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1 Introduction

A cyclic pentagon with rational sides does not necessarily have rational area.
For example the regular pentagon with a side length of one is clearly cyclic
but has area

1

4

√
25 + 10

√
5.

If one considers a pentagon with arbitrary side lengths then it is always
possible to deform it in such a way that it is convex and all the vertices lie on
a circle. This cyclic pentagon has the largest area, among all pentagons with
those five edge lengths, and is given by the maximal root of the polynomial

7∑
j=0

24jp28−4j(a, b, c, d, e)A2j
5

where the coefficients, pi, are homogeneous polynomials, of degree i, in the
side lengths, a, b, c, d, e, (see [3]). Surprising as it may seem, such pentagons
can in fact have rational area, a fact first shown by Euler who provided an
infinite family. An example of an integer sided cyclic pentagon with smallest
perimeter (for all distinct side lengths) is that with sides (16, 25, 33, 39, 63)

and area 1848.

In this paper we are interested in the properties of the diagonals of such
cyclic pentagons. Previous theoretical work, [1], revealed that such pentagons
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can have either zero or five rational diagonals—however all examples found
by computational search so far have always turned out to have five rational
diagonals. Moreover, it was shown that the diagonals lie in an extension field
of Q of degree no more than seven.

We show that it is possible to restrict the degree of the extension field to
no greater than four and then consider some special cases when the degree
of the extension is greater than one.

2 The degree four diagonal equation

The area of a cyclic pentagon can be calculated in terms of the sides and a
single diagonal by using Heron’s formula and Brahmagupta’s formula for the
area of a triangle and cyclic quadrilateral respectively [2]. If we let A3 denote
the area of a triangle and A4 that of a cyclic quadrilateral, then recall that:

A3 =
1

4

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

A4 =
1

4

√
(−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d).

By using a diagonal to dissect a rational area cyclic pentagon into a quadri-
lateral and a triangle one can show that the diagonals are no worse that
quartic irrationals.

If we define a Robbins pentagon to be a cyclic pentagon with rational
sides and rational area then we obtain the following result.

Theorem 1 Any diagonal of a Robbins pentagon satisfies a polynomial in
Z[x] of degree no greater than four.

Proof : Let the sides of the pentagon be a, b, c, d, e and the diagonal opposite
side a be α. Then α dissects the pentagon, of area A5, into a triangle, of
area A3, and a quadrilateral, of area A4, where A5 = A3 + A4. Rather than
view this as an area formula we assume that a, b, c, d, e, A5 ∈ Q and use the
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Figure 1: One diagonal in a pentagon

equations for A3, A4 and A5 = A3 + A4 to express the lone diagonal α as a
polynomial in the other six variables.

Thus we need to consider the system

A3 =
1

4

√
(c + d + α)(−c + d + α)(c − d + α)(c + d − α)

A4 =
1

4

√
(−a + b + e + α)(a − b + e + α)(a + b − e + α)(a + b + e − α)

A5 = A3 + A4.

In the last equation, we square A5 and collect rational parts to one side and
then square again to obtain a polynomial that the diagonal satisfies, namely,

(A2
5 − (A2

3 + A2
4))

2 − 4A2
3A

2
4.

In particular this means that α is a root of the degree four polynomial

f4(α) = c0 + c1α + c2α
2 + c3α

3 + c4α
4
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where the coefficients, given by

c0 = 28A4
5 + 25(a4 + b4 + c4 + d4 + e4 − 2a2b2 − 2a2e2 − 2b2e2 − 2c2d2)A2

5

+ (a4 + b4 − c4 − d4 + e4 − 2a2b2 − 2a2e2 − 2b2e2 + 2c2d2)2

c1 = 24abe[24A2
5 + a4 + b4 − c4 − d4 + e4 − 2(a2b2 + a2e2 + b2e2 − c2d2)]

c2 = −26(a2 + b2 + c2 + d2 + e2)A2
5 + 26a2b2e2 − 4(a2 + b2 − c2 − d2 + e2)

