AP Biology Notes: Glycolysis

Glycolysis = (glyco = sweet, sugar; lysis = to spilt); catabolic pathway during which six carbon glucose is split into two three-carbon sugars, which are the oxidized and rearranged by a step-wise process that produces two pyruvate molecules.

* Each reaction is catalyzed by specific enzymes dissolved in the cytosol *No CO₂ is released as glucose is oxidized to pyruvate; all carbon in glucose can be accounted for in the two molecules of pyruvate *Occurs whether or not oxygen is present

The reactions of glycolysis occur in two phases. Activation stage Energy harvesting stage

Step 1: Glucose enters the cell, and carbon six is phosphorylated.

This is an ATP-coupled reaction:

*Is catalyzed by *hexokinase* *Requires an initial investment of ATP *Makes glucose more chemically reactive * Produces glucose-6-phosphate

* traps the sugar in the cell

Step 2: An *isomerase* catalyzes the rearrangement of glucose-6-phospahte to its isomer, furctose-6-phospahte.

Glucose 6-phosphate Fructose 6-phosphate

Step 3: Carbon one of furctose-6-phospahte is phophorylated.

This reaction:

*Requires an investment of another ATP *Is catalyzed by *phophofuctokinase*, and allosteric enzyme that controls the rate of glycolysis, this step commits the carbon skeleton to glycolysis, a catabolic process as opposed to being used to synthesize glycogen, an anabolic process.

Fructose 1,6-bisphosphate

Step 4: Aldolase cleaves the six-carbon sugar into two

isomeric three-carbon sugars.

* This is the reaction for which glycolysis is named

*For each glucose molecule that begins glycolysis, there is two product molecules for this and each succeeding step.

Fructose 1,6-bisphosphate

Glyceraldehyde 3-phosphate

- **Step 5:** An isomerase catalyzes the reversible conversion between the two three-carbon sugars. This reaction:
 - *Never reaches equilibrium because only one isomer, *glyceraldehyde phospahte*, is used in the next step of glycolyss.
 - *Is thus pulled towards the direction of glyceradehyde phosphate, which is removed as fast as it forms.
 - *Results in the net effect that, for each glucose molecule, two molecules of glyceraldehdyed phosphate progress through glycolysis.

*Energy-yielding phase

- 1. Glycerhaldehyde phosphate is oxidized and NAD^+ is reduce to $NADH + H^+$.
 - *This reaction is very exergonic and is coupled to the endergonic phosphorylation phase ($\Delta G = -10.3$ kcal/mol) * For every glucose molecule 2 NADH are produced
- 2. Glyceraldehyde phosphate is phosphorylated on carbon one.
 - *The phosphate source is inorganic phosphate,
 - which is always present in the cytosol
 - *The new phosphate bound is a high energy bond with even more potential to transfer a phosphate group than ATP.

Dihydroxyacetone phosphate

Glyceraldehyde 3-phosphate

Glyceraldehyde 3-phosphate

1,3-Bisphosphoglycerate

1,3-Bisphosphoglycerate

3-Phosphoglycerate

Step 8: In preparation for the next reaction a phosphate group on carbon three is enzymatically transferred to carbon two.

3-Phosphoglycerate

2-Phosphoglycerate

- Step 9: Enzymatic removal of a water molecule:*Creates a double bond between carbons one and two of the substrate
 - *Rearranges the substrate's electrons, which transforms the remaining phosphate bond into an unstable bond.

2-Phosphoglycerate

Phosphoenolpyruvate

Step 10: ATP is produced by substrate-level phosphorylation *Is a highly exergonic reaction, a phosphate group

- is transferred from PEP to ADP
- *For each glucose molecule, this step produces two ATP.

Summary equation for glycolysis:

Glucose has been oxidized into tow pyruvate molecules.