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Abstract

In this paper we will examine the following problem: What is the min-
imum number of unit edges required to construct k identical size regular
polygons in the plane if sharing of edges is allowed?

1 Introduction

In this paper we will examine the following problem:

Question 1 What is the minimum number of sides required to construct k iden-
tical size regular polygons in the plane if sharing of sides is allowed?

Below is an optimal configuration of 10 heptagons which reuses 11 sides. There

Figure 1: Optimal configuration for 10 heptagons

will usually be more than one configuration of k polygons which minimizes the
number of sides (see Figure 2) so we pose the following harder problem.

Question 2 What are all the optimal configurations?

This second question is particularly interesting because these optimal configu-
rations are likely to arise in nature. For example, there are the quasi-periodic
Penrose tilings which have been found to correspond to the arrangement of
atoms in certain types of non-stick surfaces; biological cell growth on a surface
around fixed obstacles; growth of soap films between parallel walls [6]; large-scale
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convection cells on the surface of the sun and other stars—even the hexagonal
structure at the pole of Saturn may be a portion of an energy minimisation
tiling of the surface of that planet.

Figure 2: The two other optimal configurations for 10 heptagons

In the world of mathematics, there are just three regular polygons which tes-
sellate the plane: the square, equilateral triangle, and regular hexagon. Ques-
tion 1 has already been answered for these shapes through application of a
pleasingly simple “spiral” algorithm first discovered in [5]. This allows one
to build up a sequence of optimal configurations C1, C2, . . . , Ck, . . . , such that
Ck+1 is obtained from Ck by adding a single cell. We rediscovered and used the
same algorithm in the more general setting. We also provide partial answers to
Question 2.

When the n-gon does not tessellate the plane, there are some internal un-
shared sides. This leads to complications which seem to make our questions
much harder. Except in small cases, we have no firm answers, however, a
plethora of equally economical configurations exist which are all asymptotically
optimal. We conjecture they are, in fact, optimal.

Section 2 contains our discussion of Questions 1 and 2 for the n-gons which
do not tessellate the plane. We introduce the idea of a near-tessellation of
the plane, and attempt to determine all of the near-tessellations in which the
number of edges per cell is minimized. For n ≡ 0 (mod 6) there is just one
near-tessellation. For all other n, except the octagon, there are uncountably
many near-tessellations, each giving rise to a sequence of asymptotically optimal
configurations.

The earliest reference to this problem appears to be that of Harary and
Harborth ([5]) in which they present a spiral algorithm and prove its validity
for the square, triangle, and hexagon. The authors of the present paper have
been studying this problem since the early 1980s (see [1]) and related papers
have recently begun to appear. For example, a series of papers ([12], [13],
[14], [16]) describe the impact of minimum perimeter tilings on the design of
databases and they obliquely make reference to the square spiral algorithm.
More explicitly, the spiral algorithm applied to squares can be found in [9] and
there is the suggestion of the same process applied to squares, triangles and
hexagons in Sloane’s Online Integer Sequence Encyclopedia [10], (see A137228,
A078633, A135708)—the last one is derived from the work in [8]. While the
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seminal tome on tilings in the literature ([2]) does not contain a direct reference
to this problem, it does contain many of the tilings we consider in this paper.
Finally, interesting animations of pentagonal near-tilings are provided on the
Wolfram site (see [7] and [11]).

2 Configurations in General

2.1 Orientation of the Polygons

Let n be odd. Whenever the bottom side of an n-gon is horizontal, the upper-
most extremity of the n-gon consists of a vertex lying directly above the center
of the bottom side. In this case, we say the n-gon is oriented upwards. Simi-
larly, we say the n-gon is oriented downwards if the vertex lies at the bottom
of the n-gon and the horizontal side lies at the top. In both cases, we say the
n-gons are properly oriented. When n is even, an n-gon is properly oriented if
the top and bottom sides are both horizontal. Figure 3 illustrates examples of
each of these oriented polygons. Notice that, after an appropriate rotation, all

Figure 3: Properly oriented polygons with 3-7 sides

configurations contain at least one properly oriented n-gon. When n is even,
it is clear by symmetry that any n-gon sharing a side with a properly oriented
polygon is also properly oriented. Figure 4 shows two superimposed properly
oriented n-gons of opposite orientations. The symmetry of the figure indicates

B

A

Figure 4: Superimposed properly oriented polygons

that the side A of the solid n-gon is parallel to the side B of the dashed n-gon,
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and that no other side of the dashed n-gon is parallel to the side A. Thus, no
matter how one manœuvres the dashed n-gon, if it shares the side A, then it
will be properly oriented with orientation opposite to that of the solid n-gon.

Proposition 1 Suppose a configuration contains a single properly oriented n-
gon. Then all n-gons in the configuration are properly oriented. Moreover, for
odd n, adjacent polygons have opposite orientation.

2.2 Polygonal Configurations and Circle Configurations

Given a connected configuration of side-sharing polygons, one can form, by
drawing inside each polygon a maximal inscribed circle, a connected configu-
ration of touching circles. Figure 5 illustrates the construction. Notice that

Figure 5: Reduction to a circle configuration

reduction to a circle configuration loses the orientation information. Neverthe-
less, circle configurations capture important features of the full problem. In
particular,

Proposition 2 In a circle configuration corresponding to a polygon configura-
tion, two circles touch iff their corresponding polygons share an edge.

In general, a circle configuration is an arrangement of identically-sized circles
in the plane so that circles may touch but not overlap. A circle configuration is
connected if there is a way to move between any pair of circles by passing along
a sequence of touching circles.

Most circle configurations cannot be obtained by reduction from a polygon
configuration. However, the following question regarding general circle configu-
rations is particularly relevant to our investigation of polygonal configurations.

Question 3 What is the maximum number of pairs of touching circles possible
in a configuration of v circles?
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2.3 Configurations and Planar Graphs

Each configuration of n-gons in the plane yields a planar graph G where

• each node corresponds to an n-gon in the configuration, and

• two nodes are joined if they correspond to side-adjacent n-gons.

Let v denote the number of nodes, f denote the number of faces, and e denote
the number of edges. By Euler’s formula,

f = e− v + 2 . (1)

In general, there are several internal faces and one external face. Each internal
face is bounded by a closed walk, the boundary of the face. Think of the
closed walk as oriented clockwise. The boundary of the external face is oriented
counterclockwise. If all of the boundaries of all of the faces are traversed, each
edge in the graph is traversed twice, once in each direction. Thus if the i-th
face has a boundary walk of length ci, then

2e = c1 + c2 + · · ·+ cf . (2)

If a boundary contains a node of degree 1, then the closed walk enclosing the
face will traverse some edges in the boundary twice—once in each direction.

