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Abstract

We study the symmetry group of the solutions to equations which define rational

triangles with two rational medians. The group action is used to discover three new

elliptic curves parametrizing such triangles which also have rational area. We prove

that only finitely many of the rational triangles with two rational medians and rational

area, which correspond to rational points on eight elliptic curves, can also have a third

rational median. Finally, we present a new analysis of sporadic examples of such

triangles along with the discovery of a new sporadic triangle.

Keywords : rational area triangle, fundamental domain, elliptic curve, rational
medians.

1 Introduction

A perfect triangle, as defined by Richard Guy (see [6] D21), is a Heron triangle,
namely one with three rational sides and rational area, which also has three
rational medians. To date, no-one has found such an object—nor has anyone
proven that such a triangle cannot exist.

There are partial results which show that triangles do exist in which six of
the seven parameters are rational. In fact we now know of infinite families of
triangles with

(a) three rational sides and three rational medians ([4] p. 399), or

(b) three rational sides, two rational medians and rational area ([1]), or
∗Revision : August 20, 2008
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(c) two rational sides, three rational medians and rational area ([6]).

The main subject of this paper is triangles with two rational medians and so we
focus on family (b) above. Furthermore, there is a one-to-one correspondence
between triangles in family (b) and those in family (c) so that much of what we
find applies to the latter case as well.

There are an infinite number of triangles in family (b) which correspond to
rational points on elliptic curves isomorphic to the curve

E : y2 + xy = x3 + x2 − 2x

of conductor 102. The symmetries of these triangles have been studied before
but we show that the previous results were incomplete—in fact we show that
the complete symmetry group is isomorphic to the wreath product of the Klein
four group and the finite simple group of order two1, namely

(C2 × C2) o C2.

We use Faltings’ theorem [5] to prove that there are only finitely many perfect
triangles corresponding to rational points on any of the 8 isomorphic copies of
E generated by this symmetry group.

Finally we report on the status of the search for sporadic versions of Heron
triangles with two rational medians, namely those which do not correspond to
rational points on the elliptic curves mentioned above. We actually find a new
one,

(a, b, c) = (22816608, 20565641, 19227017),

which is only the fourth known sporadic triangle.

2 Defining equations

The search for perfect triangles requires one to find rational solutions to the
equations defining the area and the medians in terms of the sides. These æqua-
tions have been handed down to us from Hero of Alexandria (in his Metrica
circa the first century A.D.) and Apollonius of Perga (who lived ca 262 BC -
190 BC). Given a triangle with sides a, b, c, medians k, l, m, and area ∆ we
have

16∆2 = (a + b + c)(−a + b + c)(a− b + c)(a + b− c),

4k2 = 2b2 + 2c2 − a2,

4l2 = 2c2 + 2a2 − b2,

4m2 = 2a2 + 2b2 − c2.

(1)

It was Brahmagupta [3] who showed us how to parametrize all Heron triangles,
while it was Euler [4] who provided an infinite (though incomplete) family of

1With apologies to The Klein Four
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Apollonian triangles, namely rational sided triangles with three rational medi-
ans.

If we consider various subsets of equations (1) from a slightly more modern
perspective we see some interesting structure (summarised in Table 1).

median surface ambient
equations type space

1 homogeneous quadratic surface P3(C)
2 degree 4 del Pezzo surface P4(C)
3 K3 surface P5(C)

Table 1: Surface classification

First, the equation for any single median, say that defining k, is a homogeneous
quadratic with a trivial rational point. As such one can use the chord method
to produce a complete parameterisation, for example

(a : b : c : k) = (4p(q+r) : p2+2q2−2r2+4qr : p2−2q2+2r2+4qr : p2−2q2−2r2)

where p, q, r are arbitrary rational parameters.

Next, the equations defining any pair of medians, say the two k and l quadratic
equations in 5 variables, represent a so-called degree 4 del Pezzo surface [?]. A
simple check of the zeros of the appropriate partial derivatives reveals that it is
in fact non-singular. Furthermore, it is well known that such surfaces contain
16 lines, which in this particular case are given by triples of homogeneous linear
equations, namely

