
XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 April 28, 2004

Table of Contents
1. Introduction ... 2

1.1. Need for an XML Editor .. 2
1.2. Goals .. 2

2. Design .. 4
2.1. Model-View-Controller (MVC).. 4

2.1.1. Overview of MVC .. 4
2.2.2. Use of MVC in the Editor... 5

2.2. Singleton... 6
2.2.1. Overview of Singleton ... 6
2.2.2. Use of Singleton in the Editor.. 6

3. Framework Provided by Java... 8
3.1. MVC in Java Swing... 8
3.2. The javax.swing.text Package... 8

3.2.1. Text Components .. 8
3.2.2. The Document Model ... 10
3.2.3. The View Model.. 12

3.3.The javax.swing.undo Package.. 15
3.3.1. The UndoableEdit Interface .. 16
3.3.2. UndoableEditEvent and UndoableEditListener .. 19
3.3.3. The UndoManager Class ... 19
3.3.4. The UndoableEditSupport Class .. 20

4. Existing Editor Framework.. 21
4.1. User Interface ... 21
4.2. The Document Structure.. 22
4.3. The View Structure .. 23

5. Implementation... 25
5.1. TreeView... 25

5.1.1. Need and Goal of TreeView .. 25
5.1.2. Implementation Issues .. 26

5.2. Edit Operations ... 28
5.2.1. Insert / Delete .. 28
5.2.2. Cut, Copy and Paste ... 32
5.2.3. Search / Replace... 35
5.2.4. Split / Merge .. 38
5.2.5. Enclose / Open.. 40

5.3. Undo / Redo.. 42
5.3.1. Need of Undo/Redo... 42
5.3.2. Implementation Issues .. 42

5.4. Flat Paragraph View ... 46
5.4.1. Need for a New View... 46
5.4.2. ParagraphView of the javax.swing.text Package ... 46
5.4.3. My Extension of ParagraphView – FlatParagraphView... 49

5.5. Save.. 58
6. Conclusion... 61
References... 63

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 2 of 63 April 28, 2004

1. Introduction
Extensible Markup Language (XML) has now become a standard language to store and
share structured documents on the Internet; and is quickly replacing its much restricted
predecessor - Hypertext Markup Language (HTML). Briefly, XML and HTML both divide a
document in a set of elements. The element structure represents the logical structure of
the document. The document can then be rendered by selecting the best suitable display
mechanism for a given element. This separates the content and its rendering, and hence
makes the document more portable. While HTML restricts the set of elements that can be
used in defining a document, XML allows a user to define any arbitrary element structure.
This flexibility makes XML more powerful, versatile and extensible compared to HTML. In
addition to providing all these benefits, XML is also much simpler compared to Standard
Generalized Markup Language (SGML).
Refer to [W98] for more information on XML.

1.1. Need for an XML Editor
Despite the widespread of XML, there are few good XML editors in the market today. The
most common features that users expect from an XML editor are:
• WYSIWYG (What You See Is What You Get) behavior.
• Intuitive and easy-to-use element editing functionalities, along with undo/redo
mechanism.
• Control over how various XML elements should be rendered.
• Some form of validation of the document against a Document Type Definition (DTD).
But most available editors are at one of the two extremes: either they are too general -
providing little more functionality than simple text editors; or too specific – overly restricting
the operations that a user can perform. Both these approaches make the editor extremely
difficult to use for a user. Refer to the CS298 report of Nupura Neurgaonkar for a detailed
analysis of some existing XML editors.
I extended an existing XML editor framework to support WYSIWYG behavior, general
editing functionalities (insert/delete an element, cut/copy/paste etc.) and multiple
undo/redo functionalities under the supervision of Dr. Cay Horstmann. Validation of XML
documents and pluggable rendering of elements were implemented by Nupura
Neurgaonkar. I used the Java Swing framework for the implementation due to the
portability provided by Java.

1.2. Goals
In prior years, Dr. Horstmann’s students developed an editor framework using the
javax.swing.text package. The framework just displayed an existing XML document
in a WYSIWYG way, but did not have any editing capability (refer to Section 4 for details
about the framework). I intended to extend this framework by providing various XML
editing functionalities; and while doing so, achieve the following goals:

• Swing provides some basic editing functionalities like insert and delete. I planned to
test the robustness and the usability of these functionalities by using them during
the implementation.

• I also aimed to test the extensibility of Swing’s framework by developing various
editing capabilities (insert/delete, cut-copy-paste, search/replace etc.) for XML

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 3 of 63 April 28, 2004

documents on top of the basic support provided. This also included testing the
undo/redo framework by providing undo/redo capability with each edit operation.

• The final goal of the project was to test the extensibility and the ease of
customization of the view structure provided by Swing. I intended to test how easily
and up to what level can the behavior of the views be customized by developing
some non-trivial custom views.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 4 of 63 April 28, 2004

2. Design
The project was designed using Object Oriented Design concepts. Two design patterns
were used in the project: Model-View-Controller (MVC) and Singleton. The following
subsections give a general overview of these patterns, and describe how they were
applicable in the project.

2.1. Model-View-Controller (MVC)
2.1.1. Overview of MVC
The Model-View-Controller (MVC) design pattern is a commonly used architecture for user
interface design. It was first used in Smalltalk -80. Basically, the MVC architecture has
three kinds of objects: Model, View and Controller. As described in [GHJV02], “the Model
is the application object, the View is its screen presentation, and the controller defines the
way the user interface reacts to user input” (p. 4).
MVC defines a subscribe/notify mechanism between views and the model: a view
associates itself to a model (data), model notifies all associated views whenever its data
changes, and the view updates itself by getting new data from the model. Thus data and
its presentation are decoupled, resulting in more flexible and reusable architecture. This
approach also allows multiple presentations (views) for a piece of data (model).
The following diagram illustrates the structure of MVC architecture.

Figure 2.1. MVC Architecture
Figure 2.2 shows a typical example of MVC. It shows three views attached to a model. The
controller is not shown for simplicity. The model represents some data values, and the
views show different representations of those values. The model informs the views when
its values get changed, and the views retrieve new values from the model to update
themselves. The controller in this case would be a command prompt or a menu system
that accepts input from the user to modify the model.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 5 of 63 April 28, 2004

Figure 2.2. Example of MVC – single model, multiple views
Source: [GHJV02]

Model -View-Controller is a complex pattern that uses many other design patterns. Refer
to [GHJV02] for further details about MVC.
2.2.2. Use of MVC in the Editor
This section describes how MVC is applicable to a text editor in general. Section 3.1
describes how MVC is incorporated in the Swing framework.
 A text editor allows its users to edit documents. A document can be thought of as a
sequence of characters and graphics. The text editor displays the content of the document
and updates both – the document and the visual display of the document – as the user
performs edit operations. As most editors support a number of fonts and styles, there can
be many visual representations of the same document content. For example, for the
content “sample text”, some possible representations are:
Sample text

Sample text

Sample text

Allowing multiple representations for the same content is even more important for an XML
editor, as the whole idea of dividing a document into elements is to support multiple
rendering options for a given element. Thus, it is imperative to decouple data content from
its representation.
Hence, the whole structure of an editor falls in the category of Model-View-Controller
architecture: the document behaves as the model, different representations are the views
and edit commands/menus behave as the controller. As the user performs edit operations
through commands, the underlying document is modified; the document informs the
display mechanism to update the view; and the display mechanism gets the new content
and displays it. Refer to Section 3.1 for a detailed description on MVC in the Swing
framework.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 6 of 63 April 28, 2004

2.2. Singleton
2.2.1. Overview of Singleton
Singleton is a very simple, yet powerful design pattern. It is used in the situation where a
class should have exactly one instance, and that instance should be globally accessible
[GHJV02]. Instead of relying on other language techniques - like static members - to
ensure just one instance, this pattern gives the class this responsibility. The class
intercepts the requests to create new objects, and ensures that just one instance is
created.