1

2

3
4

5

11

12

13
14

15

7
8 6

10

9

Figure 6: A configuration of pentagons and its corresponding planar graph

Example 1 In Figure 6 we show a configuration of 15 pentagons and the cor-
responding planar graph G with labeled nodes. G contains v = 15 nodes, e = 17
edges and f = 4 faces. The boundary walks for the three internal cycles are
(1, 2, 3, 8, 14, 15), (3, 4, 5, 6, 7, 8), and (8, 10, 11, 12, 13, 14). The boundary walk
for the external cycle is (1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 10, 11, 12, 13, 14, 15). Notice that
the edge (8, 9) is traversed twice - once in each direction.

Proposition 3 Let n denote the number of sides of a polygon. When n is odd,
the corresponding planar graph is bipartite. In particular, all cycles have even
length.
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2.4 Asymptotics

An asymptotic answer to Question 1 is now possible. By (1), maximizing the
number of shared sides e in a configuration of v n-gons is equivalent to maxi-
mizing the number of faces f . Equation (1) also implies

e

f − 1
= 1 +

v − 1
f − 1

.

Therefore, maximizing f for fixed v is equivalent to minimizing e/(f − 1). In
the next subsection we will show that for each n there is a minimum length
cmin ∈ {3, 4, 6} for the boundary of any face. Under the assumption that cmin

is well defined for each n, (2) then implies

e

f − 1
≥ 1

2

(
cmin +

c1

f − 1

)
,

where c1 is the length of the external cycle. In order to exhibit configurations
which are at least asymptotically optimal, it is therefore sufficient to find con-
figurations whose internal faces all have size cmin, and whose external faces have
size dominated by f .

2.5 Small Cycles of Circles

We use the term necklace to denote a finite collection of non-overlapping con-
gruent circles for which every circle touches precisely two others. Before deter-
mining the value of cmin, we consider small necklaces of circles. It happens that
only cycles of length 3, 4 and 6 need be considered (see Figure 7 for examples).
The 3 cycle is unique. On the other hand, there are many possible 4 cycles, all

Figure 7: 3, 4, and 6 cycles

of them symmetric in the sense that the quadrilateral subtended by the centers
of the circles have alternating internal angles equal. The situation for 6 cycles
is markedly different, greatly complicating the situation for n-gons with n odd.
Note that the internal angles can all be different, and that one of the angles can
even be greater than π—thus creating a concave cycle.
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2.6 Minimal Polygon Necklaces

We extend the notion of a necklace to include regular polygons, but two polygons
are allowed to touch only if they share an entire edge. The immediate goal is
to determine how the smallest number cmin of polygons in an n-gon necklace
depends on the number n. Figure 8 shows the three non-isomorphic minimal
necklaces for n = 11.

Figure 8: The minimal 11-gon necklaces

Consider a face with boundary equal to the closed walk v1, v2, . . . , vc, vc+1 =
v1. Let −π ≤ αi < π denote the angle turned to the right as we pass the node
vi. Then, because we wind around the interior of the face exactly once as we
traverse the closed walk,

2π = α1 + α2 + · · ·+ αc . (3)

The angle αi is called the change in bearing as we pass through vertex vi.
Consider what happens in the corresponding polygon configuration as we

move around a boundary. Each vertex in the planar graph is associated with a
polygon in the corresponding configuration, therefore each cycle in the planar
graph corresponds to a necklace of polygons. If the necklace contains c polygons,
then the necklace contains cn sides, of which c are shared. If there are I edges
on the interior border, the remaining E = cn− I − 2c are on the outside of the
necklace. Let Ei and Ii respectively denote the number of external and internal
polygon sides contributed to the necklace by the the i-th polygon. Then

cn = 2c +
c∑

i=1

Ei +
c∑

i=1

Ii . (4)

Figure 9 shows that αi = (Ei − Ii)π
n . Thus

2n =
c∑

i=1

(Ei − Ii) . (5)

Consequently,
n(c− 2)

2
= c +

c∑
i=1

Ii . (6)
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αi = (Ei − Ii)
π
n

Ei

Ii

vi

vi−1 vi+1

Figure 9: Change in bearing versus the number of internal and external sides

We can now use this fundamental equation to determine cmin for all possible
n-gons. The smallest possible cycle occurs when c = 3. As I1 = I2 = I3 = I,
equation (6) becomes

n = 6(1 + I).

So if n ≡ 0 (mod 6), then (I1, I2, I3) =
(

n
6 − 1, n

6 − 1, n
6 − 1

)
is a solution—for

which the hexagon is the smallest example.
The next-smallest necklaces are 4-cycles. Symmetry forces I1 = I3 and

I2 = I4, so (6) becomes
n = 4 + 2I1 + 2I2. (7)

Clearly, n must be even, so let n = 2m and consider the cases of even and
odd m. If m = 2k then (7) becomes 2k − 2 = I1 + I2, which has a particular
solution of (I1, I2) = (k − 1, k − 1)—the smallest example being a square. If
m = 2k + 1, then (7) becomes 2k− 1 = I1 + I2, which has a particular solution
of (I1, I2) = (k − 1, k)—with the decagon as the smallest example. All even
n-gons now have either a minimal cycle of length three or length four.

For odd n we show that odd length cycles are impossible and we also elimi-
nate 4-cycles. Let n = 2m + 1 and c = 2k + 1, so (6) becomes

(2m + 1)(2k − 1) = 2

(
2k + 1 +

2k+1∑
i=1

Ii

)
,

which is impossible to solve over the integers (the left side is odd, and the right
side is even). In particular, no 3-cycles or 5-cycles can occur. Next, if 4-cycles
are possible then, as above, symmetry would force I1 = I3, I2 = I4, which
means

2m + 1 = 4 + 2I1 + 2I2

from equation 7. This is also impossible.
Now we simply need to demonstrate the existence of solutions for a 6-cycle.

Equation (6) becomes

2n = I1 + I2 + I3 + I4 + I5 + I6 + 6.
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We attempt to solve a two parameter specialization by setting n = 2m + 1 and
(I1, I2, I3, I4, I5, I6) = (a, a, b, a, a, b), namely,

2m = 2a + b + 2.

Since we require that the 6-cycle not self-intersect, we have the inequalities

π

3
≤ (a + 1)

2π

n
≤ π and

π

3
≤ (b + 1)

2π

n
≤ π.

For m = 3k, 3k + 1, 3k + 2, particular solutions to 2m = 2a + b + 2 and the
inequalities are (a, b) = (2k − 1, 2k), (2k, 2k) and (2k + 1, 2k), respectively.

All this proves the following:

Proposition 4 The smallest edge-sharing necklace for an n-gon is a
3-cycle for n ≡ 0 (mod 6)
4-cycle for n ≡ 2, 4 (mod 6)
6-cycle for n ≡ 1, 3, 5 (mod 6).

