XML Editor Commands With Multiple Undo/Redo Swati Pathak

Table of Contents

I 1 1o Yo [T oY o TP 2
1.1, NEEA FOr @N XIML EQIEOreoeeeeeeeeeeee et e et e et e e et e e st aeentneaaenaes 2
A C o 1L USRS 2

2. DESIgN iiiiiiiii i 4
2.1. Model-VieW-COontroller (MVC)............. oo ettt 4

211, 0VEIVIEW OFf MV C ..ottt e e e e e e e e et e e e e e e e e e nnaeeeeeeasaannennneaaaaaaean 4
2.2.2.Us€ Of MVC IN the EQIfOr ...t e e et ee e e annaeee s 5
D [0 L= (o B UURUR 6
2.2.1. OVerview Of SINGIELONooi et e e et e e et e et e e e snneeee s 6
2.2.2. Use of Singleton in the EdItOr............oiiiiiiie e 6

3. Framework Provided by Java..........ciiiiciirrisir s 8
BT MVC 0N JAVA SWING.....oeeeeaaeeeeeeeeeeee ettt e ettt e e e e ettt e e e e e e e et e e e e e e e sessseeaaaaeaas 8
3.2. The j avax. SWi NQ. t @Xt PACKAGE.......cccooueeeieeee ettt ea e 8

3.2.1. TEXt COMPONENESuuiiiiiiiiee ettt e e e e et et e e e e e e ettt e e e e e eeeeeeeababeeeeeeeeesaabsbaeeeeaaeeeasbaneeaaaeeaaasees 8
3.2.2. The DOCUNMBNEL MOAEIooiiiiiie et e e e e et e e e e e e e s eeeeaaeeeeanns 10
3.2.3. THE Vi @WIMOEL ..ottt ettt e e ettt e e et e e e s nnbe e e e snneeeeeenneee s 12
3.3.The j avax. SWi NQ. UNAO PACKAGE.........ccoueeeeee ettt e e 15
3.3.1. The Undoabl eEdi t INterface oo e e e 16
3.3.2. Undoabl eEdi t Event and Undoabl eEdi t Li St @Nerccccviiiiiiiiiiiiee e 19
3.3.3. The UndONMBNAQGET ClaSSccccuuiiiiiiie ettt e e e e e ettt e e e e e e e eeaabreeeaeaeeeaaas 19
3.3.4. The Undoabl eEdi t SUPPOIt Class.......cccuueiiiiiiiiiiiiiieee et e e e e 20

4. Existing Editor Framework..........cccoiiiiiiii 21
O B O =Tl] = - Lo = 21
4.2. ThE DOCUNMBNE SHUCIUIE...........oeeeeeeeeeeeeeeeee ettt ettt e e e e e ettt a e e e e e s stseeaaaaes 22
4.3. TRE VI @W SETUCKUIE ...ttt e e e ettt e e e e e sttt e e e e e st aaeeeeesnnnenneeees 23

5. Implementation..........iiiiiirr e 25
Lo O I =T YT SRR 25

5.1.1. Need and Goal Of Tr @EVI BW.... ...ttt e e e e st e e e e e e e s s e aer e e e e e e e e s nrneeeeeaeeeean 25
5.1.2. IMPIEMENTAtION ISSUESccoiiiiiiiiiie ettt e e s e e rre e e e s nnneee s 26

5.2, EQIt OPEIALIONSoeeeaeeeeeeeeeeee ettt e e ettt e e e e ettt e e e e e e e et a e e e e e s aaaaeeaaaians 28
oI I [TS =Y o A = 1= OSSPSR 28
5.2.2. Cut, COPY @NA PASTE ...ttt s 32
5.2.3. S€AICH / REPIACE ...ttt et e et e e ennaee s 35
IV S o] 1 Y[(o T S RSO SR 38
T T =l T (o 1T A o= o OO 40

LIRS R U Lo (o 3 - o [0 SRR 42
5.3.1. Need Of UNAO/REAO.........eiiiiiiiiie ettt et e et e et e e s ene e e e snst e e e saneeeesannneeens 42
5.3.2. IMPIEMENTAtION ISSUEScooiiiiiiii ettt e e e e are e e e nnneee s 42

5.4, Flat Paragraphl VIEWooo oottt ettt ettt e e e e e 46
5.4.1. NEEA fOr @ NEW VIBW......ooiiiiiiiiii ittt ettt e sttt e e sttt e e e st e e e s se e e e e ssseeeeenseeeessseeeesannneeens 46
5.4.2. Par agr aphVi ewof the j avax. swi ng. t ext Packagecccocoeeieeiiiiciiiiiieee e 46
5.4.3. My Extension of Par agr aphVi ew— Fl at Par agr aphVi €W.........cccccooviiiiiiiiiii e 49

Lo Y- 1= SRR 58
T 07 o o o3 1= 1o Y o 61
Y =T = Lo 63

CS298, Spring 2004 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

1. Introduction

Extensible Markup Language (XML) has now become a standard language to store and
share structured documents on the Internet; and is quickly replacing its much restricted
predecessor - Hypertext Markup Language (HTML). Briefly, XML and HTML both divide a
document in a set of elements. The element structure represents the logical structure of
the document. The document can then be rendered by selecting the best suitable display
mechanism for a given element. This separates the content and its rendering, and hence
makes the document more portable. While HTML restricts the set of elements that can be
used in defining a document, XML allows a user to define any arbitrary element structure.
This flexibility makes XML more powerful, versatile and extensible compared to HTML. In
addition to providing all these benefits, XML is also much simpler compared to Standard
Generalized Markup Language (SGML).

Refer to [W98] for more information on XML.

1.1. Need for an XML Editor

Despite the widespread of XML, there are few good XML editors in the market today. The
most common features that users expect from an XML editor are:

e WYSIWYG (What You See Is What You Get) behavior.

e Intuitive and easy-to-use element editing functionalities, along with undo/redo
mechanism.

e Control over how various XML elements should be rendered.
e Some form of validation of the document against a Document Type Definition (DTD).

But most available editors are at one of the two extremes: either they are too general -
providing little more functionality than simple text editors; or too specific — overly restricting
the operations that a user can perform. Both these approaches make the editor extremely
difficult to use for a user. Refer to the CS298 report of Nupura Neurgaonkar for a detailed
analysis of some existing XML editors.

| extended an existing XML editor framework to support WYSIWYG behavior, general
editing functionalities (insert/delete an element, cut/copy/paste etc.) and multiple
undo/redo functionalities under the supervision of Dr. Cay Horstmann. Validation of XML
documents and pluggable rendering of elements were implemented by Nupura
Neurgaonkar. | used the Java Swing framework for the implementation due to the
portability provided by Java.

1.2. Goals

In prior years, Dr. Horstmann’s students developed an editor framework using the

j avax. swi ng. t ext package. The framework just displayed an existing XML document
in a WYSIWYG way, but did not have any editing capability (refer to Section 4 for details
about the framework). | intended to extend this framework by providing various XML
editing functionalities; and while doing so, achieve the following goals:

e Swing provides some basic editing functionalities like insert and delete. | planned to
test the robustness and the usability of these functionalities by using them during
the implementation.

e | also aimed to test the extensibility of Swing’s framework by developing various
editing capabilities (insert/delete, cut-copy-paste, search/replace etc.) for XML

CS298, Spring 2004 Page 2 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

documents on top of the basic support provided. This also included testing the
undo/redo framework by providing undo/redo capability with each edit operation.

e The final goal of the project was to test the extensibility and the ease of
customization of the view structure provided by Swing. | intended to test how easily
and up to what level can the behavior of the views be customized by developing
some non-trivial custom views.

CS298, Spring 2004 Page 3 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

2. Design

The project was designed using Object Oriented Design concepts. Two design patterns
were used in the project: Model-View-Controller (MVC) and Singleton. The following
subsections give a general overview of these patterns, and describe how they were
applicable in the project.

2.1. Model-View-Controller (MVC)

2.1.1. Overview of MVC

The Model-View-Controller (MVC) design pattern is a commonly used architecture for user
interface design. It was first used in Smalltalk -80. Basically, the MVC architecture has
three kinds of objects: Model, View and Controller. As described in [GHJV02], “the Model
is the application object, the View is its screen presentation, and the controller defines the
way the user interface reacts to user input” (p. 4).

MVC defines a subscribe/notify mechanism between views and the model: a view
associates itself to a model (data), model notifies all associated views whenever its data
changes, and the view updates itself by getting new data from the model. Thus data and
its presentation are decoupled, resulting in more flexible and reusable architecture. This
approach also allows multiple presentations (views) for a piece of data (model).

The following diagram illustrates the structure of MVC architecture.

Yiew State Controller State
Update view User input
_ + -——
Wiew Methods Contraller Methods
L
Model notifies the Update model state
view when it changes according to user
Wiew asks content actions

from the model

Model State

r
h

Model Methods

Figure 2.1. MVC Architecture

Figure 2.2 shows a typical example of MVC. It shows three views attached to a model. The
controller is not shown for simplicity. The model represents some data values, and the
views show different representations of those values. The model informs the views when
its values get changed, and the views retrieve new values from the model to update
themselves. The controller in this case would be a command prompt or a menu system
that accepts input from the user to modify the model.

CS298, Spring 2004 Page 4 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

Figure 2.2. Example of MVC — single model, multiple views
Source: [GHJV02]

Model -View-Controller is a complex pattern that uses many other design patterns. Refer
to [GHJVO02] for further details about MVC.

2.2.2. Use of MVC in the Editor
This section describes how MVC is applicable to a text editor in general. Section 3.1
describes how MVC is incorporated in the Swing framework.

A text editor allows its users to edit documents. A document can be thought of as a
sequence of characters and graphics. The text editor displays the content of the document
and updates both — the document and the visual display of the document — as the user
performs edit operations. As most editors support a number of fonts and styles, there can
be many visual representations of the same document content. For example, for the
content “sample text”, some possible representations are:

Sanpl e text

Sample text
Sample text

Allowing multiple representations for the same content is even more important for an XML
editor, as the whole idea of dividing a document into elements is to support multiple
rendering options for a given element. Thus, it is imperative to decouple data content from
its representation.

Hence, the whole structure of an editor falls in the category of Model-View-Controller
architecture: the document behaves as the model, different representations are the views
and edit commands/menus behave as the controller. As the user performs edit operations
through commands, the underlying document is modified; the document informs the
display mechanism to update the view; and the display mechanism gets the new content
and displays it. Refer to Section 3.1 for a detailed description on MVC in the Swing
framework.

CS298, Spring 2004 Page 5 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

2.2. Singleton

2.2.1. Overview of Singleton

Singleton is a very simple, yet powerful design pattern. It is used in the situation where a
class should have exactly one instance, and that instance should be globally accessible
[GHJVO02]. Instead of relying on other language techniques - like static members - to
ensure just one instance, this pattern gives the class this responsibility. The class
intercepts the requests to create new objects, and ensures that just one instance is
created.

Singleton

static instance() O === mmmmmm - Return uniguelnstance h

singletonOperation()

getSingletonDatal)

static uniquelnstance

singletonData

Figure 2.3. Structure of Singleton
Source: [GHJV02]

As seen in figure 2.3, Singleton has a private (or protected) static member variable —

uni quel nst ance — which stores a reference to its (unique) instance. Other classes can
access the instance only through the public static method i nst ance. The constructor of
the class is private (not shown in Figure 2.3), so other classes have no way to directly
create an instance of the Singleton class. When i nst ance is called for the very first time,
a new instance of that class is created and stored in the variable uni quel nst ance. Any
subsequent call to i nst ance returns the reference stored in uni quel nst ance.
Singleton pattern can be easily extended to allow multiple instances of the class, and the
same approach can be used to control the number of allowable instances [GHJV02].
Refer to [GHJV02] for a detailed discussion on other implementation issues of Singleton.

2.2.2. Use of Singleton in the Editor

| have implemented cut-copy-paste functionality in the project. Cut and Copy operations
place content in the paste buffer and Paste operation pastes that content in the document.
When the user cuts or copies new content, the previous content of the paste buffer gets
over-written. Thus, the system should have just one paste buffer at all times. Hence, | have
used Singleton pattern in implementing the paste buffer.

The structure of the paste buffer is:

CS298, Spring 2004 Page 6 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak
public class PasteBuffer
public static PasteBuffer getlnstance()
i f(instance == null)
i nstance = new PasteBuffer();
return instance;
}
/1 ot her public methods
private PasteBuffer()
/linitialize paste buffer

ivate static PasteBuffer instance;

}
pr
//other private data

}

Having just one instance of Past eBuf f er also enables the user to exchange information
across multiple documents.

Refer to Section 5.2.2 for details about Cut, Copy and Paste functionalities.

CS298, Spring 2004 Page 7 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

3. Framework Provided by Java

As mentioned before, | am using the Java Swing framework for the project. Specifically, |
am using the j avax. swi ng. t ext and the javax.swing.undo packages for the
implementation. In this section, | will first explain how MVC is used in the design of Swing
framework, and then give a brief overview of the two packages.

3.1. MVC in Java Swing

MVC is the basic underlying design of the Java Swing framework. In terms of Swing, the
model is the state information of a Swing component, the view refers to how the
component is drawn on the screen and the controller refers to the part of the user interface
that decides how components react to the user actions. As pointed out in [LEWECO02],
Swing actually uses a simplified variant of MVC architecture, called the model-delegate
architecture. In this design, the view and the controller objects are combined into a single
element — the Ul delegate. Thus, the Ul-delegate is responsible for both: drawing the
component on the screen and handling user events [LEWECO02].

The following figure demonstrates how the model and the Ul-delegate communicate in this
design.

‘ Model I"'

Component Ul-delegate

Controller

Figure 3.1. Architecture of model-delegate design
Source: [LEWECO02]

3.2. Thej avax. sw ng. t ext Package

The j avax. swi ng. t ext package provides many classes and interfaces to develop
general purpose editing applications. The package mainly provides three kinds of objects
that can be put together to create an editing application: text components, the Docunent
model and the Vi ewmodel. We will look into each of these in detail.

3.2.1. Text Components

“A text component pulls together the objects used to represent the model, view, and
controller” [AP103]. Basically, text components provide an overall framework for combining
the Docunent model and the Vi ew model so that the users get a powerful and highly
flexible interface. Swing text components allow users to customize caret (cursor),
highlighter and even the key bindings of many text actions. These components also
provide basic cut, copy and paste functionalities. However, these functionalities only deal
with simple text content and do not take the El enent structure into account. Refer to
sections 3.2.2 and 3.2.3 for a discussion about the Docunent and the Vi ew Models.

CS298, Spring 2004 Page 8 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

Swing provides total six text components: JText Fi el d, JPasswor dFi el d, JText Ar ea,
JFor mat t edText Fi el d, JText Pane and JEdi t or Pane. The first four components are
relatively simple, while JText Pane and JEdi t or Pane are more complex and powerful.
All the text components have JText Conponent as the direct or indirect superclass.

JTextComponent
»

f T T f
JTextField JTexthArea JEditorPane

T T Plain Text Areas x

| T | S JTextPane
JPasswordField JFormattedTextField
Styled Text Areas
Text Centrols

Figure 3.2. The JText Conponent Hierarchy
Source: Adapted from [WCHZ04]

The following table compares these components.

Table 1. Comparison of Swing Text Components

Group Description

Also known simply as text fields, text controls can display and edit only one line of text.

Text ; . -
Like buttons, they generate action events. Use them to get a small amount of textual

Controls information from the user and take some action after the text entrv is complete.
. | JTextArea can display and edit multiple lines of text. Although a text area can display
Plain Text . . -

Areas text in any font, all of the text is in the same font. Use a text area to allow the user to enter
unformatted text of any length or to display unformatted help information.
A stvled text component can display and edit text using more than one font. Some stvled
text components allow embedded images and even embedded components. Styled text
components are powerfiul and mulii-faceted components suitable for high-end needs, and

Styvled offer more avenues for customization than the other text components.

