An Observation on Rolle's problem

Ralph H. Buchholz

6 June 2005

In an earlier edition of the Gazette [3], Michael Hirschhorn considers the problem of finding three distinct integers a, b, c such that $a \pm b, a \pm c, b \pm c$ are all squares. In 1682 Rolle [2] had already provided a two parameter family of such 3-tuples,

$$
\begin{aligned}
& a=y^{20}+21 y^{16} z^{4}-6 y^{12} z^{8}-6 y^{8} z^{12}+21 y^{4} z^{16}+z^{20} \\
& b=10 y^{2} z^{18}-24 y^{6} z^{14}+60 y^{10} z^{10}-24 y^{14} z^{6}+10 y^{18} z^{2} \\
& c=6 y^{2} z^{18}+24 y^{6} z^{14}-92 y^{10} z^{10}+24 y^{14} z^{6}+6 y^{18} z^{2}
\end{aligned}
$$

however they did not cover all such solutions.
Hirschhorn sets these 6 squares to $m^{2}, n^{2}, p^{2}, q^{2}, r^{2}, s^{2}$ respectively and then goes on to show that this problem is equivalent to finding rational values k, l, Y such that

$$
\begin{equation*}
k\left(k^{2}-1\right)\left(l^{4}-1\right)=Y^{2} \tag{1}
\end{equation*}
$$

where $k=\frac{m+p}{q-n}=\frac{q+n}{m-p}$ and $l=\frac{p+q}{r-s}=\frac{r+s}{p-q}$. Hirschhorn completely solves the case of $k=l^{2}$.

When I first read the article and saw equation (1) I immediately thought of a parameterised elliptic curve (see [5]). As a result, the machinery developed there can be applied here. Set $l=\frac{u}{v}$ in equation (1) and then multiply by $v^{4}\left(u^{4}-v^{4}\right)^{2}$ to obtain $\left[v^{2}\left(u^{4}-v^{4}\right) Y\right]^{2}=\left(u^{4}-v^{4}\right)^{3} k^{3}-\left(u^{4}-v^{4}\right)^{3} k$. Now transform this by letting $x:=\left(u^{4}-v^{4}\right) k$ and $y:=v^{2}\left(u^{4}-v^{4}\right) Y$ to get

$$
\begin{equation*}
E[u, v] \quad: \quad y^{2}=x^{3}-\left(u^{4}-v^{4}\right)^{2} x \tag{2}
\end{equation*}
$$

which is a two parameter elliptic curve equivalent to (1). Notice that (2) is symmetric in u, v so it is sufficient to consider the region $u>v \geq 1$. Furthermore, if $\left(u^{4}-v^{4}\right)$ is divisible by a square, σ say, then we can transform $E[u, v]$, via $(x, y) \mapsto\left(\sigma^{2} x, \sigma^{3} y\right)$, to a curve of the same form with a smaller x coördinate. Hence we need only consider coprime pairs (u, v) with distinct squarefree $\left(u^{4}-v^{4}\right)$ parts. Each particular choice of u and v corresponds to a specific elliptic curve and we show the rank of the first few in Table 1 (obtained using the techniques of [1] as implemented in apecs, a Maple package by Ian Connell). Note that each of these examples has rank ≥ 1 and so generates infinitely many solutions. For example we consider the curve $E[7,1]$ or

u	v	$\left(u^{4}-v^{4}\right)^{2}$	$s q f\left(u^{4}-v^{4}\right)$	$\operatorname{rank}(E[u, v](\mathbb{Q}))$
2	1	15^{2}	15	1
3	1	80^{2}	5	1
3	2	65^{2}	65	2
4	1	255^{2}	255	1
4	3	175^{2}	7	1
5	1	624^{2}	39	1
5	2	609^{2}	609	2
5	3	544^{2}	34	2
5	4	369^{2}	41	2
6	1	1295^{2}	1295	1
6	5	671^{2}	671	1
7	1	2400^{2}	6	1