Figure 2.3. Structure of Singleton
Source: [GHJV02]

As seen in figure 2.3, Singleton has a private (or protected) static member variable –
uniqueInstance – which stores a reference to its (unique) instance. Other classes can
access the instance only through the public static method instance. The constructor of
the class is private (not shown in Figure 2.3), so other classes have no way to directly
create an instance of the Singleton class. When instance is called for the very first time,
a new instance of that class is created and stored in the variable uniqueInstance. Any
subsequent call to instance returns the reference stored in uniqueInstance.
Singleton pattern can be easily extended to allow multiple instances of the class, and the
same approach can be used to control the number of allowable instances [GHJV02].
Refer to [GHJV02] for a detailed discussion on other implementation issues of Singleton.
2.2.2. Use of Singleton in the Editor
I have implemented cut-copy-paste functionality in the project. Cut and Copy operations
place content in the paste buffer and Paste operation pastes that content in the document.
When the user cuts or copies new content, the previous content of the paste buffer gets
over-written. Thus, the system should have just one paste buffer at all times. Hence, I have
used Singleton pattern in implementing the paste buffer.
The structure of the paste buffer is:

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 7 of 63 April 28, 2004

public class PasteBuffer
{
 public static PasteBuffer getInstance()
 {
 if(instance == null)
 instance = new PasteBuffer();
 return instance;
 }

 //other public methods

 private PasteBuffer()
 {
 //initialize paste buffer
 }
 private static PasteBuffer instance;
 //other private data
}
Having just one instance of PasteBuffer also enables the user to exchange information
across multiple documents.
Refer to Section 5.2.2 for details about Cut, Copy and Paste functionalities.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 8 of 63 April 28, 2004

3. Framework Provided by Java
As mentioned before, I am using the Java Swing framework for the project. Specifically, I
am using the javax.swing.text and the javax.swing.undo packages for the
implementation. In this section, I will first explain how MVC is used in the design of Swing
framework, and then give a brief overview of the two packages.

3.1. MVC in Java Swing
MVC is the basic underlying design of the Java Swing framework. In terms of Swing, the
model is the state information of a Swing component, the view refers to how the
component is drawn on the screen and the controller refers to the part of the user interface
that decides how components react to the user actions. As pointed out in [LEWEC02],
Swing actually uses a simplified variant of MVC architecture, called the model-delegate
architecture. In this design, the view and the controller objects are combined into a single
element – the UI delegate. Thus, the UI-delegate is responsible for both: drawing the
component on the screen and handling user events [LEWEC02].
The following figure demonstrates how the model and the UI-delegate communicate in this
design.

 Figure 3.1. Architecture of model-delegate design
 Source: [LEWEC02]

3.2. The javax.swing.text Package
The javax.swing.text package provides many classes and interfaces to develop
general purpose editing applications. The package mainly provides three kinds of objects
that can be put together to create an editing application: text components, the Document
model and the View model. We will look into each of these in detail.
3.2.1. Text Components
“A text component pulls together the objects used to represent the model, view, and
controller” [API03]. Basically, text components provide an overall framework for combining
the Document model and the View model so that the users get a powerful and highly
flexible interface. Swing text components allow users to customize caret (cursor),
highlighter and even the key bindings of many text actions. These components also
provide basic cut, copy and paste functionalities. However, these functionalities only deal
with simple text content and do not take the Element structure into account. Refer to
sections 3.2.2 and 3.2.3 for a discussion about the Document and the View Models.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 9 of 63 April 28, 2004

Swing provides total six text components: JTextField, JPasswordField, JTextArea,
JFormattedTextField, JTextPane and JEditorPane. The first four components are
relatively simple, while JTextPane and JEditorPane are more complex and powerful.
All the text components have JTextComponent as the direct or indirect superclass.

 Figure 3.2. The JTextComponent Hierarchy
 Source: Adapted from [WCHZ04]

The following table compares these components.

 Table 1. Comparison of Swing Text Components

 Source: [WCHZ04]

It is clear from the table that the styled text areas are the ones that are most useful in
creating an editor application. There are two styled text areas in Swing: JTextPane and
JEditorPane. Both these components can display text with multiple fonts and colors.
As explained in [T00], JEditorPane “can be configured to display text held externally in
arbitrary formats by connecting it to an editor kit that knows how to interpret a particular
document encoding format and render the corresponding content on the screen” (p. 11).
The package has two complete editor kits: HTMLEditorKit and RTFEditorKit that can
display HTML and RTF (Rich Text Format) documents respectively. The HTMLEditorKit
can turn the editor pane into a simple Web browser which can load pages over the network
and follow hypertext links. Switching to edit mode makes it a simple HTML editor [T00].
The same is true for RTFEditorKit with RTF documents.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 10 of 63 April 28, 2004

JTextPane is a subclass of JEditorPane. Although JTextPane can also display text
with multiple fonts and colors, Sun’s Java tutorial explains many subtle differences
between JTextPane and JEditorPane:

• JEditorPane has a constructor that can be used to initialize an editor pane from a
URL; JTextPane does not have a similar constructor.

• JEditorPane and JTextPane both can support a custom text format by implementing
an editor kit and registering it with the text component. However, JTextPane will not
support the new format if the editor kit is not a subclass of the StyledEditorKit of the
text package.

• JTextPane requires its document to implement the StyledDocument interface. (Refer
to Section 3.2.2 for information about Documents.)

• Besides text content, JTextPane can also contain embedded images and other
components. JEditorPane can also contain embedded images, but only if they are
included in an HTML or RTF file.
Refer to [WCHZ04] for a detailed comparison between JTextPane and JEditorPane.
3.2.2. The Document Model
Document represents the M (Model) part of the MVC architecture. It stores the text
content of a text component as well as relevant style information where applicable. The
document model is designed to support all levels of documents ranging from simple text
fields to complex HTML documents.
Figure 3.3 shows a high-level Document class diagram.

Figure 3.3. High-level Document Class Diagram
Source: [LEWEC02]

A Document can be shared by multiple text components. For maximum flexibility, text
content is stored as Unicode characters. Each individual location in the document is
accessed using a zero-based position or offset.