Text

Areas Because thev are so powerful and flexible, stvled text components tyvpically require more

up-front programming to set up and use. One exception is that editor panes can be easily
loaded with formatted text from a URL, which makes them useful for displaving
uneditable help information.

Source: IWCHZ04]

It is clear from the table that the styled text areas are the ones that are most useful in
creating an editor application. There are two styled text areas in Swing: JText Pane and
JEdi t or Pane. Both these components can display text with multiple fonts and colors.

As explained in [T00], JEdi t or Pane “can be configured to display text held externally in
arbitrary formats by connecting it to an editor kit that knows how to interpret a particular
document encoding format and render the corresponding content on the screen” (p. 11).
The package has two complete editor kits: HTMLEdi t or Ki t and RTFEdi t or Ki t that can
display HTML and RTF (Rich Text Format) documents respectively. The HTMLEdi t or Ki t
can turn the editor pane into a simple Web browser which can load pages over the network
and follow hypertext links. Switching to edit mode makes it a simple HTML editor [T00].
The same is true for RTFEdi t or Ki t with RTF documents.

CS298, Spring 2004 Page 9 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

JText Pane is a subclass of JEdi t or Pane. Although JText Pane can also display text
with multiple fonts and colors, Sun’s Java tutorial explains many subtle differences
between JText Pane and JEdi t or Pane:

e JEdi t or Pane has a constructor that can be used to initialize an editor pane from a
URL; JText Pane does not have a similar constructor.

e JEdi t or Pane and JText Pane both can support a custom text format by implementing
an editor kit and registering it with the text component. However, JText Pane will not
support the new format if the editor kit is not a subclass of the St yl edEdi t or Ki t of the
text package.

e JText Pane requires its document to implement the St yl edDocunent interface. (Refer
to Section 3.2.2 for information about Docunent s.)

¢ Besides text content, JText Pane can also contain embedded images and other
components. JEdi t or Pane can also contain embedded images, but only if they are
included in an HTML or RTF file.

Refer to [WCHZ04] for a detailed comparison between JText Pane and JEdi t or Pane.

3.2.2. The Docunent Model

Docunent represents the M (Model) part of the MVC architecture. It stores the text
content of a text component as well as relevant style information where applicable. The
document model is designed to support all levels of documents ranging from simple text
fields to complex HTML documents.

Figure 3.3 shows a high-level Docunent class diagram.
D e | rosboamen]
! I

q'.-.r'lj.l:-"r_[..-,-l-: _. Mm“swhdm:'mmt | E

~ javax.swing'

i * mitrituites N i
children® = ; !
Key: extends
ey. m | Class ff Abstract Class X o implements
= = <= gtherrelation

Figure 3.3. High-level Document Class Diagram
Source: [LEWECO02]

A Docunent can be shared by multiple text components. For maximum flexibility, text
content is stored as Unicode characters. Each individual location in the document is
accessed using a zero-based position or offset.

Position or Offset

O\

[T[hle][Iallu]li ek][I[o][r][o]w][n [|[f][e][x]

] 3
Figure 3.4. Offsets in a Document
Source: [P04]

CS298, Spring 2004 Page 10 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

In the above example, the offset of ‘T’ is 0 and the offset of ‘ ‘(blank space) is 3.

The document model of Swing is designed to support structured documents such as HTML
or XML. The content of a Docunent is partitioned into small structural units called

El ement s. El enent s are designed to capture the flavor of an SGML element. An

El ement can be either a Br anchEl enent (that contains other El enent s) or a

Leaf El enent (that does not have child El enent s). So in essence, a Docunent can be
thought of as a rooted tree of El enent s. Each El enent knows its start offset — the
document offset where the element begins, and its end offset —the document offset where
the element ends. These offsets are obtained by the get St art O f set and the

get EndOF f set methods respectively. As explained in [API03], the start offset is included
in the element, but the end offset is not. The end offset is actually the start offset of the
following element. Hence, the element actually occupies [get St art O f set

get EndOF f set - 1] positions in the document.

Referring to Figure 3.3, Swing provides two interfaces: Docunent interface to support
unstyled content, and St yl edDocunent interface to support styled content. Swing also
provides two concrete Docunent classes: Pl ai nDocunent that does not support styles;
and Def aul t St yl edDocunent that supports styles. It just provides one El enent
interface. It is important to observe that an El ement does not actually contain any portion
of text; it just maintains the start and the end offsets of the portion of the document it is
responsible for structuring. The text is stored elsewhere by the Docunent [LEWECO02].

Each El enent also stores style information about the portion of text it is responsible for
structuring. This information is stored in an At t ri but eSet . Figure 3.5 demonstrates how
changing the style of text in a St yl edDocunent affects its El ement structure.

Sample Text

0 1 2 34567 8 910

Leaf Element

Start offset: 0
End offset: 11
Attributes: &

Attribute Set

Underline: true

01 2 3 45 67 8 910
Branch Element

Start offset: 0

End offset: 11

Attributes: o

¢ il)
Leaf Element Leaf Element Leaf Element
Start offset: 0 Start offset: 3 Start offset: 9
End offset: 3 End offset: 9 End offset: 11
Attributes: o Attributes: o Attributes: o
Attribute Set Attribute Set
Underline: true ltalic: true

Figure 3.5. Example of El ement Structure
Source: Adapted from [LEWECO02]

CS298, Spring 2004 Page 11 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

The Docunent interface provides many methods — such as get Text, i nsert Stri ng,
and r enove — to access and edit its contents. St yl edDocunent also includes additional
methods to access and manipulate style attributes. However, these methods are not
thread-safe; hence a write-lock should be obtained before using any mutating method.

When a document is changed, a Docunent Event is fired. The Docunent Event object
provides information about the source, type and location of the change to all the registered
Docunent Li st ener s. If the document is capable of performing undo/redo operations, an
Undoabl eEdi t Event is sent to all registered Undoabl eEdi t Li st ener s. (We will talk
about undo/redo in detail in Section 3.3.) The Listener objects then decide what actions to
take. Any class implementing the Docunent Li st ener interface implements

i nsert Updat e, r enoveUpdat e and changeUpdat e methods to take appropriate
actions after insertion, deletion and other document change respectively. This way, the
Docunent model also provides some functionalities of a Controller with respect to the
MVC architecture.

Abst ract Docunent — which is the superclass of both Pl ai nDocunent and

Def aul t St yl edDocunent — implements its own set of xxxUpdat e methods (not
Docunent Li st ener methods). These methods update certain aspects of the document
as itis changed. Pl ai nDocunent and Def aul t St yl edDocunent override these
methods to take care of their specific requirements. Specifically, the implementation in
Def aul t St yl edDocunent also updates the underlying El enent structure of the
document — for example, the start and the end offsets of an El enent are automatically
updated when its corresponding content is modified. In most cases, these updates in the
El enent structure are as expected. However, these updates are not as expected when
i nsert String is used to insert text at the end of a Br anchEl enrent . [V03] discusses
this issue in detail, and provides a solution to get the desired result.

The Docurnent interface also provides a method to get the El enrent that represents a
given offset in the document.

3.2.3. The Vi ew Model
Vi ews are responsible for rendering text. They correspond to the V (View) part of the
Model-View-Controller architecture.

The tree of Vi ew objects is created from the El enent tree of the Docunent . For

Def aul t St yl edDocunent , the Vi ewtree closely corresponds to the El enent tree with
almost one-to-one mapping between El enent s and Vi ews. For Pl ai nDocunent , a
single Vi ew object is responsible for the entire El enent tree. See Figure 3.6.

CS298, Spring 2004 Page 12 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

DefaultStyledDocument View Tree
(root Wiew)
Element Tree I
Branch/ :
Section BoxView
Branch/ Branch! :
Paragraph Paragraph ParagraphView ParagraphView
T I [|
I I I | [[| I
Laafi Leaff Leafi Leaaf/
Content Caontent Content Content LabelView LabelView LabelView LabelView
PlainDocument View Tree
Element Tree If line wrap off ifline wrap on
Branch {root View) {root View)
I
I | | 1 |
Leaf Leaf Leaf Leaf Leaf ‘ Plain\iew WrappedPlainView

Figure 3.6. Vi ew Trees Created from El emrent Trees.
Source: [LEWECO02]

The Vi ewtrees have a root Vi ew above the Vi ew corresponding to the root of the

El emrent tree. As discussed in [LEWECO02], “this was done to ease the implementation of
the other Vi ew classes, which can now all assume that they have a non-null parent in the
Vi ewtree. So that each child doesn’t have to register as a Docunent Li st ener, the root
Vi ew also takes care of dispatching Docunent Event s to its children” (p. 832).

Swing provides a hierarchy of concrete Vi ews. Most Vi ews can be thought of as either a
container Vi ew (that contains child Vi ews) or a leaf Vi ew (that does not have child

Vi ews). For example, Conposi t eVi ew, Box Vi ew etc. are container Vi ews; whereas

A yphVi ew, Label Vi ewetc. are leaf Vi ews. There are also other special purpose

Vi ews. Refer to Figure 3.7 for a complete hierarchy of Swing Vi ews. Typically, a container
Vi ewis used to represent a Br anchEl enent and a leaf Vi ewis used to represent a

Leaf El enent .

CS298, Spring 2004 Page 13 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

o, T ST RV S
Tah[[pandEl Taba bleView :

|ﬁsrmh:'ﬁm| |Imn'||'|ewl fﬂﬂmﬁﬂtﬂuwf |Pli|n'||"ew| |Elyph'll'|ewl |Eurlpunmﬂl'|ew| |Image'|ﬁew|

: U E1] .!
|BaxView | |F|eltl'l.'|w.r| LabelView | |Fumum.-] |:-h,eau.e-u]
i Inlline'll'ilE'll'lI :
TableView /| ZoneView| |WrappedPlainView | /FlowView / | |BlockView
[Tableview /| oneview | |)/ / I
i
ParagraphView l—"‘—|:' ParagraphView
¥

. javax.swing.text.htmi
4 extends
o Cow] [t} T
= = 4= other relation

Figure 3.7. View Class Diagram
Source: [LEWECO02]

As explained in [API03], a Vi ewis designed to be very light. It maintains a pointer to its
parent so that it can fetch some information from it. It also maintains a reference to the

portion of the model it represents (an El enent). A Vi ewdoes not have to represent a

complete El enment , it can also represent a fragment of an El enent .

As mentioned before, a styled text component has an associated Edi t or Ki t . The

Edi t or Ki t has a method called get Vi ewFact or y, which returns the view factory
associated with the kit. A view factory is responsible for creating the right view for a
particular element. This way, text components like JEdi t or Pane can customize their

Vi ewrepresentation by using appropriate view factory. The Vi ewFact or y interface has
just one method:

public View create(El enent elem

An implementing class implements this method to return the appropriate Vi ewfor the
given El enent .

If an editor kit does not have any view factory (typical for simple text components), its Ul
delegate (by default, the Basi cText Ul class) handles the creation of Vi ews.

All concrete Vi ews provide the method pai nt to paint the Vi ew within the specified
bounds and some management methods that facilitate insertion/deletion of Vi ews in a

Vi ewtree. Vi ews also provide methods to translate between model (Docunent offsets)
and view (graphics coordinates) — for example, methods like nodel ToVi ew and

Vi ewToModel . Finally, Vi ews provide methods to take care of the case when the
complete Vi ew cannot be fitted in the allocated area. The br eakVi ew method, for
example, breaks a Vi ewalong a specified axis and returns a fragment of itself that can be
painted in the allocated space. If a Vi ewdoes not support breaking, it returns itself. In this
case, that Vi ewwill be clipped when painted.

CS298, Spring 2004 Page 14 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

Figure 3.8 shows the over-all structure of various Swing objects.

Ul Event

Highlighter ¥
Wi Jtru cfureﬁf —
Insedhlcrker
"
r -
A
L
L
)
f 7
A
A
™
i i

DocumentEvent

Figure 3.8. Interaction Among Various Swing Objects
Source: [API03]

3.3.The j avax. swi ng. undo Package

In many applications, it is useful to give the user an ability to undo/redo a single or a
sequence of actions. This mechanism provides the user with an opportunity to correct
his/her mistakes by undoing those actions that resulted in unexpected results. There are
many techniques that can be used to implement undo/redo mechanism; for example,
Zhang and Wang showed that the object-oriented design pattern can be applied to
implement undo/redo in PDF studio [ZW00], Washizaki and Fukazawa showed a way to
use component properties to implement undo facility in component-based applications
[WFO02], and Sun implemented undo mechanism in collaborative text editors [S02].

Java provides an undo framework that helps developers in implementing undo/redo
functionalities in Java-based applications. This support is in the form of some classes and
interfaces in the j avax. swi ng. undo package. The Swing undo mechanism is an
independent feature, and can be used in many different contexts. Actually, the undo
package does not make use of any other Swing objects, so as argued in [LEWEC02], it
can be described more appropriately as “j ava. uti | . undo”. However, the most obvious
and common application of the undo mechanism is related to text processing, and Swing
text components do use the j avax. swi ng. undo package to provide the basis of
undo/redo facility in text-editing applications.

Figure 3.9 shows the hierarchy of the j avax. swi ng. undo package. In the following
subsections, | will describe the important objects of the Swing Undo package. However, It
is important to note that the Undo package does not provide a full-fledged, ready-to-use
undo mechanism; it just provides a basic framework and expects the programmer to
design the actions in such a way that their effects can be reversed [T00].

CS298, Spring 2004 Page 15 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

 javax.swing.undo |
: .

StateEditable | (R

RNV | AbstractUndoableEdit | CompoundEdit | UndoManager

LISES

I credles

| 1 nalifies

]
: 1 i L
==Y W ———— |

¥ ' Y. '
' | I
RuntimeException m—:— UndoableEditListener S
| T et
_______ joutang | @ = | UndoableEditEvent |
Java.util I javax.swing.event :
Key: extends
CZD (o) (o] e
= = < other relation

Figure 3.9. The Swing Undo Mechanism
Source: [LEWECO02]

3.3.1. The Undoabl eEdi t Interface

The Undoabl eEdi t interface provides a set of basic operations that are used to undo or
redo an edit operation. All edit operations that can be undone and redone need to
implement this interface. The instances of an implementing class represent a single
undoable change in an application. This class stores all the information necessary to undo
or redo the change that it represents. For example, if we want to implement undo/redo for
a delete operation in a simple text-editor, we should define a class as follows:

class DeleteEdit inplenents Undoabl eEdit
{

/I menmber vari abl es
private String string;
private int pos;

/] constructor
public DeleteEdit(String string, int pos)

this.string = string;
this. pos = pos;

/1inplementation of the nethods of Undobl eEdit
public void undo() throws Cannot UndoExcepti on

{

ublic void redo() throws Cannot RedoExcepti on

-~ o~

// ot her net hods
} //end class

Here, the Del et eEdi t class stores the position of a delete operation and the deleted
string. This information is used to undo and redo the delete operation.

CS298, Spring 2004 Page 16 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

As seen from the example, the main methods of Undoabl eEdi t are undo and r edo that
are called to undo and redo the edit that it represents. For example, in Del et eEdi t , the
undo method will re-insert the deleted string at the stored position; and r edo will delete
that string again. These methods throw Cannot UndoExcept i on and

Cannot RedoExcept i on if the edit cannot be undone or redone respectively. Boolean
methods canUndo and canRedo check whether undo and redo operations can be
performed or not. The method i sSi gni fi cant determines whether a particular edit
operation is significant or not. Only significant edits are undone and redone. One example
of an insignificant edit is loss of focus from an input field. As [TO0] explains, “think of a
significant edit as something that the user would want to have to explicitly reverse, while
an insignificant edit is one that should be undone as a by-product of other actions”(p. 863).
Undoabl eEdi t also provides methods to add and replace edits. These methods are
typically used when a set of edit operations (as opposed to a single edit operation) should
be undone and redone at a time. See the discussion about ConpoundEdi t below.