2.7 Classification of 4-cycle necklaces

Notice that 4-cycle necklaces occur when n ≡ ±2 (mod 6). The symmetry
imposed by the 4 incircles forces these necklaces to always have at least the
cyclic group C2 as a symmetry group. However, whenever n is a multiple of
four, then C4 is possible as well. If α1, . . . , α4 denote the four bearings of the
4-cycle, then symmetry forces α1 = α3, α2 = α4 and α1 = π − α2. Translating
this into the internal edge counts leads to

(I1, I2, I3, I4) =
(
m,

n

2
−m− 2,m,

n

2
−m− 2

)
,

where m is constrained by the non-overlapping requirement π
3 < (m + 1) 2π

n .
Notice that the sum of the internal edges is fixed for each polygon. All such m
are possible, and to avoid double counting, (m + 1) 2π

n ≤ π
2 is required, which

leads to
n

6
− 1 < m ≤ n

4
− 1.

Examples of 4-cycles for small n are shown in Table 1. The number of 4-cycle
necklaces, N4(n), is now easy to obtain:

N4(n) =
⌊n

4
− 1
⌋
−
⌈n

6
− 1
⌉

for n ≡ ±2 (mod 6).

2.8 Computational search for 6-cycle necklaces

With 6-cycle polygonal necklaces, unlike the 4-cycle case, nothing can be inferred
about the symmetry of the discrete case from the continuous case. In particular,
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n I1 I2 I3 I4 symmetry
4 0 0 0 0 C4

8 1 1 1 1 C4

10 1 2 1 2 C2

14 2 3 2 3 C2

16 2 4 2 4 C2

3 3 3 3 C4

20 3 5 3 5 C2

4 4 4 4 C4

22 3 6 3 6 C2

4 5 4 5 C2

26 4 7 4 7 C2

5 6 5 6 C2

Table 1: 4-cycle necklaces

the possible 6 internal arc-lengths of a 6-circle necklace can all be distinct.
However, a systematic taxonomy of 6-polygon necklaces for small polygons does
not reveal any corresponding asymmetric (or concave) necklaces—all examples
to date are convex and have either 2, 3, or 6-fold symmetry.

For a regular n-gon we denote the incircle radius by rn, the circumcircle
radius by Rn, and the angle subtended at the centre by a side by θn = 2π/n.
The search begins by fixing two n-gons with their centres on the x-axis at
P1 = (rn, 0) and P2 = (−rn, 0) (see Figure 10). The next three n-gons are

P2

P4

α2

α1

α3

P6

P1

P3

P5

Figure 10: Setup for the computational search

centred at P3, P4 and P5, sharing an edge with their respective neighbours.
The discrete positions allowed for these three n-gons are defined by specifying
three bearings αi = miθn where the mi are arbitrary integer parameters ranging
from 1 to n− 1. By intersecting two circles of radius 2rn, centred at P5 and P1,
possible positions of the last n-gon, at P6 can be determined. The vectors P5P6

and P6P1 are only allowed to come from a discrete set, namely the 2n-th roots
of unity (see section 2.9). All distances between pairs of non-adjacent points in
{P1, P2, P3, P4, P5, P6} are computed—a configuration fails if any such distance
is less than 2rn (due to overlap) and passes if all such distances are greater than
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2Rn. Any remaining “undecided” configurations can be subjected to a check
using the roots of unity representation, described in section 2.9.

If the counts of the interior (non-shared) edges for each n-gon are denoted
by (I1, I2, I3, I4, I5, I6) as one traverses the inside of the 6-cycle, starting at P2,
then

Ii =
αi

θn
− 1.

Table 2 shows the results for odd n-gons with up to 13 sides. In particu-
lar, extending this table up to 301 sides reveals that odd n-gons with n ≡ 0
(mod 3) have 6-cycles with 2, 3 or 6-fold symmetry—i.e., 6-cycles of the form
(a, b, c, a, b, c), (a, b, a, b, a, b), or (a, a, a, a, a, a). When n ≡ ±1 (mod 6) the

n I1 I2 I3 I4 I5 I6 symmetry
3 0 0 0 0 0 0 C6

5 0 1 1 0 1 1 C2

7 1 2 1 1 2 1 C2

9 1 3 2 1 3 2 C2

1 3 1 3 1 3 C3

2 2 2 2 2 2 C6

11 1 4 3 1 4 3 C2

2 4 2 2 4 2 C2

2 3 3 2 3 3 C2

13 2 5 3 2 5 3 C2

2 4 4 2 4 4 C2

3 4 3 3 4 3 C2

Table 2: Six-cycle necklaces

6-cycles only have 2-fold symmetry—i.e., an interior of (a, b, c, a, b, c).
The total number of distinct necklaces, N6(n), for each n is very regular (see

Figure 11) and is predicted by the following formula (proven later).

Theorem 2.1

N6(n) =

{⌊
(i + 1)2/2

⌋
− 1 if n ≡ 3 (mod 6)⌊

(i + 1)2/2
⌋
− b(i + 1)/2c if n ≡ ±1 (mod 6),

where i := b(n + 3)/6c.

2.9 Roots-of-unity representation

An instructive way to represent these cycles and near-tilings is with the aid of
roots of unity. For even n, the distance between the centres of any two side-
sharing n-gons can be represented by a translation of some n-th root of unity.
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Figure 11: The number of 6-cycle necklaces

For odd n, we use a translation of some 2n-th root of unity for the same purpose,
noting in this case the roots of unity alternate their exponent (between odd and
even) with the orientation of the underlying n-gon as the path of edge-sharing
n-gons is traversed (see Figure 12).

Odd n-gons, with minimal 6-cycles and a properly oriented1 n-gon at the
origin, must satisfy

3∑
i=1

ζ2αi
2n +

3∑
i=1

ζ2βi+1
2n = 0

for integers αi, βi, where ζ2n = e2πi/2n. The lack of asymmetry in the compu-
tational results, and the facts that ζn

2n = −1 and ζ2a
2n = ζa

n lead to the following
conjecture.

Conjecture 1 For n odd and ζn = e2πi/n,

ζa1
n + ζa2

n + ζa3
n = ζb1

n + ζb2
n + ζb3

n

if and only if either

i. ζa1
n = ζbi

n for some i ∈ {1, 2, 3}, or

ii.
∑3

i=1 ζai
n = 0.

There is a correspondence between the symmetry types of convex 6-cycles and
the conjecture shown in the table below. Proof of the above conjecture, at least

1In this section we change proper orientation to mean “left-pointing” and “right-pointing”
n-gons.
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−ζb1
n

−ζb2
n

−ζb3
n

+ζa1
n

+ζa3
n

+ζa2
n

Figure 12: Roots of unity joining centres of n-gons in a 6-cycle

symmetry {{ζa1
n , ζa2

n , ζa3
n }} = {{ζb1

n , ζb2
n , ζb3

n }}
∑3

i=1 ζai
n = 0

2 True False
3 False True
6 True True

for the case of all prime n greater than 6, relies on the properties of cyclotomic
polynomials. Since this is completely subsumed by the work in the next section,
we omit it.