× (a4 + b4 − c4 − d4 + e4 − 2a2b2 − 2a2e2 − 2b2e2 + 2c2d2)

c3 = 25abe(a2 + b2 − c2 − d2 + e2)

c4 = 26A2
5 + 22(a2 + b2 − c2 − d2 + e2)2

are polynomials in the sides and the area, thus are clearly all rational. �

At this point we realised that any diagonal satisfies two polynomials,
namely f4(α) described above and the degree seven polynomial (found by
MacDougall and Buchholz [1]), denoted by f7(α). Moreover, we can use a
resultant computation to eliminate α from these two equations. Since

RES(f4(α), f7(α), α) ∈ Q[a, b, c, d, e, A5]

we can also use Robbins’ formula for the area of a cyclic pentagon to produce
a single equation constraining a, b, c, d, e—this is a plausible path for proving
that any diagonals of any Robbins pentagon is rational.

3 General results

In this section we determine the effect of the field, in which a diagonal lies,
on the areas of the three non-overlapping triangular regions in a cyclic pen-
tagon. First we require an intermediate result that holds independently of
any reference to the pentagon.

Lemma 1 Let K be a real number field. If A2, B2, C2, A + B + C ∈ K and
(B+C)(A+C)(A−B)(A+B)(A+B−3C)(A+B+C) 6= 0 then A,B, C ∈ K.
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Proof: If we let A + B + C = r where r ∈ K then we simply rewrite the 3
equations obtained from r, r3, r5 as 3 linear equations in A,B, C. Notice that

r = A + B + C

r3 = a3A + b3B + c3C + 6ABC

r5 = a5A + b5B + c5C + d5ABC

(1)

where

a3 = A2 + 3B2 + 3C2

b3 = 3A2 + B2 + 3C2

c3 = 3A2 + 3B2 + C2

a5 = A4 + 5B4 + 5C4 + 10A2B2 + 10A2C2 + 30B2C2

b5 = 5A4 + B4 + 5C4 + 10A2B2 + 30A2C2 + 10B2C2

c5 = 5A4 + 5B4 + C4 + 30A2B2 + 10A2C2 + 10B2C2

d5 = 20A2 + 20B2 + 20C2

and by hypothesis a3, b3, c3, a5, b5, c5, d5 ∈ K. Now use the identity

ABC = −C2A − C2B +

[
(A + B + C)2 − (A2 + B2 + C2)

2

]
C

to rewrite the product ABC in terms of A,B, C and substitute into equa-
tions (1) we get  r

r3

r5

 =

 1 1 1

a3 b3 c3

a5 b5 c5

A

B

C


where the entries in the matrix, denoted by M say, are all in K. The deter-
minant of M is given by

det(M) = (B + C)(A + C)(A − B)(A + B)(A + B − 3C)(A + B + C)

which must be non-zero for the system to have a solution. �

Using this lemma we can restrict the areas of the triangles in a Robbins
pentagon.
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Theorem 2 Let K be a real number field. If any diagonal in a Robbins
pentagon lies in K then the areas of any three non-overlapping triangular
regions bounded by sides and any 2 non-intersecting diagonals also lie in K.

Proof : First note that, by Theorem 11 of [1], if one diagonal lies in K then
they all lie in K. If we denote the three triangular areas by A, B, C then by
Heron’s formula it is clear that A2, B2, C2 ∈ K. Since A + B + C ∈ Q ⊆ K,
then by Lemma 1 we only need to show that

(B + C)(A + C)(A − B)(A + B)(A + B − 3C)(A + B + C) 6= 0.

Clearly, since A, B, C are positive real values we need only check the cases
A = B and A+B = 3C. The former case reduces to showing that A2, C2, 2A+

C ∈ K implies that A,C ∈ K. We let 2A + C = r and then observe that r

and r3 lead to the equation[
r

r3

]
=

[
2 1

8A2 + 6C2 12A2 + C2

] [
A

C

]
which has a unique solution precisely when the determinant 4(2A−C)(2A+

C) is non-zero. If C = 2A then 2A + C = 4A ∈ K implies that A ∈ K. The
other case, namely C = 2A is not possible for positive areas.

In the case when A + B = 3C we have C = 1
4
(4C) = 1

4
(A + B + C) ∈ K

so we only need to show that A2, B2, A + B ∈ K implies A,B ∈ K. This is
identical to the previous (2× 2) proof. �
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