Figure 3.4. Offsets in a Document
Source: [P04]

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 11 of 63 April 28, 2004

In the above example, the offset of ‘T’ is 0 and the offset of ‘ ‘(blank space) is 3.
The document model of Swing is designed to support structured documents such as HTML
or XML. The content of a Document is partitioned into small structural units called
Elements. Elements are designed to capture the flavor of an SGML element. An
Element can be either a BranchElement (that contains other Elements) or a
LeafElement (that does not have child Elements). So in essence, a Document can be
thought of as a rooted tree of Elements. Each Element knows its start offset – the
document offset where the element begins, and its end offset –the document offset where
the element ends. These offsets are obtained by the getStartOffset and the
getEndOffset methods respectively. As explained in [API03], the start offset is included
in the element, but the end offset is not. The end offset is actually the start offset of the
following element. Hence, the element actually occupies [getStartOffset,
getEndOffset - 1] positions in the document.
Referring to Figure 3.3, Swing provides two interfaces: Document interface to support
unstyled content, and StyledDocument interface to support styled content. Swing also
provides two concrete Document classes: PlainDocument that does not support styles;
and DefaultStyledDocument that supports styles. It just provides one Element
interface. It is important to observe that an Element does not actually contain any portion
of text; it just maintains the start and the end offsets of the portion of the document it is
responsible for structuring. The text is stored elsewhere by the Document [LEWEC02].
Each Element also stores style information about the portion of text it is responsible for
structuring. This information is stored in an AttributeSet. Figure 3.5 demonstrates how
changing the style of text in a StyledDocument affects its Element structure.

Figure 3.5. Example of Element Structure
Source: Adapted from [LEWEC02]

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 12 of 63 April 28, 2004

The Document interface provides many methods – such as getText, insertString,
and remove – to access and edit its contents. StyledDocument also includes additional
methods to access and manipulate style attributes. However, these methods are not
thread-safe; hence a write-lock should be obtained before using any mutating method.
When a document is changed, a DocumentEvent is fired. The DocumentEvent object
provides information about the source, type and location of the change to all the registered
DocumentListeners. If the document is capable of performing undo/redo operations, an
UndoableEditEvent is sent to all registered UndoableEditListeners. (We will talk
about undo/redo in detail in Section 3.3.) The Listener objects then decide what actions to
take. Any class implementing the DocumentListener interface implements
insertUpdate, removeUpdate and changeUpdate methods to take appropriate
actions after insertion, deletion and other document change respectively. This way, the
Document model also provides some functionalities of a Controller with respect to the
MVC architecture.
AbstractDocument – which is the superclass of both PlainDocument and
DefaultStyledDocument – implements its own set of xxxUpdate methods (not
DocumentListener methods). These methods update certain aspects of the document
as it is changed. PlainDocument and DefaultStyledDocument override these
methods to take care of their specific requirements. Specifically, the implementation in
DefaultStyledDocument also updates the underlying Element structure of the
document – for example, the start and the end offsets of an Element are automatically
updated when its corresponding content is modified. In most cases, these updates in the
Element structure are as expected. However, these updates are not as expected when
insertString is used to insert text at the end of a BranchElement. [V03] discusses
this issue in detail, and provides a solution to get the desired result.
The Document interface also provides a method to get the Element that represents a
given offset in the document.
3.2.3. The View Model
Views are responsible for rendering text. They correspond to the V (View) part of the
Model-View-Controller architecture.
The tree of View objects is created from the Element tree of the Document. For
DefaultStyledDocument, the View tree closely corresponds to the Element tree with
almost one-to-one mapping between Elements and Views. For PlainDocument, a
single View object is responsible for the entire Element tree. See Figure 3.6.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 13 of 63 April 28, 2004

Figure 3.6. View Trees Created from Element Trees.
Source: [LEWEC02]
The View trees have a root View above the View corresponding to the root of the
Element tree. As discussed in [LEWEC02], “this was done to ease the implementation of
the other View classes, which can now all assume that they have a non-null parent in the
View tree. So that each child doesn’t have to register as a DocumentListener, the root
View also takes care of dispatching DocumentEvents to its children” (p. 832).
Swing provides a hierarchy of concrete Views. Most Views can be thought of as either a
container View (that contains child Views) or a leaf View (that does not have child
Views). For example, CompositeView, BoxView etc. are container Views; whereas
GlyphView, LabelView etc. are leaf Views. There are also other special purpose
Views. Refer to Figure 3.7 for a complete hierarchy of Swing Views. Typically, a container
View is used to represent a BranchElement and a leaf View is used to represent a
LeafElement.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 14 of 63 April 28, 2004

Figure 3.7. View Class Diagram
Source: [LEWEC02]

As explained in [API03], a View is designed to be very light. It maintains a pointer to its
parent so that it can fetch some information from it. It also maintains a reference to the
portion of the model it represents (an Element). A View does not have to represent a
complete Element, it can also represent a fragment of an Element.
As mentioned before, a styled text component has an associated EditorKit. The
EditorKit has a method called getViewFactory, which returns the view factory
associated with the kit. A view factory is responsible for creating the right view for a
particular element. This way, text components like JEditorPane can customize their
View representation by using appropriate view factory. The ViewFactory interface has
just one method:
public View create(Element elem)

An implementing class implements this method to return the appropriate View for the
given Element.
If an editor kit does not have any view factory (typical for simple text components), its UI
delegate (by default, the BasicTextUI class) handles the creation of Views.
All concrete Views provide the method paint to paint the View within the specified
bounds and some management methods that facilitate insertion/deletion of Views in a
View tree. Views also provide methods to translate between model (Document offsets)
and view (graphics coordinates) – for example, methods like modelToView and
ViewToModel. Finally, Views provide methods to take care of the case when the
complete View cannot be fitted in the allocated area. The breakView method, for
example, breaks a View along a specified axis and returns a fragment of itself that can be
painted in the allocated space. If a View does not support breaking, it returns itself. In this
case, that View will be clipped when painted.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 15 of 63 April 28, 2004

Figure 3.8 shows the over-all structure of various Swing objects.

Figure 3.8. Interaction Among Various Swing Objects
Source: [API03]

3.3.The javax.swing.undo Package
In many applications, it is useful to give the user an ability to undo/redo a single or a
sequence of actions. This mechanism provides the user with an opportunity to correct
his/her mistakes by undoing those actions that resulted in unexpected results. There are
many techniques that can be used to implement undo/redo mechanism; for example,
Zhang and Wang showed that the object-oriented design pattern can be applied to
implement undo/redo in PDF studio [ZW00], Washizaki and Fukazawa showed a way to
use component properties to implement undo facility in component-based applications
[WF02], and Sun implemented undo mechanism in collaborative text editors [S02].
Java provides an undo framework that helps developers in implementing undo/redo
functionalities in Java-based applications. This support is in the form of some classes and
interfaces in the javax.swing.undo package. The Swing undo mechanism is an
independent feature, and can be used in many different contexts. Actually, the undo
package does not make use of any other Swing objects, so as argued in [LEWEC02], it
can be described more appropriately as “java.util.undo”. However, the most obvious
and common application of the undo mechanism is related to text processing, and Swing
text components do use the javax.swing.undo package to provide the basis of
undo/redo facility in text-editing applications.
Figure 3.9 shows the hierarchy of the javax.swing.undo package. In the following
subsections, I will describe the important objects of the Swing Undo package. However, It
is important to note that the Undo package does not provide a full-fledged, ready-to-use
undo mechanism; it just provides a basic framework and expects the programmer to
design the actions in such a way that their effects can be reversed [T00].