2.10 Classification of minimal 6-cycles

So far, simple arguments have allowed us to firstly, show that the minimal cycles
for n-gons are of length 3, 4, or 6, depending on the residue class of n modulo 6,
and secondly, classify the minimal cycles of length 3 or 4. However, there seems
to be no simple argument that allows us to classify the minimal 6-cycles.

In this section, as a first step towards a classification of minimal 6-cycles,
we use arguments in cyclotomic rings to characterize all of the solutions of the
equation

ζe1
n + ζe2

n + ζe3
n = ζe4

n + ζe5
n + ζe6

n , (8)

where ζn denotes a primitive n-th root of unity for any natural number n.
Once the choices for the 6-tuple (e1, e2, e3, e4, e5, e6) are classified, the ques-

tion of which 6-tuples map to 6-cycles remains. We will address these geometric
issues in a separate section. The solutions to the above equation are determined
by the primes which divide n. We begin with two simple lemmas, the first of
which we will need to generalize in order to describe the solutions to equation
(8).
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Lemma 1 Let n be an odd natural number, and suppose that

ζe1
n = (−1)wζe2

n ,

where w = 0, 1 and 0 ≤ e1, e2 < n. Then w = 0 and e2 = e1.

Proof. If w = 1, then the multiplicative group of odd order n generated by
ζn contains the element −1, which has order 2. Therefore w = 0. Since ζn has
order n, we have e2 ≡ e1 (mod n). Since 0 ≤ e1, e2 < n, we must have e2 = e1.

�

Lemma 2 Let p be an odd prime, and let s be odd and coprime to p. The
minimal polynomial of a complex primitive pk+1-th root of unity over the ring
Z[ζs] is the polynomial

f(x) = 1 + xpk

+ x2pk

+ · · ·+ x(p−1)pk

.

Proof. Let ω := ζpk+1 and let m(x) denote the minimum polynomial of ω
over Z[ζs]. Notice that f(ω) is the sum of the complex p-th roots of unity, so
f(ω) = 0. Therefore m(x) divides f(x). Moreover, since f(x) is monic, it is
sufficient to show that m(x) and f(x) have the same degree.

Now, for any ring R, the minimum polynomial m(x) of ω over R is∏
α

(x− α(ω)) ,

where α ranges over the automorphisms of the ring R[ω] which fix ω. Since s
is coprime to p, the ring R[ω] is Z[ω1/s] when R = Z[ζs]. In this case, each
automorphism which fixes ω corresponds to an element ωi = α(ω), where i ∈
{1, 2, . . . , pk+1 − 1} is coprime to p. Consequently, m(x) has degree (p− 1)pk =
deg(f). �

We now prove a substantial generalization of Lemma 1.

Lemma 3 Let u and v be nonnegative integers, and let n be an odd natural
number. Suppose that, for w = 0 or 1,

ζe1
n + ζe2

n + · · ·+ ζeu
n = (−1)w(ζeu+1

n + ζeu+2
n + · · ·+ ζeu+v

n ) . (9)

If n is 1 or a product of primes exceeding u + v
2 and v + u

2 , then either

1. we have w = 0 and the multiset {{e1, e2, . . . , eu}} equals the multiset
{{eu+1, eu+2, . . . , eu+v}}, or

2. u + v is an odd prime dividing n, and w = 1.

Proof. We prove this by induction on the number of primes dividing n, proving
the inductive step and the initial cases at the same time. Let p be the smallest
prime dividing n = spk+1, where s is coprime to p and k ≥ 0. The initial case
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is when s = 1 and n is a prime power, while the inductive step is when s > 1
and n has at least two distinct prime divisors.

Note that ζei
n can be uniquely written in the form ζfi

s ζgi

pk+1 , where 0 ≤ fi < s,
and 0 ≤ gi < pk+1. Then (9) becomes

u∑
j=1

ζfj
s ζ

gj

pk+1 =
u+v∑

j=u+1

ζfj
s ζ

gj

pk+1 . (10)

By Lemma 2, there exists a polynomial A(x) over the ring Z[ζs] of degree at
most pk such that

u∑
j=1

ζfj
s xgj =

u+v∑
j=u+1

ζfj
s xgj + A(x)

p−1∑
j=0

(
xpk
)j

. (11)

Since deg(A) < pk, the number of distinct exponents of x arising when the
product A(x)(1+xpk

+ · · ·+x(p−1)pk

) is expanded and collected with respect to
x is ap, where a is the number of terms in the expanded and collected form of
A(x). Since these exponents must be matched by the exponents g1, g2, . . . , gu+v,
and since u + v < 4

3p < 2p, we must have a = 0 or 1.
We show that if a = 1 then p = u+ v is an odd prime dividing n and w = 1.

If a = 1, then we have
(u + v)/2 < p ≤ (u + v) . (12)

Since (u + v)/2 < p, there must be one exponent gi0 which is distinct from the
other exponents gj . Therefore, we must have A(x) = ±ζf

s xt for some f and t.
Consider two cases: w = 0 and w = 1. If w = 0, then (11) becomes

u∑
j=1

ζfj
s xgj =

u+v∑
j=u+1

ζfj
s xgj ± ζf

s xt

p−1∑
j=0

(
xpk
)j

. (13)

Indeed, since u + v
2 < p and v + u

2 < p, there are i0 ∈ {1, 2, . . . , u} and j0 ∈
{u + 1, u + 2, . . . , u + v} such that gi0 6= gj for all j 6= i0, and gj0 6= gi for all
i 6= j0. But then

ζ
fi0
s = ±ζf

s = −ζ
fj0
s ,

which is impossible, by Lemma 1. This argument applies equally well when
s = 1 (an initial case) and when s > 1 (the inductive step).

Now consider the case w = 1: (11) becomes

u+v∑
j=1

ζfj
s xgj = ζf

s xt

p−1∑
j=0

(
xpk
)j

. (14)

We now have two cases: p = u + v, and p < u + v. In the latter case, there are
z exponents gi1 = gi2 = · · · = giz

where 1 ≤ z − 1 ≤ u + v − p < p/3, such that
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gj = gi1 if and only if j = i1, i2, . . . , iz. In this case, (14) implies that
z∑

j=1

ζ
fij
s = ζf

s .

If s = 1 (i.e., n = pk+1 has just one prime divisor), we have z = 1—a contradic-
tion. If s > 1, then, since (a) all primes dividing s exceed p and hence exceed
p/3 + 1, (b) s has one fewer prime divisors than n, and (c) z > 1, we have a
contradiction by induction. Therefore if a = 1, we must have that p = u + v is
an odd prime. Moreover, ζfi

s = ζf
s for all i = 1, 2, . . . , u + v, and the multiset

{{g1, g2, . . . , gu+v}} = {{t, t+pk, . . . , t+(p−1)pk}}. Consequently, p = u+v is
an odd prime dividing n, and w = 1. So if a = 1, the second part of the lemma
applies.