L(ε0,ε1,ε2,ε3) = {c + ε1(a + ε0b), 2k + ε2(2b + ε0a), 2l + ε3(2a + ε0b)}

where εi ∈ {−1,+1} for i ∈ {0, 1, 2, 3}. When these 16 lines are defined over Q it
turns out that general theory predicts that the surface is birationally equivalent
to the rational projective plane. This parametrisation of rational sided triangles
with two rational medians (see [1]) is given by

a = (−2φθ2 − φ2θ) + (2θφ− φ2) + θ + 1

b = (φθ2 + 2φ2θ) + (2θφ− θ2)− φ + 1

c = (φθ2 − φ2θ) + (θ2 + 2θφ + φ2) + θ − φ

(2)

where θ and φ are arbitrary rational parameters. We can of course substitute
these into equations (1) to show that the medians are given by

k = (3φ2θ + 2θ2 + 2θφ− φ2 + θ + 2φ− 1)/2

l = (3φθ2 + θ2 − 2θφ− 2φ2 + 2θ + φ + 1)/2

4m2 = 4 + 9φ2θ4 − 4φ + 18θφ + 4θ + 6φθ2 − 6φ2θ − 6φθ4 − 22θφ3

+ 6φ2θ2 + 6φ4θ + 9φ4θ2 − 22φθ3 + 18φ3θ2 − 18φ2θ3

+ 18φ3θ3 − 3φ2 − 3θ2 + φ4 + θ4 − 2θ3 + 2φ3 = f4(θ, φ).

(3)
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Notice that the medians k and l, bisecting sides a and b respectively, are au-
tomatically rational, while the median m, to side c, is not necessarily rational
since the multiquartic polynomial, f4(θ, φ), is irreducible over the integers.

Now since the equations (1) allow for an ambiguity in the resulting signs of the
expressions for a, b, c, k, l in equations (2) and (3) the signs have been chosen so
that a proper triangle appears in the positive θφ-quadrant.

We can invert the set of equations (2) to obtain

θ± =
c− a±

√
2a2 + 2c2 − b2

a + b + c

φ± =
b− c±

√
2b2 + 2c2 − a2

a + b + c

where re-substitution of equations (2) into these force the sign of the discrimi-
nant to be positive in each case. In the sequel we will always use

θ =
c− a + 2l

a + b + c

φ =
b− c + 2k

a + b + c

(4)

as the defining inverse equations.

Finally, the equations for all three medians define a non-singular K3 surface. In
fact, in [?] it is shown that this can be viewed as a one parameter elliptic curve
which generically has rank 2 and so the rational points are dense in this surface.

3 The Group of Symmetries

We now restrict our attention to just the case of rational-sided triangles with
two rational medians and show how to compute their group of symmetries. We
restate the defining equations for convenience:

4k2 = 2b2 + 2c2 − a2

4l2 = 2c2 + 2a2 − b2.
(5)

Now we are interested in all the rational (θ, φ)-pairs which correspond, via
equations (2) and (3) to rational quintuples (a, b, c, k, l) which are solutions
to equations (5). Rather than work directly in the θφ-plane we find that the
problem is greatly simplified by consideration of the R5-space defined by the
a, b, c, k, l coordinates. Once the symmetries are understood here they can be
easily mapped to R2 via equations (4).

Clearly we can change the signs of a, b, c, k, and l independently and the new 5-
tuple will still form a solution to equations (5). Furthermore, we can interchange
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sides a and b while simultaneously swapping medians k and l to also obtain a
solution to equations (5).

The only other symmetries, of solutions to equations (5), are compositions of
these operations. Accordingly, we define the following maps

A : (a, b, c, k, l) 7→ (−a, b, c, k, l)
B : (a, b, c, k, l) 7→ (a,−b, c, k, l)
C : (a, b, c, k, l) 7→ (a, b,−c, k, l)
K : (a, b, c, k, l) 7→ (a, b, c,−k, l)
L : (a, b, c, k, l) 7→ (a, b, c, k,−l)
T : (a, b, c, k, l) 7→ (b, a, c, l, k),

(6)

and call the group generated by all these symmetries G say. First we observe that
each of these maps is an involution, since they are just reflections. Furthermore,
the first five generators, A,B, C, K,L, all commute with each other and so
generate a subgroup, H say, of G of order 32. Meanwhile, it is trivial to verify
that T satisfies the relations

TA = BT, TB = AT, TK = LT, TL = KT, TC = CT,

so in principle we could replace B and L by AT and KT respectively.2 However,
for convenience, we will continue to include B and L in any description of an
arbitrary element of G. The relations above imply that T permutes the elements
of H under conjugation, from which we can infer that G contains 64 elements
distributed in two cosets, namely H and TH.