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 16 of 63 April 28, 2004

Figure 3.9. The Swing Undo Mechanism
Source: [LEWEC02]

3.3.1. The UndoableEdit Interface
The UndoableEdit interface provides a set of basic operations that are used to undo or
redo an edit operation. All edit operations that can be undone and redone need to
implement this interface. The instances of an implementing class represent a single
undoable change in an application. This class stores all the information necessary to undo
or redo the change that it represents. For example, if we want to implement undo/redo for
a delete operation in a simple text-editor, we should define a class as follows:
class DeleteEdit implements UndoableEdit
{
 //member variables
 private String string;
 private int pos;

 //constructor
 public DeleteEdit(String string, int pos)
 {
 this.string = string;
 this.pos = pos;
 }

 //implementation of the methods of UndobleEdit
 public void undo() throws CannotUndoException
 {
 …
 }

 public void redo() throws CannotRedoException
 {
 …
 }
 //other methods
} //end class

Here, the DeleteEdit class stores the position of a delete operation and the deleted
string. This information is used to undo and redo the delete operation.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 17 of 63 April 28, 2004

As seen from the example, the main methods of UndoableEdit are undo and redo that
are called to undo and redo the edit that it represents. For example, in DeleteEdit, the
undo method will re-insert the deleted string at the stored position; and redo will delete
that string again. These methods throw CannotUndoException and
CannotRedoException if the edit cannot be undone or redone respectively. Boolean
methods canUndo and canRedo check whether undo and redo operations can be
performed or not. The method isSignificant determines whether a particular edit
operation is significant or not. Only significant edits are undone and redone. One example
of an insignificant edit is loss of focus from an input field. As [T00] explains, “think of a
significant edit as something that the user would want to have to explicitly reverse, while
an insignificant edit is one that should be undone as a by-product of other actions”(p. 863).
UndoableEdit also provides methods to add and replace edits. These methods are
typically used when a set of edit operations (as opposed to a single edit operation) should
be undone and redone at a time. See the discussion about CompoundEdit below.
UndoableEdit can be used to undo and redo a single edit operation or a group of edit
operations at a time. There is a concrete implementation of UndoableEdit –
AbstractUndoableEdit - which undoes and redoes one edit operation at a time. It
considers all edits as significant by default. In most cases, it is easier to extend this class
rather than implementing the UndoableEdit interface to represent an edit operation. In a
typical case, only undo and redo methods need to be overridden by a subclass of
AbstractUndoableEdit.
In that case, DeleteEdit would look like:
class DeleteEdit extends AbstractUndoableEdit
{
 //member variables
 private String string;
 private int pos;

 //constructor
 public DeleteEdit(String string, int pos)
 {
 this.string = string;
 this.pos = pos;
 }

 //implementation of undo and redo
 public void undo() throws CannotUndoException
 {
 super.undo();
 … //code to insert string at pos
 }

 public void redo() throws CannotRedoException
 {
 super.redo();
 … //code to delete string from pos
 }

} //end class

The UndoableEdit interface is designed to enforce the state diagram of Figure 3.10.
AbstractUndoableEdit enforces this state model. The subclasses of
AbstractUndoableEdit should call the undo and redo methods of the superclass as
the first line in their implementation of undo and redo to ensure that this state model is
properly enforced (see the code fragment of DeleteEdit above).

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 18 of 63 April 28, 2004

Figure 3.10. UndoableEdit State Diagram
Source: [LEWEC02]

As explained in [LEWEC02], when a new edit is initially created, it represents an edit
operation that has just been done and can be undone, i.e. is undoable. After the edit is
undone, it can now be redone, i.e. is redoable. If it is redone, it becomes undoable again,
and so on. This sequence can be repeated any number of times. If the edit can no longer
be used, it is killed and it goes to the dead state. Edits in the dead state cannot be undone
or redone [LEWEC02].
To understand why an edit can be killed, consider the following sequence of edit
operations:
Edit A
Edit B
Now assume that Edit B is undone, Edit A is undone, and Edit A is redone. Now suppose
some other operation – Edit C is performed. In this case, Edit B can no longer be used,
and is in dead state.
Edits can be undone and redone as a group using CompoundEdit – a subclass of
AbstractUndoableEdit. A number of AbstractUndoableEdits are added to a
CompoundEdit using a sequence of addEdit method. When all edits are added, end is
called to indicate that no more edits should be added to the existing CompoundEdit, and
that the creation of the CompoundEdit is complete. The CompoundEdit can be undone
and redone only after it is complete. When asked to undo or redo, it undoes or redoes all
the edits added to it.
Figure 3.11 shows the state diagram of CompoundEdit.

Figure 3.11. CompoundEdit State Diagram
Source: [LEWEC02]

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 19 of 63 April 28, 2004

3.3.2. UndoableEditEvent and UndoableEditListener
UndoableEditEvent is a member of the javax.swing.event package. Components
that support undo/redo generate this event to notify the registered listeners (the ones that
implement the UndoableEditListener interface) about the occurrence of an undoable
edit operation. The constructor of UndoableEditEvent requires the source of the event
(that is, the component that generated this event – typically this) and the edit operation
itself (for example, an instance of the DeleteEdit class that we saw in Section 3.3.1).
UndoableEditListener is also a member of the javax.swing.event package. Each
class that is interested in the undoable edits of a particular component should implement
this interface and register itself with the component of interest. The interface defines only
one method:
public abstract void undoableEditHappened(UndoableEditEvent e)

This method is called whenever an undoableEditEvent is generated by the component.
The implementing class gets access to the UndoableEdit through the event e, and takes
appropriate actions.
3.3.3. The UndoManager Class
UndoManager is an extension of CompoundEdit. It stores a history of UndoableEdits
and allows the user to undo and redo them one at a time. By default, it stores a history of
100 edits at the same time; but this can be changed by using its setLimit method, which
accepts an integer argument [T00]. UndoManager also implements
UndoableEditListener: it calls addEdit method each time an UndoableEditEvent
is fired. Loy et al. ([LEWEC02]) point out an important advantage of this behavior: “this
allows a single UndoManager to be added as a listener to many components that support
undo, providing a single place to track all edits and populate an undo menu for the entire
application”(p. 651).
Figure 3.12 shows a simple example of how UndoManager works.