Undoabl eEdi t can be used to undo and redo a single edit operation or a group of edit
operations at a time. There is a concrete implementation of Undoabl eEdi t —

Abst ract Undoabl eEdi t - which undoes and redoes one edit operation at a time. It
considers all edits as significant by default. In most cases, it is easier to extend this class
rather than implementing the Undoabl eEdi t interface to represent an edit operation. In a
typical case, only undo and r edo methods need to be overridden by a subclass of

Abst ract Undoabl eEdi t .

In that case, Del et eEdi t would look like:
class Del eteEdit extends Abstract Undoabl eEdit
{

/I menber vari abl es
private String string;
private int pos;

/] constructor
public DeleteEdit(String string, int pos)

this.string = string;
this. pos = pos;

/1inplementation of undo and redo
public void undo() throws Cannot UndoExcepti on
{

super. undo();
...l/code to insert string at pos

}

public void redo() throws Cannot RedoExcepti on
{

super.redo();
.../ code to delete string from pos

}

} //end class

The Undoabl eEdi t interface is designed to enforce the state diagram of Figure 3.10.
Abst ract Undoabl eEdi t enforces this state model. The subclasses of

Abst ract Undoabl eEdi t should call the undo and r edo methods of the superclass as
the first line in their implementation of undo and r edo to ensure that this state model is
properly enforced (see the code fragment of Del et eEdi t above).

CS298, Spring 2004 Page 17 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

* An exception wall be Hrrowm it these onsition: are ahlsmphed

Figure 3.10. Undoabl eEdi t State Diagram
Source: [LEWECO02]

As explained in [LEWECO02], when a new edit is initially created, it represents an edit
operation that has just been done and can be undone, i.e. is undoable. After the edit is
undone, it can now be redone, i.e. is redoable. If it is redone, it becomes undoable again,
and so on. This sequence can be repeated any number of times. If the edit can no longer
be used, it is killed and it goes to the dead state. Edits in the dead state cannot be undone
or redone [LEWECO02].

To understand why an edit can be killed, consider the following sequence of edit
operations:

Edit A
Edit B

Now assume that Edit B is undone, Edit A is undone, and Edit A is redone. Now suppose
some other operation — Edit C is performed. In this case, Edit B can no longer be used,
and is in dead state.

Edits can be undone and redone as a group using ConpoundEdi t — a subclass of

Abst ract Undoabl eEdi t . A number of Abst r act Undoabl eEdi t s are added to a
ConmpoundEdi t using a sequence of addEdi t method. When all edits are added, end is
called to indicate that no more edits should be added to the existing ConpoundEdi t , and
that the creation of the ConpoundEdi t is complete. The ConpoundEdi t can be undone
and redone only after it is complete. When asked to undo or redo, it undoes or redoes all
the edits added to it.

Figure 3.11 shows the state diagram of ConpoundEdi t .

addEdit

* An excaption wiil be thraw i these transitans are altempted

Figure 3.11. ConpoundEdi t State Diagram
Source: [LEWECO02]

CS298, Spring 2004 Page 18 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

3.3.2. Undoabl eEdi t Event and Undoabl eEdi t Li st ener

Undoabl eEdi t Event is a member of the j avax. swi ng. event package. Components
that support undo/redo generate this event to notify the registered listeners (the ones that
implement the Undoabl eEdi t Li st ener interface) about the occurrence of an undoable
edit operation. The constructor of Undoabl eEdi t Event requires the source of the event
(that is, the component that generated this event — typically t hi s) and the edit operation
itself (for example, an instance of the Del et eEdi t class that we saw in Section 3.3.1).

Undoabl eEdi t Li st ener is also a member of the j avax. swi ng. event package. Each
class that is interested in the undoable edits of a particular component should implement
this interface and register itself with the component of interest. The interface defines only
one method:

publ i c abstract void undoabl eEdi t Happened(Undoabl eEdi t Event e€)

This method is called whenever an undoabl eEdi t Event is generated by the component.
The implementing class gets access to the Undoabl eEdi t through the event e, and takes
appropriate actions.

3.3.3. The UndoManager Class

UndoManager is an extension of ConpoundEdi t . It stores a history of Undoabl eEdi t s
and allows the user to undo and redo them one at a time. By default, it stores a history of
100 edits at the same time; but this can be changed by using its set Li m t method, which
accepts an integer argument [T00]. UndoManager also implements

Undoabl eEdi t Li st ener: it calls addEdi t method each time an Undoabl eEdi t Event
is fired. Loy et al. ([LEWECO02]) point out an important advantage of this behavior: “this
allows a single UndoManager to be added as a listener to many components that support
undo, providing a single place to track all edits and populate an undo menu for the entire
application”(p. 651).

Figure 3.12 shows a simple example of how UndoManager works.

New -, + . = undo - +
) ‘fl rfl ® 0|0
addEdit + unda
L e
) e)| olo|o
= v b
Je]e) Je|o
addEdi ddEdi
. ' i .
Je|e|e Jeole
IlI'I‘ED IJI1I/I|-III
. + o +
elelo ke
@ Undnatie Foit O Undone (redoabie) £t *,l..-ar.-nm'm Folnt

Figure 3.12. UndoManager Example
Source: [LEWECO02]

CS298, Spring 2004 Page 19 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

Though UndoManager is a subclass of ConpoundEdi t , there are some differences in the
way it behaves (adapted from [LEWECO02] and [T00]):

e When an edit is added to UndoManager , it is placed in the list of available edits. When
undo is called, only the last significant edit is undone. Whereas in the case of
ConmpoundEdi t , a call to undo undoes all the edits added to it.

e When ConpoundEdi t is killed by calling di e, all its edits are discarded. Whereas,
when di e is called on UndoManager , only those edits are discarded that are undone
but not redone.

e The meaning of “inProgress” (refer to Figure 3.11) is quite different in both the classes:
in UndoManager , single sequential undo/redo operations are only supported while the
class is in “inProgress” state. If end is called, UndoManager essentially starts
behaving as a ConpoundEdi t and no longer supports sequential undo/redo. In
contrast, ConpoundEdi t allows new edits to be added only while it is in “inProgress”
state; and undo/redo can be performed only after end has been called.

[LEWECO02] explains the idea behind the UndoManager acting as a ConpoundEdi t after
the end method is called. According to [LEWECO02], “the idea is to use an UndoManager
in a temporary capacity during a specific editing task and then later be able to treat all of
the edits given to the UndoManager as a single ConrpoundEdi t ”(p. 653). For example, in
a spreadsheet application, UndoManager can manage the process of editing the formula
for a single cell. This allows small edit operations to be undone and redone individually.
After the formula has been finalized and committed, end method can be called so that now
the UndoManager starts behaving as a ConpoundEdi t . This edit (of creating the
formula) can then be handed over to the primary undo manager, and the entire formula
can be undone and redone as a single unit [LEWECO02].

3.3.4. The Undoabl eEdi t Support Class

Undoabl eEdi t Support is a utility class for classes that need to support undo/redo. It
provides methods to add and remove Undoabl eEdi t Li st ener s. It also provides

post Edi t method to send an Undoabl eEdi t Event to the added listeners, and methods
to add multiple edits to itself and fire a single ConpoundEdi t .

The text components manage their listeners in their own private way; hence they do not
use the Undoabl eEdi t Support class.

CS298, Spring 2004 Page 20 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

4. Existing Editor Framework

As mentioned before, | extended someone else’s framework during my project. The
framework was based on the j avax. swi ng. t ext framework provided by Java Swing. In
this section, | will discuss the framework | started with.

4.1. User Interface

The framework initially accepted a MathML document as its input (MathML is a special
type of XML, used to represent mathematical formulae). | modified the framework so that it
could accept general XML files. The main class of the framework was XMLEd (a short form
for XML Editor). Initially, the input file was provided at the command line:

java XM_LEd exanpl e. xm

However, Nupura Neurgaonkar later changed the interface in such a way that the editor
could be started simply as

j ava XM_Ed

and the input file could be provided later using the File ->Open menu item. There was also
a File->Close menu item to close an open file.

The framework displayed the XML file in XMLEdi t or Pane — a subclass of JEdi t or Pane.
XML_Edi t or Pane was practically the same as JEdi t or Pane. The only reason for creating
the subclass was to provide extensibility: with a separate XMLEdi t or Pane class, it
became very easy to add more functionality to the text component without changing other
classes. Similarly, the Edi t or Ki t associated with XMLEdi t or Pane was XM_Edi t or Ki t
—asubclass of Def aul t Edi t or Ki t .

The editor looked as shown in Figure 4.1.

£ XML Editor £ XML Editor
File Edit Element View Debug File Edit Element Yiew Debug
@ [xhiml N @] shtrnl 4
Ik k
@ O3 oy : bt @ T hody :
Gy Thisis | (Y This is [
? ij Thiz iz some sample text. ? ij Thiz is some sample text.
[y Thig - B 0 Thig
Thi=z i=s anbther sauple text. Thiz is another sanple text.

| Delimiters Visihle | Delimiters Visible

) Document Structure 0 View Structure ®) DOM Structure) Document Structure) View Structure @) DOM Structure

ixhtmlbodyip |38 | |=ntmibodyip |38

Delimiters visible Delimiters not visible

Figure 4.1. The user interface of the editor with the DOM option selected

As can be seen in the figure, the editor window also provided some other information
besides displaying the document itself. The right side of the JSpl i t Pane displayed the
XMLEdi t or Pane with the input XML document. The XMLEdi t or Pane was wrapped in a
JScr ol | Pane to display scrollbars when necessary. The toggle button “Delimiter Visible”
controlled whether or not the element markers got displayed (see Figure 4.1).

CS298, Spring 2004 Page 21 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

The left side of the JSpl i t Pane displayed a JTr ee with a variety of information about the
input file. The information displayed in the JTr ee depended upon the selected option
button: “Document Structure” option displayed the element hierarchy (in terms of the
element structure of Def aul t St yl edDocunent), “View Structure” option displayed the
view hierarchy of the document and “DOM Structure” option displayed the Document
Object Model (DOM) of the input file.

The bottom-most status bar displayed the current cursor position to the right side, and the
xpath of the current element to the left.

There were no editing functionalities available. Most of the menus seen in Figure 4.1 were
added by me during the course of the project.

4.2. The Docunent Structure

The framework parsed the input XML document using the Document Object Model (DOM)
parser in the or g. w3c. dompackage, and created an appropriate element structure. The
underlying Docunent was XM_Docunent — a subclass of Def aul t St yl edDocunent .
XM_Docurment customized many methods of Def aul t St yl edDocunent to get the
desired behavior in context of an XML editor. Instead of directly using the

Abst ract Docunent . BranchEl enent and the Abstract Docunent . Leaf El enent
classes, the framework defined their subclasses XM_Docunent . Bl ockEl enent and
XM_Docurrent . RunEl erment respectively and used these classes to describe the element
structure.

The element structure of the input file could be viewed as a JTr ee by selecting the
“‘Document Structure” option. Here is the element structure for the document in Figure 4.1:

£ XML Editor

File Edit Element WYiew Debug

wrml [0,59] :
3 paragraph [0,59] 4
@ xhtml [0,59]
= [shtrrl-leaf [0,1]
% 3 body [1,58]
© [bodyleal[1,2] |
@ 3 content [2,27] This iz another sample text.
@ T p[27,57] :
©- 7 p-leaf[27,28]
&] content [28,5] -
& [T p-leaf [56,57] &
o [T atiributes |-
@ [hody-leaf [57,58] ¢
@ [attributes ;
@ [shtrrl-leaf [52,53]
&= [T Attributes
@ [Attributes

gl

i Thiz iz some zample text.

=

Hl

ZI0NE

| Delimiters Visible |

@ Document Structure) View Structure > DOM Structure

izhtmlbody/p 37

Figure 4.2. Element structure of the sample document.

The numbers in the square brackets represented the values returned by the element’s
getStart O f set and get EndOf f set methods respectively.

CS298, Spring 2004 Page 22 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

In the element structure above, the first two elements got created by
Def aul t St yl edDocunent by default. The actual hierarchy corresponding to the input
XML file started from the third level.

Each content node in the input file had a corresponding XM_LDocunent . RunEl enent in
the hierarchy, and each element in the input file had a corresponding

XM_Docunent . Bl ockEl enment in the hierarchy. Each such Bl ockEl enent also had
two child RunEl enment s with names ending with “-leaf’. These elements represented the
start and end tags respectively of the parent element. All the actual children of the parent
element were inserted between these two delimiter tags.

All the elements also had an associated At t ri but eSet to store their specific information.

4.3. The Vi ew Structure

j avax. swi ng. t ext provides some basic ready-to-use views like Label Vi ewand
BoxVi ew. The framework that | started with also had a few additional views:
XM_Label Vi ew, Rowi ewand H ddenTagVi ew.

XM.Label Vi ew.

This was a subclass of Label Vi ew, and was designed to represent text content.
Practically, it provided the same behavior as Label Vi ew. As in the cases of

XMLEdi t or Ki t and XMLEdi t or Pane, a separate class was created just for extensibility.

RowVi ew:

This was a subclass of Box Vi ew, and was designed to lay out child views of a given view
along the x-axis. It behaved in the same way as BoxVi ewwith Vi ew. X_AXI S as the
second constructor argument. Again, a separate class was created for convenience and
extensibility.

H ddenTagVi ew.

This was an extension of Edi t abl eVi ew, which in turn was an extension of
Conmponent Vi ew of the Swing text package. (Conponent Vi ewis a convenient view to
represent a component — say a JPanel — for an element. As [API03] explains, “it allows
components to be embedded in a Vi ew hierarchy”.) H ddenTagVi ew was designed to
represent the delimiter (“-leaf’) elements of an XM_Docunent . Bl ockEl enent . It was
preferable that the delimiter tags be represented in a graphical way to clearly indicate the
boundaries of an element. Using a component was the easiest way to achieve this goal.
Hence, Hi ddenTagVi ewwas developed as an (indirect) extension of Conponent Vi ew
and a bordered JPanel was used as the component. The JPanel also displayed the
element’s name in it.

The resulting H ddenTagVi ewis shown in Figure 4.3.

b) (b]

Figure 4.3a Hi ddenTagVi ew for the start tag of Figure 4.3b H ddenTagVi ew for the end tag of

The View structure of the input file can be seen by selecting the “View Structure” option.
Figure 4.4 shows the view structure of the sample document.

CS298, Spring 2004 Page 23 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo

£ XML Editor

File Edit Element Wiew Debug

bwinog.plafbhasic BasicTextUISRootvie
ax. swino text. Boxview@h23d12 !
| javax.swing text.Paragraphiiew @i oy
Ijjava.x.swing.fcext.Paragra;:.uhVieWSiF ey
L = javax.swing text Boxview@l o :
[HiddenTagview [0, 1] :

@ [javax.swing text Boxview(d i This is another sauple text.
(Y HiddenTagview [1,2] |

[sMLLabeliew: (2, 27] |

© [javax. swing text Borvie)

[HiddenTagView [27 :

[¥MLLabelview: (28]

[HiddenTag\iew [56

[HiddenTagView 57, 58

[} HiddenTagview [58, 59] |

1

@E@

Hlik

D

‘ Delimiters Visible |

I) Document Structure ® View Structure ' DOM Structure ‘

htwibodyp w

Figure 4.4. View structure of the sample document.

