CSE Department, North South University
ETE131: Introduction to Telecommunication and Computer Engineering (SyR)
Quiz 5: 15 Marks, 20 Minutes

Name: \qquad Sec: \qquad ID: \qquad

Question 1: You are given the following analog wave. You are required to convert it into digital code using Pulse Code Modulation. The number of voltage levels to be used is 16 (i.e. using 4 bits S / M to represent -7 to +7). [8]

- Assuming the sampling rate is 5 per second, use PAM and quantization to give the bit value at each sample. (Note: Start at $1 / 5 \mathrm{~s}$, then $2 / 5 \mathrm{~s}$ and so on)
- Show the encoding of this signal as a string of binary digits.

Question 2: Consider two media used as the core and cladding of an optical fiber: flint glass (refractive index=1.57) and quartz (refractive index=1.45). Calculate the critical angle for total internal reflection and the numerical aperture for this optical fiber [4].

Question 3: For a particular optical fiber system, the attenuation is given as $0.5 \mathrm{~dB} / \mathrm{km}$. If the power input and output are given as 500 W and 5 W respectively, what is the length of the optical fiber? [3]
\qquad Sec: \qquad ID: \qquad

Question 1: You are given the following analog wave. You are required to convert it into digital code using Pulse Code Modulation. The number of voltage levels to be used is 16 (i.e. using 4 bits S / M to represent -7 to +7). [8]

- Assuming the sampling rate is 5 per second, use PAM and quantization to give the bit value at each sample. (Note: Start at $1 / 5 \mathrm{~s}$, then $2 / 5 \mathrm{~s}$ and so on)
- Show the encoding of this signal as a string of binary digits.

At $1 / 5 \mathrm{~s}$	$A=-5=1101_{2}$
At $2 / 5 \mathrm{~s}$,	$A=+0=0000_{2}$
At $3 / 5 \mathrm{~s}$,	$A=+4=0100_{2}$
At $4 / 5 \mathrm{~s}$,	$A=+7=0111_{2}$
At $5 / 5 \mathrm{~s}$,	$A=+0=0000_{2}$

Encoding: 11010000010001110000

Question 2: Consider two media used as the core and cladding of an optical fiber: flint glass (refractive index=1.57) and quartz (refractive index=1.45). Calculate the critical angle for total internal reflection and the numerical aperture for this optical fiber [4].

Critical angle $=\sin ^{-1}\left(n_{2} / n_{1}\right)=\sin ^{-1}(1.45 / 1.57)=67.56^{\circ}$
$\mathrm{NA}=\vee\left(n_{1}{ }^{2}-n_{2}{ }^{2}\right)=\vee\left(1.57^{2}-1.45^{2}\right)=\vee 0.364=0.602$

Question 3: For a particular optical fiber system, the attenuation is given as $0.5 \mathrm{~dB} / \mathrm{km}$. If the power input and output are given as 500 W and 5 W respectively, what is the length of the optical fiber? [3]
$G=10 \log (5 / 500)=10 \log 0.01=-20 \mathrm{~dB}$ i.e. attenuation $=20 \mathrm{~dB}$
Attenuation is $0.5 \mathrm{~dB} / \mathrm{km}$, therefore distance $=20 / 0.5=40 \mathrm{~km}$

CSE Department, North South University
ETE131: Introduction to Telecommunication and Computer Engineering (SyR)
Quiz 5: 15 Marks, 20 Minutes

Name: \qquad Sec: \qquad ID: \qquad

Question 1: You are given the following analog wave. You are required to convert it into digital code using Pulse Code Modulation. The number of voltage levels to be used is 16 (i.e. using 4 bits S / M to represent -7 to +7). [8]

- Assuming the sampling rate is 5 per second, use PAM and quantization to give the bit value at each sample. (Note: Start at $1 / 5 \mathrm{~s}$, then $2 / 5 \mathrm{~s}$ and so on)
- Show the encoding of this signal as a string of binary digits.

Question 2: Consider two media used as the core and cladding of an optical fiber: nylon (refractive index=1.53) and quartz (refractive index=1.45). Calculate the critical angle for total internal reflection and the numerical aperture for this optical fiber [4].

Question 3: For a particular optical fiber system, the attenuation is given as $2 \mathrm{~dB} / \mathrm{km}$. If the power input and output are given as 100 W and 10 W respectively, what is the length of the optical fiber? [3]
\qquad Sec: \qquad ID: \qquad

Question 1: You are given the following analog wave. You are required to convert it into digital code using Pulse Code Modulation. The number of voltage levels to be used is 16 (i.e. using 4 bits S / M to represent -7 to +7). [8]

- Assuming the sampling rate is 5 per second, use PAM and quantization to give the bit value at each sample. (Note: Start at $1 / 5 \mathrm{~s}$, then $2 / 5 \mathrm{~s}$ and so on)
- Show the encoding of this signal as a string of binary digits.

$\begin{array}{ll}\text { At } 1 / 5 \mathrm{~s} & A=-5=1101_{2} \\ \text { At } 2 / 5 \mathrm{~s}, & A=+0=0000_{2} \\ \text { At } 3 / 5 \mathrm{~s}, & A=+4=0100_{2} \\ \text { At } 4 / 5 \mathrm{~s}, & A=+7=0111_{2} \\ \text { At } 5 / 5 \mathrm{~s}, & A=+0=0000_{2}\end{array}$
Encoding: 11010000010001110000

Question 2: Consider two media used as the core and cladding of an optical fiber: nylon (refractive index=1.53) and quartz (refractive index=1.45). Calculate the critical angle for total internal reflection and the numerical aperture for this optical fiber [4].

Critical angle $=\sin ^{-1}\left(n_{2} / n_{1}\right)=1.45 / 1.53=71.39^{\circ}$

$$
\mathrm{NA}=\vee\left(n_{1}^{2}-n_{2}^{2}\right)=\vee\left(1.53^{2}-1.45^{2}\right)=\vee 0.238=0.488
$$

Question 3: For a particular optical fiber system, the attenuation is given as $2 \mathrm{~dB} / \mathrm{km}$. If the power input and output are given as 100 W and 10 W respectively, what is the length of the optical fiber? [3]
$G=10 \log (10 / 100)=10 \log 0.1=-10 \mathrm{~dB}$ i.e. attenuation $=10 \mathrm{~dB}$
Attenuation is $2 \mathrm{~dB} / \mathrm{km}$, therefore distance $=10 / 2=5 \mathrm{~km}$