Figure 3.12. UndoManager Example
Source: [LEWEC02]

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 20 of 63 April 28, 2004

Though UndoManager is a subclass of CompoundEdit, there are some differences in the
way it behaves (adapted from [LEWEC02] and [T00]):

• When an edit is added to UndoManager, it is placed in the list of available edits. When
undo is called, only the last significant edit is undone. Whereas in the case of
CompoundEdit, a call to undo undoes all the edits added to it.

• When CompoundEdit is killed by calling die, all its edits are discarded. Whereas,
when die is called on UndoManager, only those edits are discarded that are undone
but not redone.

• The meaning of “inProgress” (refer to Figure 3.11) is quite different in both the classes:
in UndoManager, single sequential undo/redo operations are only supported while the
class is in “inProgress” state. If end is called, UndoManager essentially starts
behaving as a CompoundEdit and no longer supports sequential undo/redo. In
contrast, CompoundEdit allows new edits to be added only while it is in “inProgress”
state; and undo/redo can be performed only after end has been called.

[LEWEC02] explains the idea behind the UndoManager acting as a CompoundEdit after
the end method is called. According to [LEWEC02], “the idea is to use an UndoManager
in a temporary capacity during a specific editing task and then later be able to treat all of
the edits given to the UndoManager as a single CompoundEdit”(p. 653). For example, in
a spreadsheet application, UndoManager can manage the process of editing the formula
for a single cell. This allows small edit operations to be undone and redone individually.
After the formula has been finalized and committed, end method can be called so that now
the UndoManager starts behaving as a CompoundEdit. This edit (of creating the
formula) can then be handed over to the primary undo manager, and the entire formula
can be undone and redone as a single unit [LEWEC02].
3.3.4. The UndoableEditSupport Class
UndoableEditSupport is a utility class for classes that need to support undo/redo. It
provides methods to add and remove UndoableEditListeners. It also provides
postEdit method to send an UndoableEditEvent to the added listeners, and methods
to add multiple edits to itself and fire a single CompoundEdit.
The text components manage their listeners in their own private way; hence they do not
use the UndoableEditSupport class.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 21 of 63 April 28, 2004

4. Existing Editor Framework
As mentioned before, I extended someone else’s framework during my project. The
framework was based on the javax.swing.text framework provided by Java Swing. In
this section, I will discuss the framework I started with.

4.1. User Interface
The framework initially accepted a MathML document as its input (MathML is a special
type of XML, used to represent mathematical formulae). I modified the framework so that it
could accept general XML files. The main class of the framework was XMLEd (a short form
for XML Editor). Initially, the input file was provided at the command line:
java XMLEd example.xml

However, Nupura Neurgaonkar later changed the interface in such a way that the editor
could be started simply as
java XMLEd

and the input file could be provided later using the File ->Open menu item. There was also
a File->Close menu item to close an open file.
The framework displayed the XML file in XMLEditorPane – a subclass of JEditorPane.
XMLEditorPane was practically the same as JEditorPane. The only reason for creating
the subclass was to provide extensibility: with a separate XMLEditorPane class, it
became very easy to add more functionality to the text component without changing other
classes. Similarly, the EditorKit associated with XMLEditorPane was XMLEditorKit
– a subclass of DefaultEditorKit.
The editor looked as shown in Figure 4.1.

Figure 4.1. The user interface of the editor with the DOM option selected

As can be seen in the figure, the editor window also provided some other information
besides displaying the document itself. The right side of the JSplitPane displayed the
XMLEditorPane with the input XML document. The XMLEditorPane was wrapped in a
JScrollPane to display scrollbars when necessary. The toggle button “Delimiter Visible”
controlled whether or not the element markers got displayed (see Figure 4.1).

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 22 of 63 April 28, 2004

The left side of the JSplitPane displayed a JTree with a variety of information about the
input file. The information displayed in the JTree depended upon the selected option
button: “Document Structure” option displayed the element hierarchy (in terms of the
element structure of DefaultStyledDocument), “View Structure” option displayed the
view hierarchy of the document and “DOM Structure” option displayed the Document
Object Model (DOM) of the input file.
The bottom-most status bar displayed the current cursor position to the right side, and the
xpath of the current element to the left.
There were no editing functionalities available. Most of the menus seen in Figure 4.1 were
added by me during the course of the project.

4.2. The Document Structure
The framework parsed the input XML document using the Document Object Model (DOM)
parser in the org.w3c.dom package, and created an appropriate element structure. The
underlying Document was XMLDocument – a subclass of DefaultStyledDocument.
XMLDocument customized many methods of DefaultStyledDocument to get the
desired behavior in context of an XML editor. Instead of directly using the
AbstractDocument.BranchElement and the AbstractDocument.LeafElement
classes, the framework defined their subclasses XMLDocument.BlockElement and
XMLDocument.RunElement respectively and used these classes to describe the element
structure.
The element structure of the input file could be viewed as a JTree by selecting the
“Document Structure” option. Here is the element structure for the document in Figure 4.1:

Figure 4.2. Element structure of the sample document.

The numbers in the square brackets represented the values returned by the element’s
getStartOffset and getEndOffset methods respectively.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 23 of 63 April 28, 2004

In the element structure above, the first two elements got created by
DefaultStyledDocument by default. The actual hierarchy corresponding to the input
XML file started from the third level.
Each content node in the input file had a corresponding XMLDocument.RunElement in
the hierarchy, and each element in the input file had a corresponding
XMLDocument.BlockElement in the hierarchy. Each such BlockElement also had
two child RunElements with names ending with “-leaf”. These elements represented the
start and end tags respectively of the parent element. All the actual children of the parent
element were inserted between these two delimiter tags.
All the elements also had an associated AttributeSet to store their specific information.

4.3. The View Structure
javax.swing.text provides some basic ready-to-use views like LabelView and
BoxView. The framework that I started with also had a few additional views:
XMLLabelView, RowView and HiddenTagView.
XMLLabelView:
This was a subclass of LabelView, and was designed to represent text content.
Practically, it provided the same behavior as LabelView. As in the cases of
XMLEditorKit and XMLEditorPane, a separate class was created just for extensibility.
RowView:
This was a subclass of BoxView, and was designed to lay out child views of a given view
along the x-axis. It behaved in the same way as BoxView with View.X_AXIS as the
second constructor argument. Again, a separate class was created for convenience and
extensibility.
HiddenTagView:
This was an extension of EditableView, which in turn was an extension of
ComponentView of the Swing text package. (ComponentView is a convenient view to
represent a component – say a JPanel – for an element. As [API03] explains, “it allows
components to be embedded in a View hierarchy”.) HiddenTagView was designed to
represent the delimiter (“-leaf”) elements of an XMLDocument.BlockElement. It was
preferable that the delimiter tags be represented in a graphical way to clearly indicate the
boundaries of an element. Using a component was the easiest way to achieve this goal.
Hence, HiddenTagView was developed as an (indirect) extension of ComponentView
and a bordered JPanel was used as the component. The JPanel also displayed the
element’s name in it.
The resulting HiddenTagView is shown in Figure 4.3.