Swati Pathak

As explained in Section 3.2.3, a Vi ewfact or y is responsible for deciding which view to

create for a given element. The Vi ewFact ory in the framework was called

XMLVi ewFact or y. Initially, its cr eat e method had a series of if statements to decide
what view to create depending upon the given element. Later, it was changed by Nupura
Neurgaonkar so that the cr eat e method read an external file — vi ew map. xn —to
make this decision. vi ew- map. xm provided the mapping between elements and their
views in XML format. This way, changing the view for an element did not involve

recompiling.

Section 5 describes in detail the functionalities that | developed on top of this framework.

CS298, Spring 2004 Page 24 of 63

April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

5. Implementation

As mentioned before, | developed editing functionalities in the XML editor framework
described in Section 4. The goal of my project was to find the extensibility and usability of
the available framework, and as a by-product, develop a user-friendly and platform-
independent XML editor.

In this section, | will discuss the following implemented features:
e Tree View

e Edit operations including insert/delete, cut-copy-paste, search/replace, split/merge
and open/enclose

e Undo / Redo functionality
e Paragraph View
e Save
| will also discuss my implementation approach and the issues | faced.

5.1. TreeVi ew

5.1.1. Need and Goal of Tr eeVi ew

An XML document is structured as a rooted element tree. For best WYSIWYG editing, it is
preferable that the user sees the document as a tree of elements where the parent-child
relationship is clearly visible. The best Vi ew of the Swing text package that can display a
hierarchy of elements is Box Vi ew. It displays all the children of a particular element along
x-axis or y-axis, depending on the value given to its constructor. For example, calling the
constructor BoxVi ew(el em Vi ew. Y_AXI S) displays the element hierarchy of the
sample XML document as shown in Figure 5.1a. Though this is the best that Swing can
give, it does not clearly reflect the underlying hierarchy. The goal of Tr eeVi ewwas to
display all the child elements of a given element at an offset from the parent, and thereby
reflect the parent-child relationship (Figure 5.1b).

Sample XML document:

<book>
<t oc>Tabl e of Contents</toc>
<body>
<chapt er >Chapt er One</ chapt er >
<chapt er >Chapt er Two Chapter Three</chapter>
</ body>
</ book>

CS298, Spring 2004 Page 25 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

£ MML Editor =114 =
File Ediil Bleamend Opsarations View Atrikede: Debug [l Edit Elemnend Opevations Veew Attributes Dedug
S — PO ookt
® @ AN T 3 ~—_-"
ot jLoc)
?| |Tanie of contents renll Snilneente)
{ioe] toc
Tty
oty ooty)
cheapler) chapies |
Chapzer One Chepeer mne
ehaptar { chapdar
|chapier) chaptes
Chapter Twe Chaprter Thiee Chapter Tue Chaptes Thees
{chapder
<nay] (bog
WI[F]|_4book i) | (hook
| petimmersvisivie | pawmiters wisiie |
C Dacutment Siruchee - Visw Stiuciee O Docisend Structure) View Structure
Figure 5.1a XML Document with BoxVi ew Figure 5.1b XML Document with Tr eeVi ew

5.1.2. Implementation Issues
My approach in the implementation was to extend BoxVi ew and change the methods
related to the required functionality. Specifically, | re-implemented the method
| ayout M nor Axi s to lay out the child elements of an element at an offset.
/**@aramtarget Span - the total available span for the view

*@aramaxis - the axis being laid out (View. X AXIS in our case)

*@)aram offsets - the offsets fromthe origin of the view

for all children views, this is a return value to be

* filled in by this met hod
*@aram spans - the span of children views, this is also a return val ue.
*/

protected void | ayout M nor Axi s(int targetSpan, int axis, int[] offsets, int[]
spans)

super. | ayout M nor Axi s(t arget Span, axis, offsets, spans);
int n = getViewCount();
for(int i =1; i <n-1; i++) //leave out the |eaf views.

//modify the offsets of child elenents, and

[/ decrenment their spans.

of fsets[i] += | NDENT;

} spans[i] -= | NDENT;

}
The above implementation worked fine, except that some text got erased while the cursor
moved across Tr eeVi ew. After hours of debugging, | discovered the problem: as the
implementation changed the size requirements of Tr eeVi ew compared to its superclass
BoxVi ew, | also needed to modify the method calculateMinorAxisRequirements to
ensure that it returned the correct size requirements. Specifically, the minimum and the
preferred requirement values needed to be changed. The maximum requirement value did
not need to be changed because by default it returns the largest integer that can be
represented in Java.

CS298, Spring 2004 Page 26 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

/[** @aramaxis the axis in question (View X AXIS in our case)

* @aramr the SizeRequirenments object. If this is null, one
* wll be created
*/

protected SizeRequirenents cal cul at eM nor Axi sRequi renent s(i nt axis,
Si zeRequi renments r)

Si zeRequi rements s = super. cal cul at eM nor Axi sRequi renment s(axi s, r);

[/for x-axis, increment the mininumand the preferred requirenents by | NDENT
if(axis == View X AXIS)
{
S. m ni mum += | NDENT;
s.preferred += | NDENT;
if(r '=null)
r.m ni mum += | NDENT;
r.preferred += | NDENT,;
return s;

}
This modification solved the erasing issue.

During the implementation of Tr eeVi ew, | also observed a mysterious

Arrayl ndexQut O BoundExcept i on while using the arrow keys to traverse the
document. After some debugging, | discovered that the actual cause of this problem was
the BadLocat i onExcept i on thrown by Def aul t Car et while the user tried to move the
cursor beyond the end of the document. Def aul t Car et simply ignored the exception and
advanced the cursor in an incorrect way. This way, the system entered a non-stable state,
and threw an Ar r ayl ndexQut Of BoundExcept i on at a later stage.

/1 Code from javax.sw ng.text.DefaultCaret
public void paint (G aphics Q)

i{f(is\ﬂsible())

try
{

/1 code for painting the cursor
} catch (BadLocati onException e)

/1l can't render | guess
/1 Systemerr.printin("Can't render cursor");

}
}

| implemented a subclass of Def aul t Car et — XM_Car et — to handle this situation. |
caught BadLocat i onExcept i on and positioned the cursor at the right place when the
user tried to move beyond the end of the document.

CS298, Spring 2004 Page 27 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

//XMLCaret
public void paint (Graphics g)

{

bool ean flag = fal se;
if(isVisible())
{

try
{

: /] paint the cursor
}catch (BadLocati onException e)

e. of f set Request ed() ;
g to go beyond the end, set cursor at the end of the docunent

of f - 1);
g to go beyond the beginning,set the cursor at the beginning
t

}
}
}

This approach solved the issue of the exception.

| later also implemented the ability to change the indentation of Tr eeVi ew (that is, the
offset of child elements from its parent). Now, the user can just specify the new value of
indentation, and it is changed immediately. This operation also supports undo/redo.

5.2. Edit Operations

Editing functionalities are the most important part of any editor. The number and the types
of available editing functionalities determine how easily the editor can be used to edit a
document. During my project, | tried to provide a fairly complete set of editing operations,
including some primitive or basic ones and some convenience operations.

In this section, | will describe the editing operations that | have implemented: insert/delete,
cut-copy-paste, search/replace, splittmerge and open/enclose. | have provided undo/redo
capability with each of the following editing operation. However, | will not go into the details
of undo/redo in this section. Section 5.3 describes the undo/redo functionality in detail.

5.2.1. Insert / Delete

The most basic operations in an editor are insertion and deletion. As an element
represents a structural unit of an XML document, insertion/deletion includes
insertion/deletion of text as well as elements for an XML editor. | have only implemented
insertion/deletion of elements; insertion/deletion of text has been implemented by Nupura
Neurgaonkar.

Element Insertion:

| have provided element insertion capability in such a way that the user can insert
elements anywhere except at the beginning and the end of the document. The rationale for
this restriction is that there should be just one root of any XML document. Element
insertion at the beginning (before the start tag of the root) or at the end (after the end tag of
the root) of an XML document violates this condition.

Figures 5.2a and 5.2b show the insertions of <chapt er > and <sect i on> elements
respectively in the document of Figure 5.1b. (In all the figures below, the vertical line in the
text area represents the cursor, and the number at the bottom of the window represents
the position of the cursor in the document.) As seen, the newly inserted element is initially
empty.

CS298, Spring 2004 Page 28 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo

£ MML Editor
Ee BN Blame Oparations Wiaw ARriies Danug
1

R

Tuhle of Contentcs

=l
{

Figure 5.2a. Insertion of <chapt er >

The resulting XML structures are:

<book>
<t oc>Tabl e of Contents</toc>
<body>
<chapt er >Chapt er One</ chapt er >

Swati Pathak

. XML Edilor
Fila Edil Elemsent Operations View Afiringes Dabug

o0

Gl

Tahle pf Comtents

Hla

)

ChapTer
fsaction :
|| 5etion]

Loy
cheagiler

|| Chaptee Two Chapter Thoes

=

Delimibers Wishie
(1 Document Strecture) View Straciure

Figure 5.2b. Insertion of <sect i on>

<chapt er >Chapt er Two Chapter Three</chapter>

<chapt er ></ chapt er >
</ body>
</ book>

and

<book>
<t oc>Tabl e of Contents</toc>
<body>
<chapt er >
Chapt er
<secti on></section>
One
</ chapt er >

<chapt er >Chapt er Two Chapter Three</chapter>

</ body>
</ book>

respectively. The resulting element structures of XM_Docunent are:

body
body- | eaf
chapt er
chapt er - | eaf
cont ent
Chapter One
chapter-1leaf (end-tag)
chapt er
chapt er -1 eaf
cont ent
Chapter Two Chapter Three
chapter-1leaf (end-tag)
chapt er
chapt er -1 eaf
chapter-1leaf (end-tag)
body- | eaf (end-tag)

énd

CS298, Spring 2004 Page 29 of 63

April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

body
body- | eaf
chapt er
chapt er - | eaf
cont ent
Chapt er
section

section-| eaf
section-1leaf (end-tag)
cont ent
One
chapter-1leaf (end-tag)

body-leaf (end-t ag)

.respectively. As seen in the second case, the content node inside <chapt er > is split into
two to properly insert the sect i on element. Def aul t St yl edDocunent automatically
splits a content node while inserting an element inside content (as in Figure 5.2b).

My initial approach for the implementation was to use the i nsert St ri ng method of
Abst ract Docunent , and insert both the leaf tags with appropriate attribute sets.

Def aul t St yl edDocunent automatically updated the element structure. This worked
well in most cases. However, this approach failed while inserting a new element at the
boundary of another element.

For example, see the element structure below:

body
body- | eaf
chapterl

chapt er 1- | eaf

chapter1l-1eaf (end-tag)
chapter?2

chapt er 2- | eaf

chapter2-1 eaf (end-tag)
body- | eaf (end-tag)

If | tried inserting a new element at the end of <chapt er 1> (between chapt er 1-

| eaf (end-tag) and chapt er 2- 1 eaf), it did not produce the desired result: it inserted
the element as a child of <chapt er 1>, instead of <body>, resulting in the following
structure:

body
body- | eaf
chapterl

chapt er 1- | eaf
chapter1l-1eaf (end-tag)
newel enment
newel enment - | eaf
newel ement - | eaf (end-tag)
chapter?2
chapt er 2- | eaf
chapter2-1 eaf (end-tag)
body- | eaf (end-tag)

The reason, as | discovered later, was that in the above structure, the insertion position of
<newel enent > was actually the end offset of <chapt er 1> (and the start offset of
<chapt er 2>). Hence, Def aul t St yl eDocunent made an incorrect assumption that
<newel enent > was being inserted in <chapt er 1>! Similarly, an attempt to insert an

CS298, Spring 2004 Page 30 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

element at the end of <chapt er 2> also failed. This behavior was unexpected because in
general, the end offset of an element does not actually belong to the element. As
explained in [API03], the element occupies start offset to (end offset-1) positions in the
document. Yet, i nsert St ri ng considered end offset as part of the element while
updating the element structure! This problem was very difficult to track down because
there was very little documentation about the behavior. Specifically, the Java API
documentation did not at all mention this behavior.

Failed to find a solution to the i nsert St ri ng problem, | then implemented element
insertion by directly changing the DOM (Document Object Model) tree that was generated
while parsing the input file, and then reconstructing the whole document. This solution
worked fine in all cases, but was inefficient and slow.

Finally, Nupura Neurgaonkar found an article ([V03]) that explained this phenomenon, and
provided its solution. Adopting the explained solution, | then used the i nsert method of
Def aul t St yl edDocunent to insert an element, and specified the desired element
structure explicitly using the Def aul t St yl edDocunent . El enent Spec class. The
insertion of element then behaved correctly in all cases. As this solution was much more
elegant and efficient, | then discarded my old solution.

Element Deletion:

This operation removes the element surrounding the cursor when the cursor is at the leaf
tags. It does not do anything if the cursor is in the content. | have implemented element
deletion in such a way that any element except the root can be deleted. The rationale for
this restriction is the same as the one for insertion: an XML document should have exactly
one root. Deleting the root violates this condition.

Figures 5.3a and 5.3b show the deletion of <body> and <sect i on> elements from the
documents of figures 5.2a and 5.2b respectively.

| used the r enbve method defined in Abst r act Docunent to implement element
deletion. The element structure automatically got updated by Def aul t St yl edDocunent
after deletion. The resulting element structure was as expected in all cases. However,
while i nsert St ri ng automatically split content node while inserting an element in
content (Figure 5.2b), r enove did not automatically merge adjacent content nodes when
an element was removed. Hence, | had to write code to achieve the desired result (Figure
5.3b).

& 30N Editor EEE EIEE
File Ecit Blement Operalions Wiew Attriutes Debug File Ecid Elemerd Operalions Wiew Atiributes Debug
o e =
-) C
@ Table of Contents f,
Table of Concencs f
(e =) 5
(o §
chaprer jine -
{ Ehapter] .
ames) 5
Chaprer Two Chaprer Thees E
i chapier ;
E
< : : | R I =
Delimiters Visibie Dielimiters Vit
O Documest Structure O Wiew Siructure O Documest Structure) View Structure
hinak 2 ook oty chaher n
Figure 5.3a. Deletion of <body> Figure 5.3b. Deletion of <sect i on>

CS298, Spring 2004 Page 31 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

5.2.2. Cut, Copy and Paste

Cut, copy and paste remain the most widely used edit operations in text editors. They
facilitate information exchange within a document. As argued in [WBTO01], cut, copy and
paste provide the user with a simple form of reuse. Swing text components provide some
basic support for cut-copy-paste. However, the support they provide is very minimal — they
deal with simple text content only. | had to re-implement the functionality to deal with
element content as well.

In the context of an XML document — which consists of a tree of elements — these
operations need a little different semantics (for example, what should the cut operation do
when an element is only partially selected).

| have used the following conventions in my implementation (in the following discussion,
paste buffer means the clipboard):

e When only text (and no start or end tags of an element) is selected, cut-copy-paste
behave in the same way as in any conventional text editor (see Figure 5.6 below).

£ XML Editor =13 =]}
File Edil Element Operatio Wies Attribute Delug) File Edit Element Operatio Wiew Abiribate Debug Fite Edit Elerment Operatio WView Atiribuis Debug
(& 14 = [@ 14 I3 [& 14 T
el lE P e o0
Table of Concencs : Table of Contents e : Tehle of Concents
: e
;
st
.
et
Z
Chapter (me Chepter One 2 Cl':unl‘.tcti_jer ome
Z
2
et
Chaprer Tua Chopter Two % Chapter Two
n £
::ctioh ome sh onE g an one
Soction _ et
Chapter Thiee Cheprer Three Chapter Tnres
e =] Jal { chapter] = Y -
Delimiters Visible | Delimiters Visinle | Delimiters Visible
C Document Structure (2 View Structure O DECument Structure O View Siructure O DoEument Structure O View Structure
bookbodyichapter/se...| 54 | [vookbodvichapterise... |49) | lmookmodyichapter |32
Selection Cust Paste [pasted content is shown in a blue box)

Figure 5.6. Cut and Paste When Only Text is Selected

e When only the start tag or the end tag (but not both) of an element is selected, all the
highlighted child elements of the partially selected element are cut (or copied). The
paste buffer now contains a new element of the same type as the partially selected
element, with all the cut (or copied) elements as its children (see Figure 5.7).