Now consider the case where a = 0. In this case, (11) yields
u∑

j=1

ζfj
s xgj = (−1)w

u+v∑
j=u+1

ζfj
s xgj (15)

Now when s = 1 (an initial case), u = (−1)wv, and {{g1, g2, . . . , gu}} =
{{gu+1, gu+2, . . . , gu+v}}. Moreover, ei = gi. So the lemma holds. This com-
pletes the proof of the initial cases. Completion of the proof of the inductive
step remains.

When s > 1, s is the product of primes exceeding u + v/2 and v + u/2, so
s > v. Setting x = ζ−c

s in (15) yields, for all c = 0, 1, . . . , s− 1,
u∑

j=1

ζfj−cgj
s = (−1)w

u+v∑
j=u+1

ζfj−cgj
s (16)

By induction on the number of prime divisors, we have w = 0 and

{{f1 − cg1, f2 − cg2, . . . , fu − cgu}}
= {{fu+1 − cgu+1, fu+2 − cgu+2, . . . , fu+v − cgu+v}} .

Since s > v, the pigeonhole principle implies that there is a j0 ∈ {u + 1, u +
2, . . . , u + v} and c1 6= c2 such that

f1 − c1g1 = fj0 − c1gj0 and f1 − c2g1 = fj0 − c2gj0 .

Thus fj0 = f1 and gj0 = g1, and (16) becomes (after swapping the indexes u+1
and j0 if necessary)

u∑
j=2

ζfj−cgj
s =

u+v∑
j=u+2

ζfj−cgj
s . (17)

Applying the argument for (f1, g1) in turn for the pairs (f2, g2), . . . , (fu, gu), we
conclude that

{{(f1, g1), (f2, g2), . . . , (fu, gu)}}
= {{(fu+1, gu+1), (fu+2, gu+2), . . . , (fu+v, gu+v)}} ,
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and this implies that {{e1, e2, . . . , eu}} = {{eu+1, eu+2, . . . , eu+v}}. This com-
pletes the proof of the inductive step, and hence the lemma. �

We are now ready to consider (8).

Theorem 2.2 Let n be an odd natural number. Then

1. Suppose that n ≡ ±1 (mod 6). For 0 ≤ e1, e2, e3, e4, e5, e6 < n we have
(8) iff {{e1, e2, e3}} = {{e4, e5, e6}}.

2. Suppose that n ≡ 3 (mod 6). Write n = s3k+1, where k ≥ 0, and s
is coprime to 3. For 0 ≤ e1, e2, e3, e4, e5, e6 < n we have (8) iff (upon
relabelling if necessary) one of the following holds

(a) ζei
n = ζfi

s ζgi

3k+1 , where 0 ≤ fi < s, 0 ≤ gi < 3k+1, and f1 = f2 = f3,
f4 = f5 = f6, f1 6= f4, g1 = g2 − 3k = g3 − 2 · 3k, g4 = g5 − 3k =
g6 − 2 · 3k,

(b) {{e1, e2, e3}} = {{e4, e5, e6}}.

Proof. 1. In this case, n = 1 or is a product of primes exceeding five, therefore
Lemma 3 applies with u = v = 3. Furthermore, since u + v = 6 is not prime,
only part 1 of the conclusion of the lemma is possible. Thus {{e1, e2, e3}} =
{{e4, e5, e6}}.

2. Write n = s3k+1 where k ≥ 0 and s is coprime to 3. We can write ζei
n in

the form ζfi
s ζgi

3k , where 0 ≤ fi < s, and 0 ≤ gi < 3k+1 are uniquely determined
by ei. Equation (8) then becomes

3∑
j=1

ζfj
s ζ

gj

3k+1 =
6∑

j=4

ζfj
s ζ

gj

3k+1 .

By Lemma 2, the minimum polynomial of ζ3k+1 is 1 + x3k

+ x2·3k

, so we have

3∑
j=1

ζfj
s xgj =

6∑
j=4

ζfj
s xgj + A(x)

2∑
j=0

(
x3k
)j

, (18)

where deg(A) < 3k. Consequently, we have three possible forms for A(x):

I. A(x) = 0

II. A(x) = bxt,where b 6= 0 is in Z[ζs], and 0 ≤ t < 3k,

III. A(x) = b1x
t1 + b2x

t2 , where b1, b2 6= 0 are in Z[ζs], and 0 ≤ t1 6= t2 < 3k.

We consider these in reverse order.
III. In this case, we have {g1, g2, g3, g4, g5, g6} = {t1, t1+3k, t1+32·3k

, t2, t2+
3k, t2 + 32·3k}. Relabelling if necessary, we have g1 = t1, and so b1 = ζf1

s . By
part 1, in order to get full cancellation, we must then have {g2, g3} = {t1 +
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3k, t1 + 32·3k}, f3 = f2 = f1, b2 = ζf4
s , f6 = f5 = f4, and {g4, g5, g6} =

{t2, t2 + 3k, t2 + 32·3k}. Finally, since b1 6= b2, we have f1 6= f4.
II. Let a1 denote the number of indexes i such that gi = t1, let a2 denote

the number of indexes i such that gi = t1 + 3k, and let a3 denote the number
of indexes i such that gi = t1 + 2 · 3k. Now 1 ≤ a1, a2, a3, and a1 + a2 + a3 ≤ 6.
Let a = 6 − a1 − a2 − a3: then a ≤ 3 and a 6= 1. Now, if a = 3 then for some
h1, h2, h3, we have

ζh1
s ± ζh2

s ± ζh3
s = 0 . (19)

Since 5 is the largest prime dividing s, Lemma 3 implies that this is not possible,
so either a = 0 or 2. If a = 2, then {{a1, a2, a3}} = {{1, 1, 2}}. Hence,
permuting the exponents g1, g2, . . . , g6 if necessary, b = ζf1

s , and then (since
a1, a2 or a3 equals 2), full cancellation in (18) implies the impossible condition
(19). So a = 0, and the possibilities for {{a1, a2, a3}} are {{1, 1, 4}}, {{1, 2, 3}}
and {{2, 2, 2}}.

If {{a1, a2, a3}} = {{1, 1, 4}}, then b = ζf1
s and we have

ζh1
s ± ζh2

s ± ζh3
s ± ζh4

s = ζf1
s .

Now if {{a1, a2, a3}} = {{1, 2, 3}}, then b = ζf1
s and we have

±ζh1
s ± ζh2

s = ζf1
s .

Since the smallest prime dividing s is five, Lemma 3 implies that both of these
identities are impossible, so {{a1, a2, a3}} = {{2, 2, 2}}. In this case, there are
indexes i0 ∈ {g1, g2, g3} and j0 ∈ {g4, g5, g6} such that gi0 = gj0 and gi = gi0 iff
i = i0 or j0. So relabelling the exponents g1, g2, g3 and the exponents g4, g5, g6,
we have ζf1

s − ζf4
s . Now if g2 = g3, then

ζf2
s + ζf3

s = ζf1
s − ζf4

s ,

which, by Lemma 3, cannot happen. So, swapping g5 and g6 if necessary, we
have g2 = g5, g3 = g6,

ζf2
s − ζf5

s = ζf1
s − ζf4

s and ζf3
s − ζf6

s = ζf1
s − ζf4

s .