Figure 4.3a HiddenTagView for the start tag of Figure 4.3b HiddenTagView for the end tag of

The View structure of the input file can be seen by selecting the “View Structure” option.
Figure 4.4 shows the view structure of the sample document.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 24 of 63 April 28, 2004

Figure 4.4. View structure of the sample document.

As explained in Section 3.2.3, a ViewFactory is responsible for deciding which view to
create for a given element. The ViewFactory in the framework was called
XMLViewFactory. Initially, its create method had a series of if statements to decide
what view to create depending upon the given element. Later, it was changed by Nupura
Neurgaonkar so that the create method read an external file – view-map.xml – to
make this decision. view-map.xml provided the mapping between elements and their
views in XML format. This way, changing the view for an element did not involve
recompiling.
Section 5 describes in detail the functionalities that I developed on top of this framework.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 25 of 63 April 28, 2004

5. Implementation
As mentioned before, I developed editing functionalities in the XML editor framework
described in Section 4. The goal of my project was to find the extensibility and usability of
the available framework, and as a by-product, develop a user-friendly and platform-
independent XML editor.
In this section, I will discuss the following implemented features:

• Tree View
• Edit operations including insert/delete, cut-copy-paste, search/replace, split/merge

and open/enclose
• Undo / Redo functionality
• Paragraph View
• Save

I will also discuss my implementation approach and the issues I faced.

5.1. TreeView
5.1.1. Need and Goal of TreeView
An XML document is structured as a rooted element tree. For best WYSIWYG editing, it is
preferable that the user sees the document as a tree of elements where the parent-child
relationship is clearly visible. The best View of the Swing text package that can display a
hierarchy of elements is BoxView. It displays all the children of a particular element along
x-axis or y-axis, depending on the value given to its constructor. For example, calling the
constructor BoxView(elem,View.Y_AXIS) displays the element hierarchy of the
sample XML document as shown in Figure 5.1a. Though this is the best that Swing can
give, it does not clearly reflect the underlying hierarchy. The goal of TreeView was to
display all the child elements of a given element at an offset from the parent, and thereby
reflect the parent-child relationship (Figure 5.1b).
Sample XML document:
<book>
 <toc>Table of Contents</toc>
 <body>
 <chapter>Chapter One</chapter>
 <chapter>Chapter Two Chapter Three</chapter>
 </body>
</book>

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 26 of 63 April 28, 2004

Figure 5.1a XML Document with BoxView Figure 5.1b XML Document with TreeView

5.1.2. Implementation Issues
My approach in the implementation was to extend BoxView and change the methods
related to the required functionality. Specifically, I re-implemented the method
layoutMinorAxis to lay out the child elements of an element at an offset.
/**@param targetSpan - the total available span for the view.
 *@param axis - the axis being laid out (View.X_AXIS in our case)
 *@param offsets - the offsets from the origin of the view
 * for all children views, this is a return value to be
 * filled in by this method
 *@param spans - the span of children views, this is also a return value.
 */
protected void layoutMinorAxis(int targetSpan, int axis, int[] offsets, int[]
spans)
{
 super.layoutMinorAxis(targetSpan, axis, offsets, spans);
 int n = getViewCount();
 for(int i = 1; i < n-1 ; i++) //leave out the leaf views.
 {
 //modify the offsets of child elements, and
 //decrement their spans.
 offsets[i] += INDENT;
 spans[i] -= INDENT;
 }
}

The above implementation worked fine, except that some text got erased while the cursor
moved across TreeView. After hours of debugging, I discovered the problem: as the
implementation changed the size requirements of TreeView compared to its superclass
BoxView, I also needed to modify the method calculateMinorAxisRequirements to
ensure that it returned the correct size requirements. Specifically, the minimum and the
preferred requirement values needed to be changed. The maximum requirement value did
not need to be changed because by default it returns the largest integer that can be
represented in Java.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 27 of 63 April 28, 2004

/** @param axis the axis in question (View.X_AXIS in our case)
 * @param r the SizeRequirements object. If this is null, one
 * will be created
 */
protected SizeRequirements calculateMinorAxisRequirements(int axis,
SizeRequirements r)
{
 SizeRequirements s = super.calculateMinorAxisRequirements(axis,r);

 //for x-axis, increment the minimum and the preferred requirements by INDENT
 if(axis == View.X_AXIS)
 {
 s.minimum += INDENT;
 s.preferred += INDENT;
 if(r != null)
 {
 r.minimum += INDENT;
 r.preferred += INDENT;
 }
 }
 return s;
}

This modification solved the erasing issue.
During the implementation of TreeView, I also observed a mysterious
ArrayIndexOutOfBoundException while using the arrow keys to traverse the
document. After some debugging, I discovered that the actual cause of this problem was
the BadLocationException thrown by DefaultCaret while the user tried to move the
cursor beyond the end of the document. DefaultCaret simply ignored the exception and
advanced the cursor in an incorrect way. This way, the system entered a non-stable state,
and threw an ArrayIndexOutOfBoundException at a later stage.
//Code from javax.swing.text.DefaultCaret
public void paint(Graphics g)
{
 if(isVisible())
 {
 try
 {
 .
 . //code for painting the cursor
 } catch (BadLocationException e)
 {
 // can't render I guess
 //System.err.println("Can't render cursor");
 }
 }
}

I implemented a subclass of DefaultCaret – XMLCaret – to handle this situation. I
caught BadLocationException and positioned the cursor at the right place when the
user tried to move beyond the end of the document.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 28 of 63 April 28, 2004

//XMLCaret
public void paint(Graphics g)
{
 boolean flag = false;
 if(isVisible())
 {
 try
 {
 .
 . //paint the cursor
 }catch (BadLocationException e)
 {
 int off = e.offsetRequested();
 //if trying to go beyond the end,set cursor at the end of the document
 if(off > 0)
 setDot(off - 1);
 //if trying to go beyond the beginning,set the cursor at the beginning
 else setDot(0);
 }
 }
}

This approach solved the issue of the exception.
I later also implemented the ability to change the indentation of TreeView (that is, the
offset of child elements from its parent). Now, the user can just specify the new value of
indentation, and it is changed immediately. This operation also supports undo/redo.