CS298, Spring 2004 Page 32 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo

= XML Editor

=1/

Swati Pathak

File Edit Element Operatio Wieve Attribute Detbug) File Edit Element Operatio Wiews Attribute Debug
L | o
? [P toc 2 E'.'
: Table of Concents Table of Contents
chapter chapter
Chapter [ne Chapcer One
chapter
Chapter Twa sectinn
[section) it
ze-:dl.m o p—
section Chapter Three
Chapter Thiese chapter
b0 H chapter - 4H — -
| Dedimilers Wisihhe | Delmiters YWisible
) Document Structure 0 View Structure () Document Structure 0 View Structure: |
| mookmodychapterise. .. |52 | Imookmodwchapterise... 36 |

Selection

Cut

Figure 5.7. Cut and Paste When a Partial Element is Selected

£ XML Editor =1
File Edit Elemeant Operation Wiews Attribute Debug
e 01
? 0
ECIp

I Document Structure Miew Structure |
bookbodyichapter |54 [

Paste (pasted content is shown in a blue hox)

When an element is completely selected (that is, the start tag and the end tag both are

selected), the whole element is cut (or copied) and placed in the paste buffer (see

Figure 5.8).

£ MML Editor

EEX

£ XML Editor

EBIX

File Edit Element Operation View Attribute Debug File Edit Element Operation View Attribute Debug File Eclit Ederment Operation View Attribute Debaig
G G | Fi= et =
g | = .
Table of Concents Table of Cantenkts é
E2
g
E2
Chaprer One %
chal
== Charter -
Chaprer One Chapter (ne g
section e
. . FECTLOn One é
secrtion one soction) f
T J Chapter Tuo Chapter é
e 1 g
Chapter Thres
-chanwr
chapter| Chiaplers
3 Chaprer Tud Chaplek
nt A Three
CI || o) A v Al S enasnar] =
| Demiters visae | | Delimiers visine Delimiters Visikle
! Document Structure ¢ Wiew Structure [Document Structure ! Wiew Structure O Document Structure 0 View Structure |
bookModyichapter | 60 [mookmoryichapter |60 mookbodyichapter |16 |
Selection Cut Faste (pasted content is shown in a blue box)

Figure 5.8. Cut and Paste When a Full Element is Selected

The paste buffer contains a complete element in all cases.

The copy operation does not change the document in any way. It just places the selected
content in the paste buffer according to the above conventions. For this reason, | needed
to create deep copies of the selected elements before placing them in the paste buffer.
Storing direct references or shallow copies of the selected elements could result in
unexpected behavior while performing paste operation. The Swing framework did not
provide any method to create a deep copy of an element, so | had to write my own method

for this purpose.

CS298, Spring 2004

Page 33 of 63

April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

The cut operation places the selected content in the paste buffer, and removes it from the
document. Thus in the implementation of cut, | first called the copy operation to put the
contents in the paste buffer, and then used the r enbve method to remove the contents
from the document according to the above conventions.

There can be just one paste buffer in the system. Hence, | used the Singleton design
pattern in the implementation of the paste buffer (refer to Section 2.2). In the
implementation of paste, | used the primitive insertion operations as much as possible.
However, | needed to handle the boundary case: when pasting resulted in two consecutive
content elements. | combined the two content elements in that case.

| had to make some modifications in the editor kit to use the standard keyboard shortcuts
(CTRL+X, CTRL+C and CTRL+V) for my cut, copy and paste operations respectively. By
default, text components already have bindings (as a Keymap) for these key combinations
with the basic (text-only) versions of the corresponding operations. Just setting the
appropriate accelerators for the corresponding menu items did not change these bindings,
because as explained in [P04], the bindings done by Keymap have a higher priority over
the bindings done by menu accelerators. To change the bindings, | had to follow the
following steps:

e |createdpublic static final variables describing the name of each operation.
This was done just for convenience, and to follow the tradition of Def aul t Edi tor Ki t .

public static final String xm CopyAction = "Copy";

public static final String xm PasteAction = “Paste”

public static final String xm CutAction = "Cut";

e |created public static innerclassesin XMLEdi t or Ki t corresponding to each
operation. For example, the class for cut looked like:

public static class XM.Cut Action extends TextAction

//Create this object with the appropriate identifier
public XM.Cut Acti on()

super (xm Cut Acti on);

/**

* The operation to performwhen this action is triggered.
* @arame the action event
*/

public void actionPerformed(Acti onEvent e)

JText Conponent target = get Text Conponent(e);
if (target !'= null)
{

XM_.Docunent doc = (XM.Docurent)target. get Docunent ();
if(doc !'= null)
doc.cut(); //my method

}
}

e | changed the get Act i ons method declared in St yl edEdi t or Ki t to include my
actions as well.

public Action[] getActions()
{

return Text Action. augnentLi st (super.get Actions(),
XMLEdi torKit. XM.Actions);

}
e | defined key bindings in XMLEdi t or Pane.

CS298, Spring 2004 Page 34 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

public static final KeyBinding[] XMLBindings =
{

new JTextComponent.KeyBinding (
KeyStroke.getKeyStroke (KeyEvent.VK C, InputEvent.CTRL MASK),
XMLEditorKit.xmlCopyAction),
new JTextComponent.KeyBinding (
KeyStroke.getKeyStroke (KeyEvent.VK V, InputEvent.CTRL MASK),
XMLEditorKit.xmlPasteAction),
new JTextComponent.KeyBinding (
KeyStroke.getKeyStroke (KeyEvent.VK X, InputEvent.CTRL MASK),
XMLEditorKit.xmlCutAction),
}i
e Finally, | loaded the key bindings in the JText Conponent Keynap.
Keymap k = _pane. get Keynmap();
JText Conmponent . | oadKeynap(k, XMLEdi t or Pane. XM_Bi ndi ngs, ki t. get Actions());
Here, ki t is the XMLEdi t or Ki t associated with the pane.
These steps now established the association between the key bindings and the
appropriate actions.

5.2.3. Search / Replace

Search and Replace operations help the user in quickly locating the required information
within a document. These operations save the user’s time, and enhance his/her
productivity.

In my project, | have customized these operations with an XML document in mind,
implementing them in such a way that the user can search and replace text, element
name, attribute name or attribute value. The user selects what to search by selecting the
appropriate radio button (see Figure 5.9 below). For elements and attribute names, the
“‘Replace” and “Replace All” buttons change their captions to “Rename” and “Rename All”
respectively.

£ Search

< Search

Supply the Search string, and optionally the Replace string;

Search: |chapter |

Replace with{optional): |secti0n| |

Search for-]
(® Text{(CData) () Attribute Name |
() Element (Attribute Value |

[_] Case Sensitive

| Search || Replace || Replace all || Close |

~Search for

Supply the Search string, and optionally the Replace string:

Search: |chapter |

Replace with(optional): |section |

i) Text (CData) () Attribute Name
® Element O Attribute Value

[[] Case Sensitive

| Search || Rename || Rename All || Close |

Searching text

Figure 5.9. Search Dialogs

Searching element (observe the changed caption)

| have used the following conventions in the implementation:

e Search:

The user can search for text, element, attribute name or attribute value. The user has an
option to perform a case-sensitive search. The operation searches for the required
information starting from the current cursor position to the end of the document, and
highlights the first occurrence of the information. Executing “Search” again for the same

CS298, Spring 2004

Page 35 of 63

April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

information finds the next occurrence of the information, and so on. A message appears if
no occurrence of the searched information is found.

¢ Replace (or Rename)

Replace operation replaces the selected content in the document with the one provided in
the replacement field. For example, if the text option is selected, it replaces the selected
text with the replacement text. For elements and attribute names, this operation actually
performs a “Rename” rather than a “Replace”, because it simply changes the name of the
selected element or attribute. If no appropriate information is selected in the document, this
operation does not take any action. Thus, Replace operation in my implementation is not
tied to the Search operation. Replace can be executed by itself, without performing a
search or specifying a search string.

e Replace All

In all the four options, Replace All performs a document-wide search for the required
information (text, element, attribute name or attribute value) and replaces all occurrences
with the replacement value. This operation is tied to the Search operation: the user needs
to supply both — a search string and a replacement string — to perform this operation.

o Edi (B[< on esitor E/E) - xwe Eicor CEX
mE"B Edit Element View Debug File Edit Element View Debug File Edit Element View Debug
(@ |4 (@ (4 2l e Te
* *l ENge
* ' il |
Tahle of Contents Table of Contents Table of Contents
body
Foctn
Chapter One Chapter One : i Chapter One
seco) |
| |
Chapter Two Chapter Three Chapter Two Chapter Three : : Chapter Two Chapter Three
i | Coowy e| Wl £CE = fal | | Coow -
| pelimiters vasible | | Delimiters visible | | Detimiters visible
' Document Structure) View Structure) Document Structure T View Structure) Document Structure ! View Structure
hookmody/chapter |22 ‘bookhody/chapter [34 hookmody 61
Search for element <chapter> Rename it with <section> R all <chapter= with < ion=

Figure 5.10. Search, Rename and Rename All for elements

CS298, Spring 2004 Page 36 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CIEX| ¢ xmL Editor

4 XML Editor [B]X] | £ xmL Editor

File Edit Element Wiew Debug File Edit Element View Debug File Edit Element View Debug
L2 : Core JawaZ “ s : Core JavaZ =~y ? : Core JawvaZ
Ef
This is preface (e This is preface This is preface
il
Chapter A | B Chapter A | B | Chapter A | B |
il i num 1 E nLm 1
name |Multithreadi... name |Multithreadi. name |Multithreadi...
b’.‘uvers Thread Groups tuvers Thread Groups Cowvers Thread Groups
A [& B = A [B]
Chapter Chapter Chapter
(chapter |-~ B W . . (chapter | -
hame |callections ||| : name Collections hame |collections
B Covers Linked Lists and Maps Cowers Linked Lists and Maps ; kovers Linked Lists and Maps
aGk Chapter| =/ I Chapter| || OCE Chapter|
| Delimiters Visible ‘ ‘ Delimiters Visible | | Delimiters Visible
L Document Structure £ View Structure ‘) Document Structure 0 View Structure C Document Structure O View Structure
| Booker/Chapter |i31 ' Booker/Chapter _ﬂ_:jj /Booker/Chapter \554
Search Attribute "id" Rename with "num” Rename all with "num"

Figure 5.11. Search, Rename and Rename All for Attributes

The implementation of text replacement was straight forward — | first removed the old text
using the r emove method of Abst r act Docunent , and then inserted the new text using
the i nsert method of Def aul t St yl edDocunent (I did not use thei nsert Stri ng
method of Abst r act Docunent to avoid the boundary case problem described in Section
5.2.1).

The implementation of attribute value replacement was also easy — | simply added the
(attribute name, new value) pair to the element’s attribute set. As the attribute set is a
collection of unique attribute names, the old value simply got over-written with the new
one. Implementation of renaming attribute name involved one more step: | actually had to
remove the old pair from the attribute set, and add the new one.

The implementation of element renaming was a little more involved. Renaming the
element itself was not difficult: | simply changed the element’'s Name attribute. However,
that alone was not sufficient. | also had to change the name attributes of its -leaf elements,
and most importantly, had to change the caption in the component of H ddenTagVi ew.
This part was most challenging: | needed a reference to the H ddenTagVi ewthat
represented the given leaf element. In the Swing Editor framework, a Vi ew knows the

El ement it represents, but an El enent does not know the Vi ewthat represents it. There
is no direct way to get the Vi ew corresponding to an El enent . Also, in Conponent Vi ew
(the indirect superclass of H ddenTagvi ew), there is no way to recreate a component.
So, | wrote a method get Vi ewfor to get the Vi ew corresponding to a position in an
element by examining the El enent s of all the Vi ews in the Vi ew hierarchy.

/ * Returns the view corresponding to an el ement.

* @aram el emthe el enent
* @eturn the View corresponding to elem

*
/
public View getVi ewFor El en(El emrent el em
{
TextUl ui = _pane.getUl ();
View v = ui.getRootVi ewm pane);
Vi ew para = v.getView0).getViewO0);
Vi ew act ual Root = para.getView(0).getViewO);
Vi ew vi ew = act ual Root ;
return getVi ewl nVi em el em act ual Root) ;
}

CS298, Spring 2004 Page 37 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

/** Returns the View corresponding to elemif it is present in the direct

or indirect children of view

@aram el em t he el enment

@aramview the Viewto search for

@eturn the View corresponding to elem if present in the hierarchy of view,
nul | otherw se.

* Ok 3k kX

*/
private View getView nView El ement elem View view)
{
if(view getElement() == elem
return view,
Viewv = null;
int len = view getVi enCount ();
int i =0;
while((i <len) && (v == null))
View child = view getViewi);
v = getView nView(el emchild);
i ++;
}

return v,

}

With this method, | obtained a reference to the Vi ew of the renamed element, and
changed the caption of its component. | also had to change the “xpath” attribute of all the
direct and indirect children of the renamed element.

5.2.4. Split / Merge

Split and Merge are convenience operations, meaning that the same effect can be
achieved using primitive operations such as insert and delete. However, these operations
provide a quick way to split an element into two, or merge two consecutive elements.

Split Element:

This operation splits an element into two at the cursor position, resulting in two consecutive
elements of the same type. After this operation, all the children of the original element are
distributed between itself and the newly created element: all the children up to the cursor
position remain children of the original element, and all the children after the cursor
position are made children of the second element.

To understand the significance of this operation, consider the scenario of an author using
this editor to write a book in XML format. The book is organized in many chapters.
Suppose each chapter is represented by a <chapt er > element in the document (which is
natural, considering the structural nature of XML). Now suppose the author wants to split a
chapter into two. Without the Split operation, he would have to remove the last few
sections or paragraphs of the chapter, create a new chapter, and paste the removed
sections/paragraphs to the new chapter. On the other hand, with the Split operation, just
positioning the cursor at the right place and calling “Split Element” does the trick.

The user can split any element except the root. The root element cannot be split; and an
attempt to do so will cause an error message to appear.

Figures 5.12a and 5.12b show an example of Split operation.

CS298, Spring 2004 Page 38 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo

Chapter jine
—_—

f chagpier)
Choprer Two Chapoer Three

!
i Chagdar

@

-
-

O Documesd Structure £ Yiew Structure

Figure 5.12a. Before Splitting <chapt er >

File Edff Elemeni Operalions ‘Wiew Afributes Debug

L—_J

d

Table oF TomEents i

Chepter One

—
§ Chapinr

Chipree Thoee

i chagler

(o]

Dialimiters Visibbe

| nnnkchadyichapter 4B

) Documest Structure) View Straetine

Swati Pathak

Figure 5.12b. After Splitting <chapt er >

My approach in the implementation was simple: | used the primitive operations. | first made
deep copies of the elements that needed to be moved to the new element, removed those
elements from the original position using r enove, created a new element with exactly the
same attributes as the original one and finally inserted the removed elements to the new

element using i nsert.
Merge Elements:

This is an inverse operation of split — it merges two adjacent elements if possible.
Extending the example of the author, this operation can be used to merge two chapters.
Only adjacent elements with the same name can be merged.
The semantics of the operation are as follows: when the user calls “Merge Elements”, the
editor first attempts to merge the element surrounding the cursor with the element above it.
If these two elements are incompatible, it tries to merge the current element with the one

below it. If these two are also incompatible, an error message is displayed.
Figure 5.13b shows the merging of chapter two and three of Figure 5.13a.