Since we only care about distinct (θ, φ)-pairs which correspond to a given tri-
angle, and changing the sign of all of a, b, c, k, l leaves θ and φ unchanged, we
factor out the action of ABCKL from G. Hence from now on we consider the
modified group

G = G/〈BLACK〉

containing 32 elements and basically ignore the generator C. So if we let an
arbitrary element of G be denoted by g then without loss of generality we can
represent it as

g = AαBβKκLλT τ

where α, β, κ, λ, τ are zero or one. Since there is a one-to-one correspondence
between group elements and binary 5-tuples (via the exponents) we can identify
each element with an integer from 0 to 31 as shown in Table 2. First we compute
the centre of the group G, denoted by Z(G), which is the set of all elements in
G which commute with everything in G. The non-commuting equations above

2We use the standard notation AT := T−1AT for conjugation of one element by another.
The difference between conjugation, exponentiation and action on a point should be clear by
context.
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(α, β, κ, λ, τ)2 element order (α, β, κ, λ, τ)2 element order
0 1 1 16 A 2
1 T 2 17 AT 4
2 L 2 18 AL 2
3 LT 4 19 ALT 4
4 K 2 20 AK 2
5 KT 4 21 AKT 4
6 KL 2 22 AKL 2
7 KLT 2 23 AKLT 4
8 B 2 24 AB 2
9 BT 4 25 ABT 2
10 BL 2 26 ABL 2
11 BLT 4 27 ABLT 4
12 BK 2 28 ABK 2
13 BKT 4 29 ABKT 4
14 BKL 2 30 ABKL 2
15 BKLT 4 31 ABKLT 2

Table 2: Symmetries of equivalence classes of triangles with two rational medians

show us that

gA =

{
AαBβKκLλT τ if τ = 0
Aα+1Bβ+1KκLλT τ if τ = 1

gB =

{
AαBβKκLλT τ if τ = 0
Aα+1Bβ+1KκLλT τ if τ = 1

gK =

{
AαBβKκLλT τ if τ = 0
AαBβKκ+1Lλ+1T τ if τ = 1

gL =

{
AαBβKκLλT τ if τ = 0
AαBβKκ+1Lλ+1T τ if τ = 1

gT = AβBαKλLκT τ

(7)

from which we deduce that

Ag = gA,Bg = gB,Kg = gK, Lg = gL iff τ = 0 and
Tg = gT iff α = β, κ = λ.

So the centre of G contains only elements of the form (AB)α(KL)κ, hence
Z(G) = 〈1, AB, KL,ABKL〉 which is isomorphic to C2 × C2.

Next we calculate the derived group of G, denoted by G′, which is the subgroup
generated by all the commutators in G. Recall that the derived group is the
unique smallest normal subgroup such that G/G′ is Abelian. If we consider the
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commutators of the generators with an arbitrary element of G then we have

[A, g] = AgAg−1 =

{
1 if τ = 0
AB if τ = 1

[B, g] = BgBg−1 =

{
1 if τ = 0
AB if τ = 1

[K, g] = KgKg−1 =

{
1 if τ = 0
KL if τ = 1

[L, g] = LgLg−1 =

{
1 if τ = 0
KL if τ = 1

[T, g] = TgTg−1 = 1.

Thus G′ = 〈AB,KL〉 which leads to the somewhat surprising fact that G′ =
Z(G). We now determine the group structure of G.

Theorem 1 G ∼= (C2 × C2) o C2.

Proof : First observe that the transformation group, G, can be defined abstractly
by

G ∼= 〈A,B, K,L, T |A2, B2,K2, L2, T 2, AT = B,KT = L〉.

It is then trivial to construct a permutation group, P1, a subgroup of the sym-
metric group on 10 elements, defined by

P1 = 〈(1, 2), (3, 4), (5, 6), (7, 8), (1, 4)(2, 3)(6, 7)(5, 8)(9, 10)〉,

which is isomorphic to G. In fact the isomorphism, φ : G → P1 is clearly given
by

A 7→ (1, 2)
B 7→ (3, 4)
K 7→ (5, 6)
L 7→ (7, 8)
T 7→ (1, 4)(2, 3)(6, 7)(5, 8)(9, 10).