5.2. Edit Operations
Editing functionalities are the most important part of any editor. The number and the types
of available editing functionalities determine how easily the editor can be used to edit a
document. During my project, I tried to provide a fairly complete set of editing operations,
including some primitive or basic ones and some convenience operations.
In this section, I will describe the editing operations that I have implemented: insert/delete,
cut-copy-paste, search/replace, split/merge and open/enclose. I have provided undo/redo
capability with each of the following editing operation. However, I will not go into the details
of undo/redo in this section. Section 5.3 describes the undo/redo functionality in detail.
5.2.1. Insert / Delete
The most basic operations in an editor are insertion and deletion. As an element
represents a structural unit of an XML document, insertion/deletion includes
insertion/deletion of text as well as elements for an XML editor. I have only implemented
insertion/deletion of elements; insertion/deletion of text has been implemented by Nupura
Neurgaonkar.
Element Insertion:
I have provided element insertion capability in such a way that the user can insert
elements anywhere except at the beginning and the end of the document. The rationale for
this restriction is that there should be just one root of any XML document. Element
insertion at the beginning (before the start tag of the root) or at the end (after the end tag of
the root) of an XML document violates this condition.
Figures 5.2a and 5.2b show the insertions of <chapter> and <section> elements
respectively in the document of Figure 5.1b. (In all the figures below, the vertical line in the
text area represents the cursor, and the number at the bottom of the window represents
the position of the cursor in the document.) As seen, the newly inserted element is initially
empty.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 29 of 63 April 28, 2004

 Figure 5.2a. Insertion of <chapter> Figure 5.2b. Insertion of <section>

The resulting XML structures are:
<book>
 <toc>Table of Contents</toc>
 <body>
 <chapter>Chapter One</chapter>
 <chapter>Chapter Two Chapter Three</chapter>
 <chapter></chapter>
 </body>
</book>
and
<book>
 <toc>Table of Contents</toc>
 <body>
 <chapter>
 Chapter
 <section></section>
 One
 </chapter>
 <chapter>Chapter Two Chapter Three</chapter>
 </body>
</book>
respectively. The resulting element structures of XMLDocument are:
.
.
body
 body-leaf
 chapter
 chapter-leaf
 content
 Chapter One
 chapter-leaf (end-tag)
 chapter
 chapter-leaf
 content
 Chapter Two Chapter Three
 chapter-leaf (end-tag)
 chapter
 chapter-leaf
 chapter-leaf (end-tag)
 body-leaf (end-tag)
.
.
and

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 30 of 63 April 28, 2004

.

.
body
 body-leaf
 chapter
 chapter-leaf
 content
 Chapter
 section
 section-leaf
 section-leaf (end-tag)
 content
 One
 chapter-leaf (end-tag)
 .
 .
 body-leaf (end-tag)
.
.
respectively. As seen in the second case, the content node inside <chapter> is split into
two to properly insert the section element. DefaultStyledDocument automatically
splits a content node while inserting an element inside content (as in Figure 5.2b).
My initial approach for the implementation was to use the insertString method of
AbstractDocument, and insert both the leaf tags with appropriate attribute sets.
DefaultStyledDocument automatically updated the element structure. This worked
well in most cases. However, this approach failed while inserting a new element at the
boundary of another element.
For example, see the element structure below:
body
 body-leaf
 chapter1
 chapter1-leaf
 chapter1-leaf (end-tag)
 chapter2
 chapter2-leaf
 chapter2-leaf (end-tag)
 body-leaf (end-tag)

If I tried inserting a new element at the end of <chapter1> (between chapter1-
leaf(end-tag) and chapter2-leaf), it did not produce the desired result: it inserted
the element as a child of <chapter1>, instead of <body>, resulting in the following
structure:
body
 body-leaf
 chapter1
 chapter1-leaf
 chapter1-leaf (end-tag)
 newelement
 newelement-leaf
 newelement-leaf (end-tag)
 chapter2
 chapter2-leaf
 chapter2-leaf (end-tag)
 body-leaf (end-tag)

The reason, as I discovered later, was that in the above structure, the insertion position of
<newelement> was actually the end offset of <chapter1> (and the start offset of
<chapter2>). Hence, DefaultStyleDocument made an incorrect assumption that
<newelement> was being inserted in <chapter1>! Similarly, an attempt to insert an

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 31 of 63 April 28, 2004

element at the end of <chapter2> also failed. This behavior was unexpected because in
general, the end offset of an element does not actually belong to the element. As
explained in [API03], the element occupies start offset to (end offset-1) positions in the
document. Yet, insertString considered end offset as part of the element while
updating the element structure! This problem was very difficult to track down because
there was very little documentation about the behavior. Specifically, the Java API
documentation did not at all mention this behavior.
Failed to find a solution to the insertString problem, I then implemented element
insertion by directly changing the DOM (Document Object Model) tree that was generated
while parsing the input file, and then reconstructing the whole document. This solution
worked fine in all cases, but was inefficient and slow.
Finally, Nupura Neurgaonkar found an article ([V03]) that explained this phenomenon, and
provided its solution. Adopting the explained solution, I then used the insert method of
DefaultStyledDocument to insert an element, and specified the desired element
structure explicitly using the DefaultStyledDocument.ElementSpec class. The
insertion of element then behaved correctly in all cases. As this solution was much more
elegant and efficient, I then discarded my old solution.
Element Deletion:
This operation removes the element surrounding the cursor when the cursor is at the leaf
tags. It does not do anything if the cursor is in the content. I have implemented element
deletion in such a way that any element except the root can be deleted. The rationale for
this restriction is the same as the one for insertion: an XML document should have exactly
one root. Deleting the root violates this condition.
Figures 5.3a and 5.3b show the deletion of <body> and <section> elements from the
documents of figures 5.2a and 5.2b respectively.
I used the remove method defined in AbstractDocument to implement element
deletion. The element structure automatically got updated by DefaultStyledDocument
after deletion. The resulting element structure was as expected in all cases. However,
while insertString automatically split content node while inserting an element in
content (Figure 5.2b), remove did not automatically merge adjacent content nodes when
an element was removed. Hence, I had to write code to achieve the desired result (Figure
5.3b).

Figure 5.3a. Deletion of <body> Figure 5.3b. Deletion of <section>

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 32 of 63 April 28, 2004

5.2.2. Cut, Copy and Paste
Cut, copy and paste remain the most widely used edit operations in text editors. They
facilitate information exchange within a document. As argued in [WBT01], cut, copy and
paste provide the user with a simple form of reuse. Swing text components provide some
basic support for cut-copy-paste. However, the support they provide is very minimal – they
deal with simple text content only. I had to re-implement the functionality to deal with
element content as well.
In the context of an XML document – which consists of a tree of elements – these
operations need a little different semantics (for example, what should the cut operation do
when an element is only partially selected).
I have used the following conventions in my implementation (in the following discussion,
paste buffer means the clipboard):
• When only text (and no start or end tags of an element) is selected, cut-copy-paste

behave in the same way as in any conventional text editor (see Figure 5.6 below).

Figure 5.6. Cut and Paste When Only Text is Selected

• When only the start tag or the end tag (but not both) of an element is selected, all the
highlighted child elements of the partially selected element are cut (or copied). The
paste buffer now contains a new element of the same type as the partially selected
element, with all the cut (or copied) elements as its children (see Figure 5.7).

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 33 of 63 April 28, 2004

Figure 5.7. Cut and Paste When a Partial Element is Selected

• When an element is completely selected (that is, the start tag and the end tag both are
selected), the whole element is cut (or copied) and placed in the paste buffer (see
Figure 5.8).