Chaptez Three

{chapter]

| Detiniters visibie

) Document Strociure) View Siucioe

Mk hnbochapter 8

Figure 5.13a. Before Merging two <chapt er >s

CS298, Spring 2004

XML Editor
File Edil Elemen Operations ‘Wiew Atribetes Debug

=B

q

L
F
5
3

oty ¢ |
E aphar }
ChapLee O
cheapier
apnar
Chaptec Twa |

SECTLOTL OO0

4 seclion,
Chapter Thres
Chaprier

="

Delimiters Vs

hookbodychaptersection | 47

1) Dnsairmoesnt Sinsclure) View Stnsciune

Page 39 of 63

Figure 5.13b. After Merging two <chapt er >s

April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

The implementation of this operation was also done using primitive operations. | first
cloned the second element, removed it and then inserted its children at the end of the first
element. The implementation was straightforward in most cases, except when merging
resulted in two consecutive content nodes. | had to explicitly check for this condition, and
merge the two consecutive content nodes.

5.2.5. Enclose / Open

Enclose and Open are also convenience operations. They allow the user to quickly insert
an element in a way that it encloses a set of elements, or remove an element in a way that
its children are retained by “promoting” them.

Enclose Element:
This operation encloses a set of consecutive elements inside a new element. The element
is first inserted, and the selected elements are then moved as its children. For example,
consider the following element structure:
<a>

<c> ...</c>

<d> ...</d>

</ a>
If <c> and <d> are enclosed within , the following element structure would result:
<a>

<c> ...</c>
<d> ...</d>
</ b>
</ a>

This operation is needed as a result of some formatting operations in an XML document.

For example, consider the following xhtml document:
<xhtm >
<body>
This is some sanmple text.
<p>
This is another sanple text.
</ p>
</ body>
</ xhtm >

Now, suppose the user wants to underline the paragraph. The resulting document will be:
<xhtnl >
<body>
This is sonme sanple text.
<u>
<p>
This is another sanple text.
</ p>
</ u>
</ body>
</ xhtn >

As seen above, this is effectively the same as enclosing the element <p> in element <u>.
Figure 5.14a shows how this works in the editor.

CS298, Spring 2004 Page 40 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

< XML Editor =13
File Edit Element Wiew Debug
— —
i) i
This is some sample text. This is some sample text.
This is another sample text. @
@ This is another sample
text.
| (boy
| Delimiters Visible | Delimiters Visible
() Document Structure) Wiew Structure) Document Structure) Wiew Structure
izhtmimody |s7 izhimimody |59
Select elements to enclose Enclose the selected elements in <u=

Figure 5.14a. Enclose Element

This operation encloses complete elements only. If the user partially selects an element, it
does not attempt to enclose just the selected part of the element by splitting it. In this case,
the operation is executed as if the element were completely selected. This means that
currently, this operation cannot selectively enclose text content: if some text is selected,
the complete content node is enclosed in the new element. See Figure 5.14b below.

D OWLETor CEX ¢ XML Editor LEX

File Edit Element View Debug Eile__ Edit Element iew Debug
= —
T o)] foem)
This iz some sample text. This iz some sample text.
This iz ancother| sample @

text.
This is another

-
-

-

-

@ sample text.
| Delimiters Visible | Delimiters Visible
) Document Structure) View Structure () Document Structure 2 View Structure
l
ixhtmibadyip |43 ixhtmibodyip |58
Select text Result of enclosing it in <u>

Figure 5.14b. Enclose Content

As this is not a primitive operation, it was natural for me to use primitive operations in its
implementation. My approach was as follows: | first inserted the new element at the correct
position, made deep copies of the elements to be enclosed, removed those elements from
their original positions and re-inserted them as children of the new element.

“Open up” an Element

This operation is an inverse of the enclosing operation. It removes the element at the
cursor position without removing its children. The children of the removed element are

CS298, Spring 2004 Page 41 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

“‘promoted” to one level up. The only restriction in this operation is that the root element
cannot be opened.

Again, this operation is also needed as a side-effect of some formatting operations. For
example, removing the underlining of the element <p> in the above example is equivalent
to calling Open <u> Element.

Figure 5.15 shows Open Element in the editor.

£ XML Editor =1t

£ XML Editor W=

File Edit Element Wiew Debug File Edit Element View Debug
e 4 (AT g 4
0 = ?] o)
This is some sSample Text. B
@ This is some sample
textJSample text.,
Sample text. 1 @
@ o This iz another sample
This iz another Yoo
sample text. @
oy | Centm] a0
| Delimiters Visible ‘ Delimiters Visible |
(_) Document Structure) View Structure) Document Structure) View Structure ‘
ishtmibodylu e shtmibody loa &

Open up <u> (See xpath at the hottom) Result of opening up <u>

Figure 5.15. Open Up Element

The implementation of Open Element was analogous to Enclose: | first made deep copies
of the children of the element, removed the element and re-inserted the children at one
higher level.

5.3. Undo / Redo
In this section, | will discuss the undo/redo functionality of my project, along with the
implementation issues that | faced.

5.3.1. Need of Undo/Redo

Undo and redo are important edit operations in an (XML or text) editor. They allow the
users to correct their mistakes by allowing them to undo their actions. In my project, | have
implemented undo and redo in conjunction with all of the edit operations explained in
Section 5.2. In addition, | have also implemented undo/redo with the action of changing
between in-line and pop-view of attributes, as a proof-of-concept that undo/redo can be
provided not just with conventional mutating operations, but also with non-mutating
actions.

5.3.2. Implementation Issues

In general, Swing does not provide a ready-to-use undo support. However, Swing text
components are an exception: their Docunent s have a built-in capability to undo and redo
basic text-related actions. For example, the i nsert St ri ng and r enove methods
generate Undoabl eEdi t Event s with corresponding Undoabl eEdi t s. The edits have
enough information to undo and redo the corresponding operations when their undo and

r edo methods are called respectively. The client just needs to add an appropriate
Undoabl eEdi t Li st ener to the corresponding Docunent to start listening to the
generated Undabl eEdi t Event s. Undo framework also provides a ready-to-use

Undoabl eEdi t Li st ener - UndoManager , which works fine in most cases.

CS298, Spring 2004 Page 42 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

Docunent doc = new XM.Docurent () ;
doc. addUndoabl eEdi t Li st ener (new UndoManager ());

Once the listener is in place, it receives all the Undoabl eEdi t Event s from the document,
and calls the undo and r edo methods of the corresponding Undoabl eEdi t s when the
user undoes or redoes an edit. By default, UndoManager holds the last 100 actions.
Hence, the user can undo and redo up to 100 actions. However, this limit can be changed
using its set Li m t method.

Though the built-in support is adequate for text documents, it is not enough for structured
documents like XML. The reason is that this support only deals with text content, and does
not consider the element structure. For example, if insertion in the document changes the
underlying element structure, the default undo support does not restore the old element
structure while undoing it. Also, the default implementation does not produce the desired
result while undoing/redoing text insertion at the boundary of an element (see the
discussion in Section 5.2.1). As a result, | had to re-implement all the undo related
functionalities, including the ones for inserting and removing text.

| first implemented an Undoabl eEdi t class for each undoable operation available. The
Undoabl eEdi t stored enough information to undo or redo the effect of the corresponding
operation. For example, the Undoabl eEdi t fori nsert El enent looked like this:

public class InsertEl ementEdit extends AbstractUndoabl eEdit
public InsertEl ement Edi t (XM_Docunent doc, int offset, String nane)

t his.doc = doc;
this.of fset = of fset;
t hi s. name = nane;

}
public void undo() throws Cannot UndoExcepti on
{

super. undo();
//call the corresponding nethod i n XM.Docunent
((XM_Docurment) doc) . undol nsert El enent (of f set);

public void redo() throws Cannot RedoExcepti on
{

super.redo();
/lcall the correspondi ng nethod i n XM.Docunent
((XM_LDocurrent) doc) . r edol nsert El enent (of f set, nane) ;

public String getPresentationNane()

return "I nsertEl enment";

private XM.Docunent doc;
private String nanme; //the el enment nane
private int offset; //offset of the el enent

}

Next, | implemented undoxxxx and r edoxxxx methods in XM_Docunent for each
undoable operation. The undoxxxx and r edoxxxx methods used the information in the
corresponding Undoabl eEdi t , and undid and redid the operation respectively. These
methods were called from the undo and r edo methods of the corresponding

Undoabl eEdi t (see the code for | nsert El ement Edi t above).

CS298, Spring 2004 Page 43 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak
public void undol nsertEl ement (i nt of fset)

//code to undo InsertEl enent

public void redol nsertEl enent (int pos, String name)

//code to redo | nsertEl enent

}

Then, | generated Undoabl eEdi t Event s at the end of each undoable operation.
public void insertEl enent(String nane, int pos)

/linsert elenment at the position

/I generate event

InsertElementEdit edit = new InsertEl enentEdit(this, pos, nane);
XM_.Undoabl eEdi t Event chng = new XM.Undoabl eEdi t Event (this, edit);
fireUndoabl eEdi t Updat e(chng) ;

}

Finally, | implemented Act i ons corresponding to undo and redo, and attached them to
their corresponding menu items.

//Undo Action
public class UndoAction extends AbstractAction

publ i ¢ UndoActi on(XM_LUndoManager manager)
t hi s. manager = manager;

public void actionPerfornmed(Acti onEvent event)

{
try
{
manager . undo() ;
} cat ch(Cannot UndoExcepti on e)

System out . printl n("Cannot Undo!");

private XM_.UndoManager nmanager;

//Redo Action
public class RedoAction extends AbstractAction
{
public RedoAction (XMLUndoManager manager)
{
this.manager = manager;

}

public void actionPerformed (ActionEvent event)
{
try
{
manager.redo () ;
}catch (CannotRedoException e)
{
System.out.println ("Cannot Redo!");
}
}
private XMLUndoManager manager;

}

CS298, Spring 2004 Page 44 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

/lattach the actions to their corresponding nenu itens
/I manager is an instance of XM.UndoManager
undoIltem.addActionListener (new UndoAction (manager)) ;
redoltem.addActionListener (new RedoAction (manager));

At this point, | needed to distinguish between my Undoabl eEdi t Event s and the default
Undoabl eEdi t Event s generated by Abst r act Docunent . This was necessary because
| needed to discard the default events. The reason was this: if | did not discard the default
events, the UndoManager would store two events for each primitive operation — one
generated by XM_Docunent that considered element structure, and one generated by
default that did not deal with elements. For example, if | remove some characters and then
insert some other characters, the UndoManager would actually store four events: two for
each action. Attempt to undo the insert would result in undoing one of the two events
corresponding to insert. Now, attempt to undo another action (remove in our example)
would actually undo the second event corresponding to insert — resulting in unexpected
results. So, | implemented my own extension of Undoabl eEdi t Event :

XM_.Undoabl eEdi t Event . This was done just to differentiate the events generated by
XM.Docunent from the default events generated by Abst r act Docunent

XM_.Undoabl eEdi t Event did not provide any additional functionality.

public class XM.Undoabl eEdi t Event extends Undoabl eEdi t Event

publ i c XM_Undoabl eEdi t Event (Docunment source, Undoabl eEdit edit)
{

super (source, edit);

}

| then re-implemented the undoabl eEdi t Happened method of UndoManager to check
the input edit event, and add only the events generated by XM_Docunent .

public class XM.UndoManager extends UndoManager

{ /**
* Cal |l ed when an Undoabl eEdi t Event is fired.
* @aram e the Undoabl eEdit Event
*/
public void undoabl eEdi t Happened(Undoabl eEdi t Event e)
{
Undoabl eEdit ed = e.getEdit();
//add edits only if the event is XM.Undoabl eEdi t Event
i f(e instanceof XM.Undoabl eEdi t Event)
addEdi t (ed);
}
public void undo()
{
super. undo();
public void redo()
{
super.redo();
}

This way, the default events were discarded, and undo/redo operations behaved in the
expected manner.

CS298, Spring 2004 Page 45 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

5.4. Flat Paragraph View

In this section, | will discuss Fl at Par agr aphVi ew— another view that | have
implemented. FI at Par agr aphVi ew was the most ambitious part of my project, because
it needed a lot of modification in the default behavior provided by Swing.

In the following subsections, | will first explain why this view is required, then | will discuss
the strengths and the limitations of a similar view in the] avax. swi ng. t ext package and
finally | will explain the implementation issues of FI at Par agr aphVi ew.

5.4.1. Need for a New View
As explained in Section 5.1, Tr eeVi ew clearly identifies the parent-child relationship
among the elements in an XML document. This way, Tr eeVi ew helps in easily
understanding the underlying document structure and is the preferred view to edit an XML
document. However, there are cases when Tr eeVi ew actually makes it difficult for the
user to understand the underlying document structure. For example, consider the following
xhtml document:
<xhtm >
<body>
<p> This is normal text. </p>
This text is bol d. </ p>

</ body>
</ xhtm >

Figure 5.16 shows how the above document is displayed using Tr eeVi ew.

£ XML Editor E@@

File Edit Element View Debug
(@ |4
T sy

This is normal

text.

This text is

bold

| | (xhtmi) -
| Delimiters Visible

! Document Structure) View Structure

Figure 5.16. tag using TreeView

As seen above, Tr eeVi ewtreats the (bold) tag as any other child of <body>, and
displays it in a tree structure. This representation is not consistent with the natural
understanding of this tag. Hence, we need another view that displays the children of an
element one after another in a flat way. Moreover, we also need the view to wrap along the
x-axis when required. This is necessary because if the view does not wrap, it will appear
as one long line, possibly getting clipped at the right side.

5.4.2. Par agr aphVi ewof the j avax. swi ng. t ext Package

Par agr aphVi ewin the j avax. swi ng. t ext package provides some of the
functionalities mentioned above: it displays the children of an element one after another
along the x-axis, and also provides the wrapping functionality. Par agr aphVi ewis a
concrete implementation of the abstract class: FI owvi ew. It works as follows:

CS298, Spring 2004 Page 46 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

(Note: all the code fragments in this section are taken directly from the corresponding
source file of the j avax. swi ng. t ext package.)

The | oadChi | dr en method of FI owVi ewis re-implemented in Par agr aphVi ewto
not load any children directly. Instead, a variable — | ayout Pool —is initialized by an
instance of the inner class — Logi cal Vi ew.

/**

* Loads all of the children to initialize the view

* This is called by the <code>set Parent </ code> net hod.

* This is reinplenmented to not |load any children directly
* (as they are created in the process of formatting).

* |f the |layoutPool variable is null, an instance of

* Logical Viewis created to represent the |ogical view

* that is used in the process of formatting.

* @aramf the view factory

*/

protected void | oadChil dren(Vi ewFactory f)

{

if (layoutPool == null)
| ayout Pool = new Logi cal Vi ewm get El enrent ());

| ayout Pool . set Parent (this);

}
As explained in [API03], Logi cal Vi ew“can be used to represent a logical view for a

flow...It doesn't do any rendering, layout, or model/view translation.” Logi cal Vi ewis a
subclass of Conposi t eVi ew. It creates a Label Vi ewif the element is a leaf, and
calls the | oadChi | dr en method of the superclass otherwise.

| oadChi | dr en of Logi cal Vi ew.

protected void | oadChil dren(Vi ewFactory f)

{
El ement el em = get El enent () ;
if (elemisLeaf())
View v = new Label View(el em;
append(v);
} else
super. |l oadChildren(f);
}

The | ayout (Fl owi ew fv) method in FI owi ew performs the layout of the given

FI owVi ew: it calls the cr eat eRow method of the FI owVi ewto create a row of views.
One row represents one line in the resulting paragraph. cr eat eRowis an abstract
method in FI owvi ew. It is implemented in Par agr aphVi ewto create an instance of its
package protected inner class Row.

protected Vi ew createRow)

return new Row(get El enent());
}

Par agr aphVi ew. Row is a subclass of j avax. swi ng. t ext . BoxVi ew, with its
| oadChi | dr en method re-implemented to do nothing. This is done because the row is
populated using the | ayout Row method of FI owVi ew.