Table 1: Rank of the first few curves $E[u, v](\mathbb{Q})$
$y^{2}=x^{3}-2400^{2} x$. Then map $(x, y) \mapsto\left(20^{2} \bar{x}, 20^{3} \bar{y}\right)$ to obtain $\bar{y}^{2}=\bar{x}^{3}-36 \bar{x}$. The point $(\bar{x}, \bar{y})=(12,36)$ is a generator of the torsion-free part of the group of rational points on this latter curve. Thus we get $k=\frac{20^{2} \cdot 12}{2400}=2$ and substituting $(k, l)=(2,7)$ into Hisrchhorn's quadratic defining $\frac{p}{q}$ in terms of k, l, namely,

$$
\begin{aligned}
& \left\{\left(k^{2}+1\right)^{2}\left(l^{4}+1\right)-2\left(k^{4}-6 k^{2}+1\right) l^{2}\right\}(p / q)^{2} \\
- & 2\left\{\left(k^{2}+1\right)^{2}\left(l^{4}-1\right)+8 k\left(k^{2}-1\right) l^{2}\right\}(p / q) \\
+ & \left\{\left(k^{2}+1\right)^{2}\left(l^{4}+1\right)+2\left(k^{4}-6 k^{2}+1\right) l^{2}\right\}=0
\end{aligned}
$$

gives the solutions $\frac{p}{q}=\frac{3}{4}$ or $\frac{4947}{3796}$. By using the defining equations for k and l one finds that the first is degenerate while the second leads to the solution

$$
\begin{aligned}
(m, n, p, q, r, s) & =(12010,3360,2 \cdot 4947,2 \cdot 3796,9306,6808) \\
(a, b, c) & =(77764850,66475250,20126386) .
\end{aligned}
$$

All multiples of $(12,36)$ in the group $E[7,1](\mathbb{Q})$ lead to solutions in the same way.

In the reverse direction it is known, from work on the congruent number problem [4], that the curves

$$
E[n] \quad: \quad y^{2}=x^{3}-n^{2} x
$$

for $n=1,2,3,4,8,9,10,11,12$ (as well as infinitely many others) have zero rank and hence only finitely many rational points (in fact, just $(0,0),(\pm n, 0)$ and the point at infinity). For example, Fermat had already shown (by infinite descent) that the equation $u^{4}-v^{4}=w^{2}$ is impossible in non-trivial integers. Thus we conclude that the curves $E[u, v]$ which correspond (via the mapping above with $\sigma=w)$ to $E[n]$ for the values $n=1,4,9$ have only trivial solutions. Notice that
none of the rank zero n values appear in the $\operatorname{sqf}\left(u^{4}-v^{4}\right)$ column of Table 1 while the missing values $n=5,6,7$ do appear.

Finally, I ran a short search covering the region $1 \leq m, n, p, q, r, s \leq 1850$ to confirm Hirschhorn's suspicion that Euler had in fact found the smallest possible solution, namely the first row in the following table.

a	b	c
434657	420968	150568
733025	488000	418304
993250	949986	856350
1738628	1683872	602272

Table 2: Smallest four solutions to Rolle's problem
Acknowledgment The author would like to thank the anonymous referee for pointing out the reference to Rolle's contribution.

References

[1] Birch, B.J. and Swinnerton-Dyer, H.F.P Notes on Elliptic Curves II, J. Reine Angew. Math. 218, p 79-108 (1965).
[2] Leonard Eugene Dickson, History of the Theory of Numbers vol. II, p. 447, Chelsea Publishing Company, New York, (1952).
[3] Hirschhorn, M; A Diophantine Equation AMS Gazette 20, p.1-3, (1993).
[4] Koblitz, N. Introduction to Elliptic Curves and Modular Forms, SpringerVerlag, New York, (1993).
[5] Silverman, J.H. and Tate, J. Rational Points on Elliptic Curves, SpringerVerlag, New York, (1992).