By rewriting the wreath product as a semidirect product we find that

(C2 × C2) o C2 = (C2 × C2)2 o C2

which in turn is isomorphic to the permutation group, P2, defined by

P2 = 〈(1, 2), (3, 4), (5, 6), (7, 8), (1, 5)(2, 6)(3, 7)(4, 8)〉 < S8.
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Now since (5, 6) = (1, 2)(1,5)(2,6)(3,7)(4,8) and (7, 8) = (3, 4)(1,5)(2,6)(3,7)(4,8) one
observes that P2 can be equivalently described in terms of just 3 generators,
namely

P2 = 〈(1, 2), (3, 4), (1, 5)(2, 6)(3, 7)(4, 8)〉.

Finally, one easily checks that the mapping θ : P2 → P1 given by

(1, 2) 7→ (3, 4)

(3, 4) 7→ (5, 6)

(1, 5)(2, 6)(3, 7)(4, 8) 7→ (1, 4)(2, 3)(5, 8)(6, 7)(9, 10).

is an isomorphism. Thus we have G ∼= P1
∼= P2

∼= (C2 × C2) o C2 to give us the
result we want. �

4 The Fundamental Domain

We would like to determine the fundamental domain of R2/G and the easiest
path is to simply determine the effect of each generator in turn. The action
of the generators of G expressed in terms of the parameters θ and φ is easily
obtained by simple substitution. For example, to determine the action of A on
θ one simply substitutes the definition of A from equation (6) into the definition
of θ from equation (4) and then replace a, b, c, k, l using equations (2) to get

θ(−a, b, c, k, l) =
c + a + 2l

−a + b + c

=
θφ + θ − φ2 + 1
φ(2θ + φ− 1)

.

Using the same trick on the φ coordinate leads to

φ(−a, b, c, k, l) =
3θφ + θ − φ + 1

2θ2 + θφ + θ + φ− 1
.
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Extending this process to all the other generators leads to

(θ, φ)A =
(

θφ + θ − φ2 + 1
φ(2θ + φ− 1)

,
3θφ + θ − φ + 1

2θ2 + θφ + θ + φ− 1

)
(θ, φ)B =

(
−3θφ− θ + φ− 1

θφ + 2φ2 − φ− θ − 1
,
θ2 − θφ + φ− 1
θ(2φ + θ + 1)

)
(θ, φ)C =

(
φ(2θ + φ− 1)

φ2 − θφ− θ − 1
,

θ(2φ + θ + 1)
θφ− θ2 − φ + 1

)
(θ, φ)K =

(
θ,

1− θ − φ− θφ− 2θ2

3θφ + θ − φ + 1

)
(θ, φ)L =

(
2φ2 + θφ− θ − φ− 1

3θφ + θ − φ + 1
, φ

)
(θ, φ)T =

(
2θ2 + θφ + θ + φ− 1

3θφ + θ − φ + 1
,
1 + θ + φ− θφ− 2φ2

3θφ + θ − φ + 1

)
.

(8)

The boundaries of each of these reflections are shown in Figure 1 where a fun-
damental domain corresponding to the positive a, b, c, k, l hyper-quadrant is la-
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Figure 1: Symmetry boundaries in the θφ-plane

belled as region 0. There are three extra boundaries corresponding to the curves

φ + θ = 0

φ =
(

1 + θ

1− θ

)
φ− θ + 2 = 0
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which together with the boundaries obtained by setting (θ, φ)g = (θ, φ) for each
of the 6 generators carves up the θφ-plane3 into 32 regions. These are labelled
in Figure 1 with numbers corresponding to each of the elements from Table 2.

When all of the transformations are applied to any point, (θ, φ) say, then the
resulting orbit of 32 points are distributed, 4 per line, amongst 8 lines which all
pass through the point (θ, φ) = (1,−1). This is always true since the transfor-
mations T and ABKL move points on a line through (1,−1) back to the same
line. Furthermore, the group generated by these two transformations has order
4 and so the orbit contains 4 points. For example, the points

(5/2,−1/2)1 = (5/2,−1/2)

(5/2,−1/2)T = (49, 15)

(5/2,−1/2)ABKL = (7/8,−25/24)

(5/2,−1/2)ABKLT = (−3,−7/3)

all lie on a line through (1,−1).

The full G-orbit of the point (1/3, 2/5) includes those in the set

{(1/3, 2/5), (-24/25, 2/5), (1/15, 24/25), (-2/5, 24/25),
(1/3, -1/15), (-24/25, -1/15), (1/15, -1/3) (-2/5, -1/3),
(25/24, -7/8), (-3, -7/8), (7/3, 3), (7/8, 3),
(25/24, -7/3), (-3, -7/3), (7/3, -25/24) (7/8, -25/24),

(49, 15), (1/2, 15), (5/2, -1/2), (-15, -1/2),
(49, -5/2), (1/2, -5/2), (5/2, -49), (-15, -49),
(-2, 3/7), (-1/49, 3/7), (-8/7, 1/49), (-3/7, 1/49),
(-2, 8/7), (-1/49, 8/7), (-8/7, 2), (-3/7, 2)}.

