Q).

Lemma 4 If (X,Y ) ∈ E(Q) and (X ′, Y ′) = −{(X,Y )+(−1, 2)} then there exists
R ∈ Q such that f(a(X ′, Y ′)) = R2.

Proof : First we intersect the line through (X,Y ) and (−1, 2) with E to find
that

(X ′, Y ′) =

(
−X2 − 5X + 2− 3Y

(X + 1)2
,
−X3 + 3X2 + 18X − 4 + 9Y

(X + 1)3

)
for all (X,Y ) except (−1, 2). Now, as before we substitute this into the expression
for f(a(X ′, Y ′)) and use E to reduce powers of Y to obtain

f(a(X ′, Y ′)) =

(
24(X − 1)(X + 2)(X + 1)

(X − 2)2X2

)2

.

Note that −2 ∗ (−1, 2) = (1, 0) on E and so we have f(a(−{(−1, 2) + (−1, 2)})) =
f(a(1, 0)) = f(−1,−1) = 02. �
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These three lemmata imply that negation of points and addition of either gen-
erator of E(Q) preserves the property that f(a(X,Y )) ∈ Q2. Since f(a(−1, 2)) =
f(−1, 3) = 02 and f(a(2, 2)) = f(0,−3/2) = 02 we conclude that all points
on E(Q) preserve f(a(X,Y )) ∈ Q2. Hence all points (θ, φ) ∈ C4(Q) preserve
f(a(X,Y )) ∈ Q2 except perhaps (θ, φ) = (1, 1), as noted earlier. However f(1, 1) =
02 thus the main theorem is proven.

3 Infinitely many Heron-2-median triangles

The approach we use to show that there are infinitely many Heron triangles with
two rational medians is simply to observe that an unbounded portion of the positive
arm of the elliptic curve E is mapped into the bounded region defined by 0 < θ, φ <
1 and 2θ+φ > 1. Then we use the fact (established in Lemma 5) that the rational
points on the curve, namely E(Q), are dense in the group of real points, E(R).

Lemma 5 : If (X,Y ) is an infinite order point on the unbounded component of
an elliptic curve E then E(Q) contains points such that | X | is arbitrarily large.

Proof : Suppose that the infinitely many rational points are contained in a
bounded region i.e. Xmin < X < Xmax, Ymin < Y < Ymax for all (X,Y ) ∈ E(Q).

First we argue that E(R) contains no limit points (i.e. a possibly real point on
the curve which is the limit of a sequence of rational points on the curve). If it did
contain a sequence {Pn} converging to P say, then the sequence {−Pn} converges
to −P and the chords formed by the points Pn and −Pn−1 have increasingly large
slope. These slopes are not necessarily monotonically increasing but for sufficiently
large n we will find, by adding the points Pn and −Pn−1 on the curve, that

| X(Pn − Pn−1) |> Xmax

which contradicts our initial assumption.
With no limit points there must be a minimum distance, δ say, between any two

rational points on E. But with a finite arc length of the curve E in the bounded
region we end up with only a finite number of rational points on E contradicting
the fact that E(Q) has rank at least one. �

Using this result and the observation that E(Q) does contain points on the
bounded component (e.g. (0,0)) is essentially enough to show that E(Q) is dense
in E(R). (It is an interesting question to determine the density of the rational
points in the group of real points for arbitrary curves.) However, the Lemma
above is sufficient for our current needs.

Theorem 2 The curve

C4 : θ2φ− θφ2 + θφ+ 2θ − 2φ− 1 = 0

contains an infinite number of rational points in the region 0 < θ < 1, 0 < φ < 1
and 2θ + φ > 1.

Proof : Recall the mapping from E to C4 defined by

a(X,Y ) =

(
2X3 +X2 − 8X + 4− Y 2 − 2Y

(3X − 2 + Y )(X + Y )
,

2X3 − 5X2 + 2X − Y 2 − 2XY

(3X − 2 + Y )(X + Y )

)
.
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Setting a(X,Y ) = (θ, φ) we find that the inequalities θ > 0, φ > 0, θ < 1, φ < 1
and 2θ + φ > 1 respectively lead to

Y 2 + 2Y < 2X3 +X2 − 8X + 4

Y 2 + 2XY < 2X3 − 5X2 + 2X

Y 2 + 2XY > X3 −X2 − 3X + 2

Y 2 + (3X − 1)Y > X3 − 4X2 + 2X

2Y 2 + (3X + 1)Y < 3X3 − 3X2 − 6X + 4.