Thus {{g1, g2, g3}} = {{g4, g5, g6}} = {{t, t + 3k, t + 2 · 3k}}. Moreover, by
Lemma 3, we must have {{f2, f4}} = {{f1, f5}} and {{f3, f4}} = {{f1, f6}}.
Now since b 6= 0, we have f1 = f2 = f3, f4 = f5 = f6, and f1 6= f4.

I. We have
3∑

j=1

ζfj
s xgj =

6∑
j=4

ζfj
s xgj . (20)

Partition the set {1, 2, 3, 4, 5, 6} into disjoint subsets so that i and j are in
the same subset if and only if gi = gj . Then by Lemma 3, each subset
must have even order. Moreover, for each such subset S of order 2a, we have
{{fi|i ∈ S∩{1, 2, 3}}} = {{fj |j ∈ S∩{4, 5, 6}}}. Consequently, {{f1, f2, f3}} =
{{f4, f5, f6}}. �
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Corollary 2.3 Let n ≡ ±1 (mod 6) be an odd integer greater than one. Then
all 6-cycles of n-gons have at least C2 symmetry.

Proof. Since {{e1, e2, e3}} = {{e4, e5, e6}}, we may suppose the 6-sided poly-
gon with vertices equal to the centers of the n-gons has opposite sides which are
parallel to each other. �

2.11 Symmetries of 6-cycles

We continue to consider 6-cycles constructed from near-tilings of odd n-gons and
use the arguments of the previous section to reveal more about their symmetries.
Arbitrary equilateral hexagons (see Figure 13) can have only the following types
of non-trivial rigid, planar symmetries:

• a rotation group C2 iff a = d, b = e, c = f and at most one pair of a, b, c
are equal,

• a rotation group C3 iff a = c = e, b = d = f and a 6= b, or

• a rotation group C6 iff a = b = c = d = e = f .

f

b

c

d

a

e

0
ζe1

n

+ζe2
n

+ζe3
n

−ζe6
n

−ζe4
n

−ζe5
n

Figure 13: Roots of unity joining centres of odd n-gons in a 6-cycle

If we constrain the sides of the hexagon to be sums of alternating positive
and negative n-th roots of unity, then since arg (ζei

n ) = 2πei/n + 2kiπ and
arg (−ζei

n ) = (2ei + n)π/n + 2liπ,

a =
2π

n
(e5 − e1) + 2kaπ, b =

2π

n
(e1 − e6) + 2kbπ,

c =
2π

n
(e6 − e2) + 2kcπ, d =

2π

n
(e2 − e4) + 2kdπ,

e =
2π

n
(e4 − e3) + 2keπ, f =

2π

n
(e3 − e5) + 2kfπ.

In particular, this means that the symmetry conditions above can be translated
into constraints on the exponents of the roots of unity.
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First consider the case of n ≡ ±1 (mod 6). For the C3 symmetry,

a = c = e =⇒ e5 − e1 ≡ e6 − e2 ≡ e4 − e3 (mod n)
b = d = f =⇒ e1 − e6 ≡ e2 − e4 ≡ e3 − e5 (mod n)

which upon summation leads to 3(e5 − e6) ≡ 0 (mod n). Since a 6= b for this
symmetry, or e5 6= e6, we conclude that n is divisible by 3. This contradiction
shows that 6-cycles constructed from n-gons in this case cannot have 3-fold
symmetry. This, with Corollary 2.3, proves that such 6-cycles have exactly C2

symmetry.
Next consider the case n ≡ 3 (mod 6). The following is an equivalent cri-

terion for C3 symmetry. A 6-cycle has C3 symmetry when the alternate edges
form (via parallel transport) an equilateral triangle:

ζe1
n + ζe2

n + ζe3
n = 0.

Conversely, if
∑3

i=1 ζei
n = 0, then

∑6
i=4 ζei

n = 0, since we are assuming that
equation 8 holds. Thus we have two equilateral triangles, the sides of which
can be interlaced to form a 6-cycle with at least C3 symmetry (see Figure 14).
Notice that part (a) of the second condition in Theorem 2.2 implies that

Figure 14: A 6-cycle with C3 symmetry

3∑
j=1

ζej
n =

2∑
j=0

ζf1
s ζg1+j3k

3k+1

= ζf1
s ζg1

3k+1

2∑
j=0

ζj3k

3k+1

which is zero by Lemma 2. Furthermore, by definition, ei = fi3k+1 + gis, and
so if e1 = e4, then

e1 = f13k+1 + g1s = f43k+1 + g4s = e4,

or equivalently, f1 ≡ f4 (mod s). Since f1 6= f4, we can infer e1 6= e4. Similarly,
e1 6= e5 and e1 6= e6. Thus {{e1, e2, e3}} 6= {{e4, e5, e6}} which implies there is
no C2 symmetry in this subcase, only C3 symmetry.
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In the final subcase of n ≡ 3 (mod 6), namely part (b) of the second part of
Theorem 2.2, we have {{e1, e2, e3}} = {{e4, e5, e6}}. This can be split into two
possible subcases, depending on whether or not

∑3
j=1 ζ

ej
n = 0. If {{e1, e2, e3}} =

{{e4, e5, e6}}, it is clear that opposite sides of the 6-cycle must be parallel, giving
us at least C2 symmetry. If

∑3
j=1 ζ

ej
n 6= 0 there is only C2 symmetry but if∑3

j=1 ζ
ej
n = 0, we also get C3 symmetry.

Combining all of the above arguments proves the following.

Theorem 2.4 If n is odd, then the minimal 6-cycles have the following sym-
metries.

• C2 if n ≡ ±1 (mod 6).

• C3 if n ≡ 3 (mod 6) and {{e1, e2, e3}} 6= {{e4, e5, e6}}.

• If n ≡ 3 (mod 6) and {{e1, e2, e3}} = {{e4, e5, e6}}, either

– C2 if
∑3

j=1 ζ
ej
n 6= 0, or

– C6 if
∑3

j=1 ζ
ej
n = 0.

We now wish to use this theorem to prove the experimentally determined
formula for N6(n) at the end of section 2.8.

First, in the n ≡ ±1 (mod 6) case, we can use equation 6 and Theorem 2.4
to argue that the number of interior edges from one shared edge to the next is
given by

(I1, I2, I3, I4, I5, I6) = (k, l, n− k − l − 3, k, l, n− k − l − 3) ,

where k and l are integers. Furthermore, repeated sets of parameters are avoided
by ensuring that k corresponds to the smallest allowable internal angle, while l
corresponds to the largest allowable internal angle. Thus

π

3
< (k + 1)

2π

n
<

2π

3
and

2π

3
< (l + 1)

2π

n
< π.