While laying out a given row, the available span and the next view to layout are
examined. First of all, all the views that can be completely represented in the given

CS298, Spring 2004 Page 47 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

span are added to the current row. This also includes calling cr eat eFr agnent to add
the fragment of a view that has already been broken along rows.

while (pos < end && spanLeft > 0)
{

View v = createView(flowiew, pos, spanLeft, row ndex);
if (v ==null)

br eak;

}
}

o Next, the get Br eakWei ght method of the view that could not be laid out completely is
called. If the view supports breaking (i.e. the returned br eak\Wei ght is greater than or
equal to For cedBr eak\Wei ght), the br eakVi ewmethod is called on the view and the
returned fragment is added to the current row.

if (v.getBreakWi ght(flowAxis, pos, spanLeft) >= ForcedBreakWi ght)
{

int n = row getViewCount();
if (n>0)
{
v = V. breakVi ew(fl owAxi s, pos, X, spanLeft);
. //some book- keepi ng wor k
if (v !=null)
row. append(v) ;
pos = v.get EndOf fset();

}

}

Thus, the breaking is left entirely to the view to be laid out: the view being broken is
responsible for returning an appropriate fragment of itself. If a view does not support
breaking, it returns itself in response to cr eat eFr agnent and br eakVi ew. The
Par agr aphVi ewdoes not make any attempt to break a view that does not support
breaking. In that case, the view will be clipped at the right edge.

This way, the whole view is laid out in the given span. Figure 5.17 shows how the sample
xhtml file is displayed using Par agr aphVi ew.

£ XML Editor =13

File Edit Element “iew Debug
g
) ParagraphView
This is normal text.
() — ParagraphView.Row
This restidis by E TreeView for <p>
bolj
Wl
__ Vs
[iC | (it S
| Delimiters Visible XMLLabelView TreeVlew for
) Document Structure) View Structure
ixhtmimbodyh [aa
Figure 5.17a Par agr aphVi ew Figure 5.17b The view structure in Par agr aphVi ew

CS298, Spring 2004 Page 48 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

There are a couple of problems in directly using the Par agr aphVi ew:

e The first problem is apparent in the figure: though all the children of <body> are laid
out one after another, the elements and <p> themselves are shown in Tr eeVi ew.
The reason is clear from the code fragment of the method | oadChi | dr en of
Logi cal Vi ew. the views of the child elements of <body> are created using the
Vi ewfact or y, and the default view in XMLVi ewFact ory is Tr eeVi ew. This problem
can be partially overcome by specifying RowVi ew for <p> and elements. However,
this undermines the usefulness of Par agr aphVi ew, because to get the desired result,
we need to specify RowVi ew for all the elements that can be children of the element
being represented as Par agr aphVi ew (<body> in our example)! This is a serious
limitation. Besides, we may want to represent elements like <p> using Row/i ewonly in
Par agr aphVi ew, but using Tr eeVi ew otherwise. Hence, we need another way to lay
out the child views of Par agr aphVi ew.

e Another problem (not seen in Figure 5.17) is that Par agr aphVi ew delegates the
responsibility of breaking to the view being laid out. By default, only G yphVi ew (an
indirect superclass of XM_Label Vi ew) in the j avax. swi ng. t ext package has the
ability to return a fragment of itself. All other views, specifically the Conposi t eVi ew
and its subclasses, do not support breaking. As a result, these views can get clipped
while displayed in a Par agr aphVi ew. This is not acceptable. So, we need a
mechanism to support breaking for these views as well.

| implemented a subclass of Par agr aphVi ew— Fl at Par agr aphVi ew— with the above
goals in mind. The next section discusses the implementation details of
Fl at Par agr aphVi ew.

5.4.3. My Extension of Par agr aphVi ew— Fl at Par agr aphVi ew
As mentioned in Section 5.4.2, the major goals of Fl at Par agr aphVi ewwere to make
sure that
1. All the container child views of Fl at Par agr aphVi ewwere RowVi ews, irrespective
of the Vi ewfact ory.
2. All container views supported breaking.

Creating the correct views:

| started the implementation with the first goal in mind: to make sure that all the container
views were RowVi ews. As the child views of a Par agr aphVi ew are created by

Fl owi ew. Logi cal Vi ew, | just needed to modify a couple of methods in

Logi cal Vi ew. Then, | only needed to change the Fl at Par agr aphVi ewso that it used
my implementation of Logi cal Vi ewinstead of the default one.

public class Fl at ParagraphVi ew extends ParagraphVi ew
publ i c Fl at ParagraphVi ew(El enent el en)
super (el en);
protected void | oadChil dren(Vi ewFactory f)
if (layoutPool == null)

| ayout Pool = new FIl at Par agr aphVi ew. MyLogi cal Vi ew(get El enent ()) ;
| ayout Pool . set Parent (this);

CS298, Spring 2004 Page 49 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

/**
* This class can be used to represent a |logical view for
*aflow It keeps the children updated to reflect the state
* of the nodel, gives the logical child views access to the
* view hierarchy, and cal cul ates a preferred span. It doesn't
* do any rendering, |ayout, or nodel/view translation.
*/

protected static class MyLogi cal Vi ew ext ends ConpositeVi ew

{

}

}

| just needed to re-implement the | oadChi | dr en and the updat eChi | dr en methods of
FI owi ew. Logi cal Vi ewto get the desired result. However, Logi cal Vi ewis a
package-protected inner class of FI owi ew. Hence | needed to implement a new class —
MyLogi cal Vi ew— from scratch.

| implemented the method | oadChi | dr en of MyLogi cal Vi ewin such a way that a
Hi ddenTagVi ew got created for all the delimiter (-leaf) elements. For all other leaf
elements (mainly cont ent nodes), XM_Label Vi ews got created; and for all container
views, RowVi ews got created.

/ * %

* Loads all of the children to initialize the view
* This is called by the <code>set Par ent </ code> net hod.
* @aramf the view factory
*/
protected void | oadChil dren(Vi ewFactory f)

El ement el em = get El enent () ;
if (elemisLeaf())

{
Viewv = null;
i f(elem get Nane().endsWth("-leaf"))
v = new H ddenTagVi ew el em ;
el se
v = new XM._Label Vi ew(el en);
append(v);
}
el se
{
int n = elemgetEl enment Count () ;
if (n>0)
{
View] added = new View n];
for (int i =0; i < n; |++)
{
El ement child = elemgetEl enent (i);
if(child.isLeaf())
if(child.getNanme().endsWth("-leaf"))
added[i] = new Hi ddenTagVi ew(child);
el se
added[i] = new XM.Label Vi ewchil d);
}
el se
added[i] = new Rowvi ewchil d);
}
repl ace(0, 0, added);
}
}

CS298, Spring 2004 Page 50 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

| also needed to change the implementation of updat eChi | dr en to make sure that the
correct views got created for newly inserted elements.

[** Called to update child views when the nodel is changed.
* @aramec the changes in the element of this view
* @arame the change information fromthe Docunent
* @aramf the ViewFactory
* @eturn true if the child views represent children of this view s el enent
* fal se otherw se.
*
/
prot ect ed bool ean updat eChi |l dr en(Docunent Event . El enent Change ec,
Docunent Event e, Viewractory f)
{

El ement[] renovedEl ens = ec. get Chi | dr enRenoved();
El ement[] addedEl ens = ec. get Chil drenAdded();
View] added = null;

if (addedEl ens != null)

{
added = new Vi e addedEl ens. | engt h] ;
for (int i = 0; i < addedEl ens.length; i++)

El ement child = addedEl ens[i];
if(child.isLeaf())

i f(child.getNanme().endsWth("-leaf"))
added[i] = new Hi ddenTagVi ew(child);
el se
added[i] = new XM.Label Vi ew(child);
}
el se
added[i] = new Rowi ew child);

int nrenoved = O;
int index = ec.getlndex();
if (renovedEl ens != null)

nrenmoved = renovedEl ens. | engt h;

— A ———

repl ace(i ndex, nrenoved, added);
return true;

}
However, this was not enough. The reason was that MyLogi cal Vi ew correctly created
views for all the direct children of the element being represented as Par agr aphVi ew; but
the Vi ewFact or y was still used to create views for the indirect child elements. For
example, consider the following xhtml document:
<xhtm >
<body>
<p>This is an <u>underl i ned</ u> paragraph. </ p>
bol d</ b>
</ body>
</ xhtm >
In the above example, the views for the elements <p> and correctly got created as
RowVi ews. However, the view for <u> still got created using the Vi ewFact or y, because
it was created by the | oadChi | dr en method of the RowVi ew corresponding to <p>. To
overcome this problem, | implemented another view — Logi cal Rowi ew.
Logi cal Rowvi ewwas very similar to RowVi ew, except that its | oadChi | dr en and
updat eChi | dr en methods were re-implemented.

CS298, Spring 2004 Page 51 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

public class Logi cal Rowi ew extends BoxVi ew
public Logi cal Rowi ew(El emrent el em
{
super (el em Vi ew. X AXI S);

protected void | oadChil dren(Vi ewFactory f)

{
El enent el em = get El enent () ;
int n = elemgetEl ement Count () ;
if (n>0)
{
View] added = new View n];
for (int i =0; i < n; I++4)
El ement child = elem getEl ement (i);
if(child.isLeaf())
if(child.getNanme().endsWth("-leaf"))
added[i] = new Hi ddenTagVi ew(child);
el se
added[i] = new XM.Label Vi ew chil d);
el se
added[i] = new Logi cal Rowi ew(child);
}
repl ace(0, 0, added);
}
}

prot ect ed bool ean updat eChi | dr en(Docunent Event . El enent Change ec,
Docurnent Event e, Viewractory f)
{

El enent[] renovedEl emrs = ec. get Chi |l drenRenoved() ;
El ement[] addedEl ens = ec. get Chil drenAdded();
View] added = null;
if (addedEl ens != null)
{

added = new Vi ey addedEl ens. | engt h] ;

for (int i = 0; i < addedEl ens.length; i++)

El ement child = addedEl ens[i];
if(child.isLeaf())

if(child.getNanme().endsWth("-leaf"))
added[i] = new Hi ddenTagVi ew(child);
el se
added[i] = new XM.Label Vi ew(child);
}
el se
added[i] = new Logi cal Rowi ew chil d);

int nrenmoved = O;
int index = ec.getlndex();
if (renovedEl ens != null)

nremoved = renovedEl ens. | engt h;

— Ay ———

repl ace(i ndex, nrenoved, added);
return true;

CS298, Spring 2004 Page 52 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

| then used Logi cal Rowvi ewin place of Rowi ewin MyLogi cal Vi ew. Now, the correct
views got created in all cases.

Support for breaking:

Next, | tried to achieve the second goal — supporting breaking behavior for container views
in FI at Par agr aphVi ew. The easiest way to provide this support was to implement
breaking in Logi cal Rowi ew. This was the most challenging part of my project, because
there was absolutely no documentation regarding how to implement breaking. There were
also no examples. No container view in the j avax. swi ng. t ext package currently
supports breaking, so | could not get any help even by looking at the source code.

| implemented breaking in Logi cal RowVi ew by implementing two methods:

creat eFr agnent and br eakVi ew. Both these methods returned an inner class of

Logi cal Rowvi ew— RowFr agrment . RowFr agnment represented a fragment of a

Logi cal Rowvi ew.

public class Logi cal Rowi ew extends BoxVi ew

)/represents a fragment
public static class RowFragment extends BoxVi ew

{
publ i c RowFragnent (El emrent el em
{

super (el em Vi ew. X_AXI S);

//doesn't do anything, children are added by Logi cal Rowi ew
public void | oadChil dren(Vi ewFactory f)

/1 Systemout.println("load children called!'");

} //end of RowFragment
} //end of LogicalRowView

The | oadChi | dr en method of RowFr agnent was re-implemented to do nothing. This
was required because children were added to the RowFr agnent by the calling method.
(See the discussion of cr eat eFr agnment and br eakVi ewbelow.)

creat eFr agnent returns a view that represents a portion of the element. Two document
offsets — p0 and p1 — are provided as the input to the method. The general idea in my
implementation of cr eat eFr agnent was as follows:

e | first created an instance of RowFr agnent . This instance initially did not have any
children.

e Next, | calculated the index of the child view represented by the offset p0. If the start
offset of this element was greater than p0O (meaning that the view was already
broken), | called cr eat eFr agnent on this view with appropriate parameters, and
added the returned view to the RowFr agnent .

e Then, | added all the views that could be completely represented between p0 and
p1 (that is, their start offset >= p0 and end offset < p1).

e Finally, | called cr eat eFr agnent on the child that had start offset >= p0 but end
offset >= p1 (if there was such a child), and added the returned view to the
RowFr agnent .

e |returned the RowFr agnent at the end of this method.

CS298, Spring 2004 Page 53 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

/**

* Creates a view that represents a portion of the el enent.
* @aram p0 starting offset(inclusive) >= 0
* @aram pl end offset (non-inclusive) > p0
* @eturn the view fragnment
*/
public View createFragnment(int p0, int pl)
{
RowFr agnent v = new RowFragment (get El enent ());
int startPos = pO;
El ement el em = get El enent () ;
int index = this.getView ndex(p0, Position.Bias.Forward);
View child = this.getViewindex);
[/first childif it is partial
if(child.getStartOffset() < pO0)

—~

if(child. getEndOffset () <= pl)

child = child. createFragnment (p0, child.getEndOfset());
Llse

child = child. createFragnment (p0, pl);

}
v. append(chil d);
startPos = child.get EndOf fset();

hi s. get Vi el ndex(start Pos, Position.Bias. Forward);
hi s. get Vi ew(i ndex) ;

— -+

hildren, if any
hild.getStartOfset() == startPos) && (child.getEndOffset() <= pl))

v. append(chil d);

startPos = child.get EndOf fset();

i f(startPos == pl)
br eak;

el se

{
i ndex = this.getView ndex(startPos, Position.Bias.Forward);
child = this.getViewindex);

}

ast child

}
/11
i f(startPos < pl)

~

child = child. createFragnment (startPos, pl);
v. append(chil d);

return v;

}
br eakVi ewmethod breaks a view along the given axis, and returns a fragment that can

be displayed within the given span. The starting position is also provided. The general idea
in my implementation of br eakVi ewwas as follows:
e | first created a new (empty) instance of RowFr agnent .
e | then added all those children of Logi cal RowVi ewthat could fit completely within
the specified span.
e Next, If the span was > 0, | called br eakVi ew method on the child that could not fit
completely — if that child supported breaking (tested using the get Br eak\Wei ght
method), and added the returned fragment.

CS298, Spring 2004 Page 54 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

e Finally, | returned the Rowf r agnent .