Now by solving each of these as a quadratic in Y one obtains

Y < Y ±1 = −1±
√

2X3 +X2 − 8X + 5

Y < Y ±2 = −X ±
√

2X3 − 4X2 + 2X

Y > Y ±3 = −X ±
√
X3 − 3X + 2

Y > Y ±4 = 1/2− 3X/2±
√
X3 − 7X2/4 +X/2 + 1/4

Y < Y ±5 = −1/4− 3X/4±
√

3X3/2− 15X2/16− 21X/8 + 33/16.

We consider the positive arms of each curve. Notice that the radical part dominates
each of the Yi for large X and that Y +

2 (8) = Y +
5 (8) = 20. A number of comparisons

(similar to the ones shown below) lead to the ordering

Y +
4 < Y +

3 < Y +
5 < Y +

2 < Y +
1 for all X > 8

on these curves. In fact, the inequalities above force Y +
3 < Y < Y +

5 for all X > 8.
So the aim now is to show that an infinite part of the elliptic curve E is contained
in the region of the XY -plane defined by Y +

3 and Y +
5 . Solving E for Y in terms

of X leads to
Y ±E = −X/2±

√
X3 + 5X2/4− 2X.

Hence we calculate

Y +
E − Y

+
3 = X/2 +

√
X3 + 5X2/4− 2X −

√
X3 − 3X + 2

>
√
X3 +X2 − 2X −

√
X3 − 3X + 2

=
√
X(X − 1)(X + 2)−

√
(X − 1)2(X + 2)

>
√
X −

√
X − 1

> 0
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for all X > 1. Thus we have Y +
E > Y +

3 for X > 1. In a similar way we can
compare Y +

E to Y +
5

Y +
5 − Y

+
E =

√
24X3 − 15X2 − 42X + 33

16
−
√

4X3 + 5X2 − 8X

4
− X + 1

4

>
√

3X3/2−X2 − 3X −
√
X(X + 5/8)2 −X/2

=
√
X
(√

3X2/2−X − 3− (X +
√
X/2 + 5/8)

)
>
√

5X2/4 + (X2/4−X − 3)− (X +
√
X/2 + 5/8)

>
√

5X/2− (X +
√
X/2 + 5/8)

> X/9−
√
X/2− 5/8

> 0

for all X > 36. Thus we have Y +
3 < Y +

E < Y +
5 for all X > 36. Using Lemma 5

2.00 4.00 6.00 8.00 10.00 12.00 14.00−2.00

10.0

20.0

30.0

40.0
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Y
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Y

1

2
5

E

3

4

Figure 2: The graphs of Y1, Y2, Y3, Y4, Y5 and YE

and the fact that (2, 2) is an infinite order point on the unbounded part of E we
conclude that there are infinitely many rational points (X,Y ) ∈ E(Q) such that
X > 36. This proves the theorem. �

4 New Sporadic Triangle

Since the completion of the proof of the main result of this paper we have continued
a systematic search for more sporadic Heron triangles with two rational medians
and have recently been rewarded for our perseverence with a new one, namely the
last one shown in Table 1. The interest in these triangles is due to the fact that

none of them lie on any of the 5 elliptic curves we have discovered so far and hence
may lead to a new infinite family of such triangles.
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Sides Medians Area

a b c k l

4368 1241 3673 1657 7975
2 2042040

14791 14384 11257 21177
2 11001 75698280

2288232 1976471 2025361 1641725 3843143
2 1877686881840

Table 1: Sporadic Heron-2-median triangles

5 Conclusion

It seems likely, at least to the authors, that none of the Heron-2-median triangles
generated from these elliptic curves actually have 3 rational medians. This belief
is supported by the observation that the half angle cotangent of the angle at the
vertex of the third median is expressible in terms of two so-called ‘Somos sequences’
(see [BR 97]) and is irrational in each case calculated thus far. Furthermore, we
have checked the first 100 multiples of the infinite order point on E (both with
and without adding the order 2 point) and none of the corresponding triangles has
a third rational median.
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