So
n

6
− 1 < k <

n

3
− 1 and

n

3
− 1 < l <

n

2
− 1.

While one of these parameters, k say, can be allowed to range freely over the
interval, they are not both free since I3 must correspond to the middle-sized
interior angle. That is,

(k + 1)
2π

n
≤ (n− k − l − 2)

2π

n
≤ (l + 1)

2π

n
,

or equivalently,
n− k − 3

2
≤ l ≤ n− 2k − 3.
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Combining the two constraints on l and observing that (n−k− 3)/2 ≥ n/3− 1
gives us

n− k − 3
2

≤ l ≤ min
{n

2
− 1, n− 2k − 3

}
.

Now we simply want to count the number of lattice points inside the region
of the kl-plane defined by the above constraints. Since n/2 − 1 = n − 2k − 3
if k = n/4 − 1, the k range can be split into two pieces over which the upper
bound for l swaps. To ease the computation, replace k and l by k′ = k + 1 and
l′ = l + 1, which converts the region into

n

6
< k′ <

n

3
and

n− k′

2
≤ l′ ≤ min

{n

2
, n− 2k′

}
,

(see Figure 15). Notice that the area of the grey region is n2/72, which is

n
2

5n
12

n
3

l′

k′
n
3

n
6

n
4

l′ = n− 2k′l′ = n−k′

2

Figure 15: Region in the k′l′-plane corresponding to distinct 6-cycles

asymptotically the same as that given by the experimental formula for N6(n).
We compute the exact result in the case n = 24m−1. Recall Pick’s theorem:

a lattice polygon with I interior points and B boundary points has area

I + B/2− 1.

To apply this we find the vertices of the convex hull of the lattice points inside,
or on, the quadrilateral of Figure 16. This causes complications only on the
lower boundary. For example, we compute the coordinates of the lattice point
C to the left of k′ = n

4 and above or on l′ = n−k′

2 :(⌊n

4

⌋
,

⌈
n− k′

2

⌉)
=
(⌊

24m− 1
4

⌋
,

⌈
24m− 1− k′

2

⌉)
=
(

6m− 1,

⌈
24m− 1− (6m− 1)

2

⌉)
= (6m− 1, 9m).
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A
A1

B1

B

C

G

H

n
6

n
3

n
4

E1

E

F

F1

D

Figure 16: Extrema of convex hull of lattice points in k′l′-plane

The 12 points are

A1 = (4m, 12m− 1) B1 = (4m, 10m)
A = (4m + 1, 12m− 1) B = (4m + 1, 10m− 1)
C = (6m− 1, 9m) D = (6m− 1, 12m− 1)

E1 = (6m, 12m− 1) F1 = (6m, 9m)
E = (6m + 1, 12m− 3) F = (6m + 1, 9m− 1)
G = (8m− 1, 8m) H = (8m− 1, 8m + 1).

The number of lattice points in the grey quadrilateral is

N6(24m− 1) = pts(A1B1) + pts(ABCD) + pts(E1F1) + pts(EFGH),

where pts() denotes the number of lattice points in and on the boundary of
the (possibly degenerate) polygon joining those points. We compute these in
turn using Pick’s theorem and the trapezoid area formula or by simply counting
them. So

pts(A1B1) = (12m− 1)− (10m) + 1 = 2m

pts(ABCD) =
1
2
(5m− 1)(2m− 2) +

1
2
(8m− 4) + 1 = 5m2 − 2m

pts(E1F1) = (12m− 1)− (9m) + 1 = 3m

pts(EFGH) =
1
2
(3m− 1)(2m− 2) +

1
2
(6m− 4) + 1 = 3m2 −m.

So
N6(24m− 1) = 8m2 + 2m,

which confirms the experimental formula in this case. The remaining seven
cases when n ≡ 1, 5, 7, 11, 13, 17, 19 (mod 24) are similar.
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Now consider the n ≡ 3 (mod 6) case, which is different from the previous
one, in that all three symmetry groups must be dealt with. First, if we assume
that n = 6N +3, then the C3 symmetry and equation (6) force the interior edge
counts to be

(I1, I2, I3, I4, I5, I6) = (k, 4N − k, k, 4N − k, k, 4N − k) .

Since the angle corresponding to I2 does not restrict us in any way, there is only
one free parameter k, which is constrained by

π

3
< (k + 1)

2π

n
<

2π

3
,

which immediately provides us with the lattice point count:

N6,C3(n) =
⌊n

3

⌋
−
⌈n

6

⌉
=

n− 3
6

.

We combine the remaining two cases of C2 or C6 symmetry. Equation (6)
implies that

(I1, I2, I3, I4, I5, I6) = (k, l, n− k − l − 3, k, l, n− k − l − 3) ,

where
n

6
< k′ ≤ n

3
and

n− k′

2
≤ l′ ≤ min

{n

2
, n− 2k′

}
,

for k′ = k + 1 and l′ = l + 1. We allow equality in the upper bound for k′ to
account for the regular hexagon. As before, we compute the exact count of the
lattice points in this region for a specific case, n = 24m + 3. This time we have
one quadrilateral and a segment to the left of the central line k′ = n

4 and one
triangle to the right of the central line.

The 9 extreme points are

A = (4m + 1, 12m + 1) B = (4m + 1, 10m + 1)
C = (6m− 1, 9m + 2) D = (6m− 1, 12m + 1)

C1 = (6m, 9m + 2) D1 = (6m, 12m + 1)
E = (6m + 1, 12m + 1) F = (6m + 1, 9m + 1)
G = (8m + 1, 8m + 1).

The number of lattice points in the appropriate region is

N6,C2,C6(24m + 3) = pts(ABCD) + pts(C1D1) + pts(EFG).

Hence

pts(ABCD) =
1
2
(5m− 1)(2m− 2) +

1
2
(8m− 4) + 1 = 5m2 − 2m

pts(C1D1) = (12m + 1)− (9m + 2) + 1 = 3m

pts(EFG) =
1
2
(3m)(2m) +

1
2
(6m) + 1 = 3m2 + 3m + 1.
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So

N6(24m + 3) = N6,C2,C6(24m + 3) + N6,C3(24m + 3)

= (8m2 + 4m + 1) + (4m)

= 8m2 + 8m + 1,

which is identical to the conjectural formula. As before, the other three cases
n ≡ 9, 15, 21 (mod 24) are similar. All this proves the the formula for N6(n) in
Theorem 2.1 at the end of section 2.8.

2.12 Near-tilings with minimal cycles

When we attempt to produce near-tilings of the plane using only minimal cycles,
there are three cases to consider: the 3-cycle, 4-cycle and 6-cycle.