/**
* Attenpts to break the view al ong the given axis.
* @aramaxis the axis to break along - x or y-axis
* @aram p0 the starting offset
* @aram pos used for tab cal cul ation
*

@aram | en avail abl e span
@eturn the fragment of this view

*

*/
public View breakView(int axis, int p0, float pos, float |en)

if (axis == View X AXI S)
{

RowFr agnent v = new RowFragnent (get El enent ()) ;
if(this.getStartOffset() == p0)
{

int index = 0;

float spanLeft = len;

whi | e(i ndex < this.getViewCount())
{

View child = getViewindex);
i f(child.getPreferredSpan(axis) <= spanLeft)

v. append(chil d);
i nt chunkSpan = O;
if ((axis == View X AXIS) && (child instanceof Tababl eVi ew))

chunkSpan (int)((Tababl eVi ew) chi |l d). get TabbedSpan(pos, nul |');
el se
chunkSpan = (int) child. getPreferredSpan(axis);

}
spanLeft -= chunkSpan;
pos += chunkSpan;

i ndex++;
}
el se
i f(child.getBreakWight(axis, pos, spanLeft) !=
Vi ew. BadBr eak\Wi ght)
Vi ew broken =
child. breakVi ew(axi s, child.getStartOffset(), pos, spanLeft);
v. append(br oken) ;
br eak;
}
}
el se

/I never called
return this;

return v;
} /lend if
/Il cannot break along y-axis, return itself
return this;

}

| later realized that | also needed to implement get Br eak\Wei ght method for the correct
behavior. get Br eakwei ght method determines whether or not it is a good idea to break
a given view at the given position. My approach in implementing this method was also

CS298, Spring 2004 Page 55 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

recursive: | determined the br eak\Wei ght of Logi cal Rowi ew by examining the
br eak\Wei ght s of appropriate child views.
/**
* Test of how attractive it is to break this view
* @aram axis he axis to break al ong
* @aram pos the start |ocation the broken view would occupy — used for tab
cal cul ation
* @aram | en avail abl e span

* @eturn one of: BadBreakWei ght, GoodBr eakWei ght, Excel | ent Br eakWei ght or
For cedBr eak\Wi ght
*/

public int getBreakWight(int axis, float pos, float |en)

if (axis == View X AXI S)
{
if(this.getPreferredSpan(axis) <= |en)
return Vi ew. Excel | ent Break\Wei ght ;
el se if(this.getViewCount() > 0)

View child = getViewm0);
if(child.getPreferredSpan(axis) > len)
return chil d. get BreakWi ght (axi s, pos, | en);

}
return Vi ew. Excel | ent Break\Wei ght ;

} return super. get BreakWi ght (axis, pos, |en);

| also needed to implement br eakVi ew, get Br eak\Wei ght and cr eat eFr agnent
methods in RowFr agnent to get the correct behavior when a RowFr agnent itself needed
to break (due to resizing of the window for example).

The above implementation worked well in some cases, but did not work in some other
cases. Specifically, the Hi ddent agVi ews corresponding to some delimiter tags were not
displayed in some cases (refer to Figure 5.18).

< XML Editor W=

£ XML Editor M=

File Edit FElement View Debug File Edit Element View Debug
q (@ 4
P o) Ph)
tEXT @ bold @ This is
. normal text. | This
@ text is bold
ock
ﬂ—" : ‘ Delimiters Visi... |
Delimiters Visib.. |
) Document Structure |
1 Document Structure ‘ = : =
L : | ixhtmibodyip 25 !

HiddenTagViews visible HiddenTagViews not visible

Figure 5.18. HiddenTagView in Fl at Par agr aphVi ew

This problem was extremely difficult to solve due to poor documentation. | spent months
debugging to track down this problem Finally, | noticed that the containers of the missing

CS298, Spring 2004 Page 56 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

H ddenTagVi ews were becoming invalid, and as a result, those views were not painted.
For some reason, the parents of some Logi cal RowVi ews were not getting updated,
resulting in invalid components. | updated the set Par ent methods of Logi cal Rowvi ew
and RowFr agnent as follows:

/ * %

* Sets the parent of the view
* @aram parent the new parent of the view
*/

public void setParent (Vi ew parent)

{

super. set Parent (parent);
int numChild = this.getViewCount();
if(parent !'= null)

/lupdate parent of all the child views
for(int i = 0; i < nunChild; i++)

View child = getViewi);
child. setParent (this);
}

}
}
Then, the H ddenTagVi ews were displayed properly.

¢ XML Editor |2 B

File Edit Element View Debug

.

ile

7| e

.. b} This is
normal text. {p| This
text iz [b} bold (b
|

(xttm]

| Delimiters V... |

' Document Structure |

Figure 5.19. Correct behavior of Fl at Par agr aphVi ew

Fl at Par agr aphVi ewis also extensible: currently, it flattens all its child views; but it can
be easily extended to selectively flatten views. For example if <body> is being
represented by Fl at Par agr aphVi ew, currently all the child elements of <body> are
represented by Logi cal Rowvi ew. However, the | oadChi | dr en and the

updat eChi | dr en methods can be easily modified in a way that only some elements (say,
the elements mentioned in a configuration file) get represented by Logi cal Rowvi ew, and
others get represented by the views returned by the Vi ewfact ory. This way,

FI at Par agr aphVi ewcan be used to represent an xhtml document in such a way that
the formatting tags such as , <u> and <i > are flattened and the other elements are
represented in their natural way.

CS298, Spring 2004 Page 57 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

5.5. Save

Any editor — text or XML — is of little use if the user cannot save the changes that he
makes to the document. Therefore, | have implemented save functionality in my XML
editor.

In terms of the user interface, | present the user with a JFi | eChooser dialog to select or
supply the file in which the document should be saved (Figure 5.20).

Save In: |EMyDucuments - | @ @ |j %E

3 Adobe

[My eBooks
T My Music
[My Pictures
CJtemp

File Hame: || |

Files of Type: | AllFiles -

| Save || Cancel |

Figure 5.20. Save Dialog

The input file is then provided to the method saveDocunent (see below) as the argument.
As a result, the XML document is saved in the selected file.
Unfortunately, there is no direct way to save an XML file using the or g. w3c. dom
package. Hence, in my implementation, | followed the idea outlined in [H02]. Basically, |
created an instance of the or g. w3c. dom Docunent class, and created the element
hierarchy in it. | then used an appropriate Tr ansf or ner class to save the
or g. w3c. dom Docunent to a file.
/** Saves the XM.Docunent in a file.
* @aramfile the file to save the XML docunent in.
*/
public void saveDocunent (File file)
try
{
//1first create an enpty documnent
Docurnent Bui | der Factory factory = Docunent Bui | der Fact ory. newl nst ance() ;

Docurent Bui | der buil der = factory. newDocunent Bui | der () ;
org. w3c. dom Docunent doc = buil der. newDocunent () ;

/I next, create the element hierarchy

El ement defaul t Root = this. getDefault Root El enent (). get El enent (0);
El ement root El em = def aul t Root. get El enent (0) ;

org.w3c. dom El enent root = doc. createEl ement (root El em get Nane());

//get the attributes of the root el ement

AttributeSet set = rootEl em getEl enent(0).getAttributes();
Bool ean bool = (Bool ean)set.getAttribute("hasAttributes");
if((bool !'= null) && (bool.bool eanVal ue() == true))

{

Enuner ati on enum = set. get Attri buteNames();
whi | e(enum hasMor eEl enent s())

String key = enum nextEl enent ().toString();

CS298, Spring 2004 Page 58 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo

Swati Pathak
i f(key.startsWth("myatt"))

/[** all the attributes of the XML el enent are stored as
* “myatt”+attributenane in the start tag. The prefix
* “nyatt” is used to distinguish this attributes from
* ot her book-keeping attributes of the start tag.
*/

String value = (String)set.getAttribute(key);

root.setAttribute(key.substring(5), val ue);

}
}
}

/** Then generate the root elenent, effectively generating the full
* hierarchy.
*/

gener at eConpl et eEl ement (doc, root, root El em ;

doc. appendChi | d(root);

//finally, save the org.w3c.dom Docunent
Transformer t = TransfornerFactory. new nstance(). newTransformer();
t.transform(new DOVBour ce(doc), new StreanResult(file));

}catch(Exception e)

}
}

/**

* % ok Ok F X

*

*/

System out. println("Exception in saveDocunent");
e.printStackTrace();

Recursively generates the conplete hierarchy with the given elenent as its
root.
@ar am doc the org.w3c. dom Docunent to which the el enent tree bel ongs.
@ar am donEl enent the root org.w3c.dom El enent of the tree to be generated
@aram el emthe javax.sw ng.text. El enent corresponding to the dontl enent.
The tree will be generated as with this el ement
as a reference.

private void generateConpl et eEl enent (org. wdc. dom Docunent doc,
org.w3c. dom El enent dontEl em El erment el em
{

i
f
{

nt size = el em get El enent Count () - 1;
or(int i =1; i < size; i++4)

/lleave out the first and the |last elenent(delimter tags)
El ement child = elemgetEl enent (i);

try
if(child.isLeaf() && chil d.getNanme().equal s("content"))

/1 generate org.w3c.dom Text el enent for content nodes.
int start = child.getStartOfset();
int end = child.getEndOfset();
String text = this.getText(start, end-start);
Text textEl em = doc. creat eText Node(text);
donEl em appendChi | d(t ext El em ;
}

el se

{

org. w3c. dom El enent chil dEl em = doc. creat eEl enment (chi | d. get Nane());

/lget attributes
AttributeSet set = child.getEl ement(0).getAttributes();
Bool ean bool = (Bool ean)set.getAttribute("hasAttributes");

CS298, Spring 2004 Page 59 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo

i f(bool . bool eanVal ue() == true)

{

Enunerati on enum = set. get Attri buteNames();
whi | e(enum hasMor eEl enent s())

String key = enum next El enent ().toString();
i f(key.startsWth("myatt"))

String value = (String)set.getAttribute(key);
chil dEl em set Attri but e(key. substring(5), val ue);

}
}

}
gener at eConpl et eEl errent (doc, chi | dEl em chi | d);
donEl em appendChi | d(chi | dEI en);

}
}cat ch(BadLocat i onExcepti on bl e)

Swati Pathak

Systemout.println("Bad Location in generateConpl eteEl ement");

bl e. print StackTrace();
} }
This way, the XML document is saved in the file provided by the user.

CS298, Spring 2004 Page 60 of 63

April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

6. Conclusion

Java Swing provides an extensive framework for designing custom text editors. In this
project, | developed a user-friendly and platform-independent XML editor using Swing. The
goal of the project was to test the usability, extensibility and robustness of the underlying
framework.

During the course of the project, | made the following major achievements:

| implemented various editing operations, including insert/delete, cut-copy-paste,
search/replace, split/merge and enclose/open, using the basic functionality provided by
Swing. As explained in Section 5.2, Swing provides text-only support for some of these
operations, with no support for elements. Hence, | had to re-implement all the
operations to deal with the element structure of an XML document. The main challenge
in this implementation was to deal with the inconsistencies of the i nsert Stri ng
method in Swing. i nsert St ri ng did not behave in the expected way while inserting
at the boundary of an element, because it made an incorrect assumption about the
insertion position. The unexpected behavior, combined with poor documentation, made
it a very difficult problem to solve.

| also provided undo/redo functionality with all the above edit operations using the Undo
framework of Swing. As Section 5.3 pointed out, Swing does not provide a ready-to-use
undo support. | had to implement corresponding Undoabl eEdi t class for each
undoable operation, and store enough information to undo and redo the operation. |
also had to write code for undoing and redoing a specific operation. Swing just stored
the Undoabl eEdi t s in a transparent way, and called undo and r edo methods
appropriately; but the actual implementation was my responsibility. | also provided
undo/redo with a couple of functionalities implemented by Nupura Neurgaonkar,
including the operation of changing between different views for attributes. This was
different from other operations in that this operation just changed the visual appearance
of the document, but did not make any changes to the document itself. This operation
proved that undo/redo can be provided with non-mutating actions as well.

| extended the view structure of the framework by implementing two custom views:

Tr eeVi ewand Fl at Par agr aphVi ew. The purpose of these views was to display an
XML document in a more intuitive way so that the underlying structure is easy to
visualize. Tr eeVi ewdisplayed the child elements of an element at an offset from the
parent element to clearly identify the parent-child relationship (Section 5.1).

FI at Par agr aphVi ew flattened the hierarchy of an element for a better visualization of
formatting elements like and <i > (Section 5.4). Fl at Par agr aphVi ewwas the
most ambitious part of the project: it required substantial modification of an existing
view and, as always, there was little documentation. Specifically, Swing did not provide
any information about how to support breaking in a view (meaning that the view can
wrap along the x-axis when required), so | had to figure out myself how to do it. The
problem that gave me most grief was that parent-child relationship did not get updated
properly when a view broke along the x-axis, resulting in an invalid hierarchy. | had to
then specifically update child views of a given view to correct this behavior.

Finally, | also implemented the ability to save the changes made to an XML file to
complete the set of features that a reasonable editor should provide (Section 5.5).

CS298, Spring 2004 Page 61 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

| observed the following points about the Swing framework during my implementation:

The framework provides a fairly rich set of primitive edit operations that can be
combined to provide new custom operations. Though the primitive operations are
reliable and robust in most cases, some behave in a non-intuitive way in boundary
cases.

Similarly, the framework provides a good set of basic views, which can be extended to
provide custom behavior. In most cases, just changing a small set of methods achieves
a custom behavior. However, providing a custom behavior can be challenging in a
complex view like Par agr aphVi ew.

Undo/Redo framework is quite robust and flexible: it can be extended to provide
undo/redo with mutating as well as non-mutating operations.

Swing framework lacks direct support for some fairly basic functionalities. For example,
it does not directly support a breaking behavior in views. The designer has to write
extensive code to support breaking. Similarly, the Def aul t Car et in the

j avax. swi ng. t ext package does not handle BadLocat i onExcept i on gracefully.

Probably the biggest drawback of the Swing framework is that it is very poorly
documented. Poor documentation, together with the framework’s immense complexity,
makes the framework very difficult to use.

However, if understood properly, the Swing framework can be extended to provide a fairly
complete editor for any type of document.

CS298, Spring 2004 Page 62 of 63 April 28, 2004

XML Editor Commands With Multiple Undo/Redo Swati Pathak

References

[AP103] Overview (Java 2 Platform SE v1.4.2)(2003).
http://java.sun.com/j2se/1.4.2/docs/api/overview-summary.html.

[GHJVO02] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (2002). Design Patterns.
Addison Wesley.

[HO2] Horstmann, C. (2002). Big Java. John Wiley & Sons. Inc.

[LEWECO02] Loy, M., Eckstein, R., Wood, D., Elliott, J. & Cole, B. (2002). Java Swing.
O’Reilly.

[PO4] Prinzing, T. (2004). Using the Swing Text Package.
http://java.sun.com/products/jfc/tsc/articles/text/overview/index.html.

[S02] Sun, C. (2002). Undo as Concurrent Inverse in Group Editors. ACM Transactions on
Computer-Human Interaction, v 9, n 4, p 309-361.

[TOO] Topley, K. (2000). Core Swing Advanced Programming. Prentice Hall.

[VO3] Violet, S. (2003). Understanding the ElementBuffer.
http://java.sun.com/products/jfc/tsc/articles/text/element buffer.

[W98] Walsh, N. (1998). A Technical Introduction to XML.
http://www.xml.com/pub/a/98/10/quide0.html.

[WBTO01] Wallace, G., Biddle, R. & Tempero, E. (2001). Smarter Cut-and-Paste for
Programming Text Editors. Proceedings of the 2nd Australasian Conference on User
interface, p 56-63.

[WCHZ04] Walrath, K., Campione, M., Huml, A., & Zakhour, S.(2004). The JFC Swing
Tutorial: A Guide to Constructing GUIs, Second Edition, Addison — Wesley.

[WF02] Washizaki, H. & Fukazawa, Y. (2002). Dynamic Hierarchical Undo Facility in a
Fine-grained Component Environment. Proceedings of the Fortieth International
Conference on Tools Pacific: Objects for internet, mobile and embedded applications, v
10, SESSION: Design, p 191-199.

[ZWO00] Zhang, M. & Wang, K. (2000). Implementing Undo/Redo in PDF studio using
object-oriented design pattern. Proceedings of the Conference on Technology of Object-
Oriented Languages and Systems, v TOOLS, n TOOL 36, p 58-64.

CS298, Spring 2004 Page 63 of 63 April 28, 2004