Notice that these points are arranged into 2× 2 blocks which form rectangles in
the θφ-plane (two of which are shown in Figure 2). The rectangles are paired
by reflection about the line θ + φ = 0 by the operation of the symmetry TLK,
since (θ, φ)TLK = (−φ,−θ). The rectangles themselves are formed from a single
point and the repeated application of K and L symmetries since K fixes θ, L
fixes φ and (θ, φ)KLKL = (θ, φ).

5 Heron triangles with three rational medians

If we restrict our attention to Heron triangles which also have two rational
medians then previous work [1] [2] had shown that there is a correspondence
between infinite families of such triangles and rational points on various curves
birationally equivalent to an elliptic curve defined over Q. This work had turned
up five genus 1 curves in the θφ-plane (the first five shown in Figure 3) with the

3We have used a tan−1 transformation to squeeze the entire plane onto the page.
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Figure 2: Orbit of (θ, φ) = (1/3, 2/5)

property that their rational points corresponded to such triangles. The question
of the rationality or otherwise of the third median for these infinite families was
left unresolved.

When we apply the work of the previous section we find that the action of the
group G on these 5 curves produced 3 new curves (the last three in Figure 3).
Notice that the first four curves are all symmetric about the line φ + θ = 0
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Figure 3: Elliptic curves corresponding to Heron triangles with 2 rational me-
dians (x = tan−1(θ), y = tan−1(φ))

while the last four curves are pairwise symmetric about that line. Also, the
last three curves, C6, C7, and C8 do not pass through the unit square in the
positive quadrant (0 ≤ θ, φ ≤ 1) which is why previous authors missed them.
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The complete action of G on these curves is provided by considering the action
of the generators (as shown in Table 3). Due to the closure of Table 3 no new

C1 C2 C3 C4 C5 C6 C7 C8

A C4 C3 C2 C1 C6 C5 C8 C7

B C4 C3 C2 C1 C6 C5 C8 C7

C C2 C1 C4 C3 C7 C8 C5 C6

K C6 C8 C7 C5 C4 C1 C3 C2

L C8 C6 C5 C7 C3 C2 C4 C1

T C2 C1 C4 C3 C5 C6 C7 C8

Table 3: Action of G on elliptic curves

curves can be produced by the action of G on this collection.

Of particular interest is the question of the rationality of the third median for
any of the triangles obtained from these curves. It turns out that there are at
most a finite number of such triangles.

Theorem 2 There are a finite number of rational points on each of the curves
C1, . . . , C8 with the property that they correspond to a Heron triangle with three
rational medians.

Proof: We sketch the proof for C4. Recall that equations (3) show that we have
an expression for the third median as a function of θ and φ, namely,

4m2 = f4(θ, φ).

We want to find all rational points on this surface that are also rational points
on the curve C4. The equation for C4 is given, [1], by the cubic equation

C4 : θφ(θ − φ) + θφ + 2(θ − φ)− 1 = 0.

If we take the resultant of the curve C4 with the surface defining m and eliminate
φ say, then we obtain a new curve

D4 : 16θ4m4 + p10(θ)m2 + p14(θ) = 0

relating m and θ. Now the common rational solutions to C4 and the surface are
given by the rational points on the curve D4. But the genus of D4 is 7 and so
by Faltings’ Theorem can have only finitely many rational points. This finite,
possibly empty, list of points would produce, when substituted into C4 only a
finite number of corresponding values of φ.

A similar result holds for each of the other seven curves, in fact the corresponding
resultants, Di, are genus 7 in every case. �

A good deal more work needs to be done to actually find this finite list of
triangles or show that there are none at all coming from these eight curves. Of
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course this does not rule out the possibility of finding perfect triangles amongst
the sporadic triangles, namely those which are not obtained from any of the
infinite families we have so far.

One can now ask the question, how is the G-orbit of a point distributed amongst
the eight elliptic curves?

6 The sporadic triangles

We had hoped that a better knowledge of the fundamental domain would help
speed the computational search. However, in practice, this failed to materialise
since any restriction of a search to a fundamental region might miss otherwise
easily spotted low height solutions in the orbit outside the region.