Recall that the 3-cycle tiles in a rigid way, and so there is a unique near-tiling
for all n-gons satisfying n ≡ 0 (mod 6). In fact, the underlying graph (of the
centrepoint connections) is isomorphic to the equilateral triangle tiling or the
lattice Z + ωZ, where ω = eiπ/3.

All polygons which satisfy n ≡ ±2 (mod 6) have minimal cycles of length
four. Apart from the square and octagon, which near-tessellate in a unique way,
these 4-cycles can themselves tile in uncountably many ways. If we consider
infinite strips composed of one of two orientations of the 4-cycle, labelled “0”
and “1” as in Figure 17, then any doubly infinite binary sequence corresponds
to such a strip. By stacking these strips, we can then tile the infinite plane in

0 0 0 0 0
0 0

1
0 0

Figure 17: Uncountable 4-cycle near-tilings

uncountably many distinct ways. Of course this hardly exhausts the possible
4-cycle near-tilings, since we can tile some rhombi in a star (e.g. Figure 18).

Figure 18: Star-like near-tiling of a decagon 4-cycle

Any polygon with n ≡ 1, 3, 5 (mod 6) has minimal cycles of length 6. For
6-cycles, the underlying graph (see Figure 19) is not necessarily a discrete subset
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of the Euclidean plane, and so nodes can ultimately lie arbitrarily close to one
another. This is because the vector sum −eiπ/n+1+eiπ(n−1)/n is zero only if n =
3 and forms a lattice only in that case. This leads to a phenomenon of partial

Figure 19: Pentagonal centrepoint graphs, G1, G2, G3, and G4

edge sharing (see Figure 20), which we typically exclude from consideration in
this paper. As in the case of 4-cycles, a correspondence can be made between

Figure 20: Partial edge sharing for 10 pentagons

binary sequences and linear strips of 6-cycles (see Figure 21) to show that there
are an uncountable number of such near-tilings.

0 0 0 0 0
0 0

1
0 0

Figure 21: Uncountable 6-cycle near-tilings

For any such near-tiling, one can apply a process that we call the spiral
algorithm to create a sequence of configurations. First select a particular tile,
called the central tile, and then successively choose tiles closest to the central
tile, in a spiral manner, which are edge-connected to the current tile. Observe
that there are two spiral algorithms (one of each orientation) for each choice
of a central tile in any near-tiling. Intuitively, the spiral algorithm attempts
to maximise the local edge-sharing at each stage and so is expected to provide
optimal configurations for near-tilings composed only of minimal cycles.
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While this was proven for the square, triangular and hexagonal tilings (see
[5]), for near-tilings with holes, however, life is a little more difficult. Just
because a near-tiling is made up only of 6-cycles does not mean that it is nec-
essarily optimal. Take for example the hexagonal and decagonal near-tilings of
the regular pentagon (see Figures 22, 23). The fault lines in both figures allow
us to write down the recursive formulæ for the spiral algorithm applied to both
near-tilings when started at the obvious central pentagon. When we com-

3

45

67

8

9 10

11 12

13 14

15

16

17

1819

2021

2223

2425

26

27

28

29 30

31 32

33 34

35 36

37 38

39

40

41

42

43

4445

4647

4849

5051

5253

5455

56

57

58

59

60

61 62

63 64

65 66

67 68

69 70

71 72

73 74

75

76

77

78

79

80

81

8283

8485

8687

8889

9091

9293

9495

9697

98

99

100

101

102

103

1 2

Figure 22: Hexagonal near-tiling of the regular pentagon (central pentagon: 5
edges, white pentagon: add 4 edges, grey pentagon: add 3 edges).

pare the formulæ for the same number of pentagons, we find that the decagonal
near-tiling is almost always less efficient than the hexagonal near-tiling. The
first point at which it requires more unit edges is for 13 pentagons, requiring
51 edges as opposed to 50. It appears that there are only a finite number of
configurations for which the decagonal near-tiling produces as low an edge count
as the hexagonal near-tiling (see Table 3). In fact, a comparison of all corre-
sponding configurations for these two near-tilings up to 20, 000 tiles shows that
the decagonal near-tiling is never as good as the hexagonal near-tiling for any
n > 21.

To make headway on such problems, we assume that a near-tiling of odd
n-gons is composed of only 6-cycles, of only one type, in such a way that the
corresponding graph is regular of degree 3—apart from the perimeter. Since the
6-cycles actually form a proper tiling with congruent tiles, we have concentric
shells of 6-cycles around a chosen starting 6-cycle. These form a graph topo-
logically equivalent to a finite subgraph of the regular hexagonal tiling. In this
case, it is easy to determine that the number of faces in n completed concentric
shells is given by

F (n) = 3n2 − 3n + 1.

The number of faces in any annulus is simply

Fannulus(n) = F (n)− F (n− 1) = 6n− 6
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Figure 23: Decagonal near-tiling of the regular pentagon (central pentagon: 5
edges; white pentagon: add 4 edges; grey pentagon: add 3 edges).

while the number of edges on a completed perimeter is

P (n) = 2Fannulus(n) + 6 = 12n− 6

or equivalently, P (n+1) = P (n)+12. Finally, the ratio of the number of perime-
ter edges to the number of internal edges is smaller than P (n)/F (n), which goes
to 0 as n goes to infinity. This implies that the spiral algorithm applied to all
the uncountably many 3-regular near-tilings, described above, is asymptotically
optimal. A similar argument can be used to show that the decagonal near-tiling,
with a single degree 5 vertex at the centre of its corresponding graph, has

F (n) = 5n2 and P (n) = 20n

for a completed disk. In particular, this means that P (n+1) = P (n)+20. Hence
the spiral algorithm is again asymptotically optimal for this type of tiling. Notice
that both the hexagonal and decagonal near-tilings satisfy the requirement that

P (n + 1) ≤ P (n) + 2|{fault-lines}|

where the number of fault-lines is 6 for the hexagonal near-tiling and 10 for the
decagonal near-tiling. To prove that the spiral algorithm is optimal, we need to
show that there are a bounded number of fault lines in any such near-tiling—
something we have not yet done.
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n decagonal hexagonal n decagonal hexagonal
1 5 5 12 47 47
2 9 9 13 51 50
3 13 13 14 54 54
4 17 17 15 58 58
5 21 21 16 62 61
6 24 24 17 66 65
7 28 28 18 69 69
8 32 32 19 73 72
9 36 36 20 77 76
10 39 39 21 80 80
11 43 43 22 84 83

Table 3: Decagonal- versus hexagonal-pentagon near-tiling spiral edge counts

3 Conclusion

While this work leads to many unanswered questions, especially in the sections
on near-tilings, arguably the most important is the following:

Are there any near-tilings for which the spiral algorithm does not provide a
minimal configuration for each n?

Similar optimisation questions can be asked of more general tiles than the
regular polygons we consider. For example equilateral tiles which are not nec-
essarily equiangular (like an 8-edge L-shaped tile) would provide an interesting
test-bed of non-convex tiles that might shed some light on the above question.
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