One way to search for Heron triangles with two rational medians is to substitute
the parametrizations for the sides of triangles with two rational medians from
equations (2) into Heron’s formula to obtain

C : ∆2 = 16θφ(θ2−1)(φ2−1)(3θφ+θ−φ+1)(2θ+φ−1)(θ+2φ+1)(θ−φ+1).

Fixing φ say forces this to become a hyperelliptic curve in θ which, by Faltings’
Theorem, has only finitely many rational points.

The basis of the current computational search was Michael Stoll’s ratpoints.c
code which efficiently searches for rational points on hyperelliptic curves. We
modified this by adding an outer loop over φ and then searching the region
H(θ) < 20000, H(φ) < 2000 where H(m/n) = max{|m|, |n|} is the näıve height
function. The results of this search revealed a fourth sporadic triangle (see
Table 4) which does not lie on any of the eight elliptic curves found so far. Of

(θ, φ) (a, b, c) sporadic

( 5
2 ,− 1

2 ) (51, 73, 26)

(− 16
5 ,− 5

2 ) (875, 626, 291)

(− 37
40 , 16

5 ) (13816, 28779, 15155)

(− 51
40 ,− 4

17 ) (4368, 1241, 3673) *

( 25
56 , 12

19 ) (14384, 14791, 11257) *

( 285
296 , 37

40 ) (185629, 1823675, 1930456)

(− 560
1089 , 47

72 ) (1976471, 2288232, 2025361) *

( 2192
2109 ,− 285

296 ) (2396426547, 2442655864, 46263061)

(− 2665
816 , 121

408 ) (22816608, 20565641, 19227017) *

Table 4: Small Heron triangles with 2 rational medians

the 32 different (θ, φ) representatives corresponding to each triangle, the one
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chosen for the table is that which minimizes the product H(θ) · H(φ). Since
there are always two closely related solutions ((θ, φ) and (−φ,−θ)) with the
same value for this product we arbitrarily select the one with the smaller H(φ).
Notice that the non-sporadic triangles are related since one can alternately fix
the θ and φ values and find the partners which produce a rational point on the
curve C above. Starting with θ = 5

2 gives:(
5
2
,−1

2

)
7→

(
5
2
,
16
5

)
7→

(
−37

40
,
16
5

)
7→

(
−37

40
,−285

296

)
7→

(
2192
2109

,−285
296

)
.

If we continue this sequence we simply fix θ = 2192
2109 and find the corresponding

rational points on the curve C. This leads to

φ = −285
296

,−2275
2109

,
4301
2109

,−4301
4218

,−4301
4467

,
16835
15618

,−8408455
57

,−21526505
21156119

,

of which only φ = − 285
296 , φ = 16835

15618 , φ = − 8408455
57 and φ = − 21526505

21156119 lead to
non-degenerate triangles. The first and third φ values correspond to the known
triangle in Table 4 while the second and fourth values correspond to a new
(non-sporadic) triangle represented by

(θ, φ) =
(

2192
2109

,
16835
15618

)
.

It is conceivable that a sporadic triangle does lie between the end of the table at
H(θ) ·H(φ) = 1087320 and this new triangle for which H(θ) ·H(φ) = 36902320
but we have not yet completed that portion of the search.

The sporadic triangles do not seem to be related in the same way. Notice that
the sets of distinct fractions (up to negation and inversion) used in the represen-
tations of the four sporadic triangles (see Table 5) are all disjoint. Furthermore,

(θ, φ) fractions

(− 51
40 ,− 4

17 ) 3
88 , 21

221 , 11
91 , 4

17 , 13
21 , 40

51 , 100
121 , 85

91

( 25
56 , 12

19 ) 7
31 , 72

289 , 289
775 , 31

81 , 25
56 , 243

532 , 217
361 , 12

19

(− 560
1089 , 47

72 ) 25
119 , 9409

34272 , 679
2209 , 529

1649 , 560
1089 , 765

1444 , 24863
43681 , 47

72

(− 2665
816 , 121

408 ) 3185
14801 , 121

408 , 816
2665 , 14801

44376 , 29575
59177 , 1849

3481 , 287
529 , 5808

8993

Table 5: Fractions used in sporadic representatives

if we attempt to generate a new sporadic triangle, from the first one say, using
the same technique as that for the non-sporadics, we fail.
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