Figure 5.8. Cut and Paste When a Full Element is Selected

The paste buffer contains a complete element in all cases.
The copy operation does not change the document in any way. It just places the selected
content in the paste buffer according to the above conventions. For this reason, I needed
to create deep copies of the selected elements before placing them in the paste buffer.
Storing direct references or shallow copies of the selected elements could result in
unexpected behavior while performing paste operation. The Swing framework did not
provide any method to create a deep copy of an element, so I had to write my own method
for this purpose.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 34 of 63 April 28, 2004

The cut operation places the selected content in the paste buffer, and removes it from the
document. Thus in the implementation of cut, I first called the copy operation to put the
contents in the paste buffer, and then used the remove method to remove the contents
from the document according to the above conventions.
There can be just one paste buffer in the system. Hence, I used the Singleton design
pattern in the implementation of the paste buffer (refer to Section 2.2). In the
implementation of paste, I used the primitive insertion operations as much as possible.
However, I needed to handle the boundary case: when pasting resulted in two consecutive
content elements. I combined the two content elements in that case.
I had to make some modifications in the editor kit to use the standard keyboard shortcuts
(CTRL+X, CTRL+C and CTRL+V) for my cut, copy and paste operations respectively. By
default, text components already have bindings (as a Keymap) for these key combinations
with the basic (text-only) versions of the corresponding operations. Just setting the
appropriate accelerators for the corresponding menu items did not change these bindings,
because as explained in [P04], the bindings done by Keymap have a higher priority over
the bindings done by menu accelerators. To change the bindings, I had to follow the
following steps:
• I created public static final variables describing the name of each operation.

This was done just for convenience, and to follow the tradition of DefaultEditorKit.
public static final String xmlCopyAction = "Copy";
public static final String xmlPasteAction = “Paste”;
public static final String xmlCutAction = "Cut";

• I created public static inner classes in XMLEditorKit corresponding to each
operation. For example, the class for cut looked like:

public static class XMLCutAction extends TextAction
{
 //Create this object with the appropriate identifier.
 public XMLCutAction()
 {
 super(xmlCutAction);
 }

 /**
 * The operation to perform when this action is triggered.
 * @param e the action event
 */
 public void actionPerformed(ActionEvent e)
 {
 JTextComponent target = getTextComponent(e);
 if (target != null)
 {
 XMLDocument doc = (XMLDocument)target.getDocument();
 if(doc != null)
 doc.cut(); //my method
 }
 }
}

• I changed the getActions method declared in StyledEditorKit to include my
actions as well.
public Action[] getActions()
{
 return TextAction.augmentList(super.getActions(),
 XMLEditorKit._XMLActions);
}

• I defined key bindings in XMLEditorPane.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 35 of 63 April 28, 2004

public static final KeyBinding[] XMLBindings =

{
 new JTextComponent.KeyBinding(
 KeyStroke.getKeyStroke(KeyEvent.VK_C, InputEvent.CTRL_MASK),
 XMLEditorKit.xmlCopyAction),
 new JTextComponent.KeyBinding(
 KeyStroke.getKeyStroke(KeyEvent.VK_V, InputEvent.CTRL_MASK),
 XMLEditorKit.xmlPasteAction),
 new JTextComponent.KeyBinding(
 KeyStroke.getKeyStroke(KeyEvent.VK_X, InputEvent.CTRL_MASK),
 XMLEditorKit.xmlCutAction),
};

• Finally, I loaded the key bindings in the JTextComponent Keymap.
Keymap k = _pane.getKeymap();
JTextComponent.loadKeymap(k,XMLEditorPane.XMLBindings,kit.getActions());

Here, kit is the XMLEditorKit associated with the pane.
These steps now established the association between the key bindings and the
appropriate actions.
5.2.3. Search / Replace
Search and Replace operations help the user in quickly locating the required information
within a document. These operations save the user’s time, and enhance his/her
productivity.
In my project, I have customized these operations with an XML document in mind,
implementing them in such a way that the user can search and replace text, element
name, attribute name or attribute value. The user selects what to search by selecting the
appropriate radio button (see Figure 5.9 below). For elements and attribute names, the
“Replace” and “Replace All” buttons change their captions to “Rename” and “Rename All”
respectively.

Figure 5.9. Search Dialogs
I have used the following conventions in the implementation:
• Search:
The user can search for text, element, attribute name or attribute value. The user has an
option to perform a case-sensitive search. The operation searches for the required
information starting from the current cursor position to the end of the document, and
highlights the first occurrence of the information. Executing “Search” again for the same

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 36 of 63 April 28, 2004

information finds the next occurrence of the information, and so on. A message appears if
no occurrence of the searched information is found.
• Replace (or Rename)
Replace operation replaces the selected content in the document with the one provided in
the replacement field. For example, if the text option is selected, it replaces the selected
text with the replacement text. For elements and attribute names, this operation actually
performs a “Rename” rather than a “Replace”, because it simply changes the name of the
selected element or attribute. If no appropriate information is selected in the document, this
operation does not take any action. Thus, Replace operation in my implementation is not
tied to the Search operation. Replace can be executed by itself, without performing a
search or specifying a search string.
• Replace All
In all the four options, Replace All performs a document-wide search for the required
information (text, element, attribute name or attribute value) and replaces all occurrences
with the replacement value. This operation is tied to the Search operation: the user needs
to supply both – a search string and a replacement string – to perform this operation.

Figure 5.10. Search, Rename and Rename All for elements

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 37 of 63 April 28, 2004

Figure 5.11. Search, Rename and Rename All for Attributes

The implementation of text replacement was straight forward – I first removed the old text
using the remove method of AbstractDocument, and then inserted the new text using
the insert method of DefaultStyledDocument (I did not use the insertString
method of AbstractDocument to avoid the boundary case problem described in Section
5.2.1).
The implementation of attribute value replacement was also easy – I simply added the
(attribute name, new value) pair to the element’s attribute set. As the attribute set is a
collection of unique attribute names, the old value simply got over-written with the new
one. Implementation of renaming attribute name involved one more step: I actually had to
remove the old pair from the attribute set, and add the new one.
The implementation of element renaming was a little more involved. Renaming the
element itself was not difficult: I simply changed the element’s Name attribute. However,
that alone was not sufficient. I also had to change the name attributes of its -leaf elements,
and most importantly, had to change the caption in the component of HiddenTagView.
This part was most challenging: I needed a reference to the HiddenTagView that
represented the given leaf element. In the Swing Editor framework, a View knows the
Element it represents, but an Element does not know the View that represents it. There
is no direct way to get the View corresponding to an Element. Also, in ComponentView
(the indirect superclass of HiddenTagview), there is no way to recreate a component.
So, I wrote a method getViewFor to get the View corresponding to a position in an
element by examining the Elements of all the Views in the View hierarchy.
/**
 * Returns the view corresponding to an element.
 * @param elem the element
 * @return the View corresponding to elem
 */
public View getViewForElem(Element elem)
{
 TextUI ui = _pane.getUI();
 View v = ui.getRootView(_pane);
 View para = v.getView(0).getView(0);
 View actualRoot = para.getView(0).getView(0);
 View view = actualRoot;
 return getViewInView(elem,actualRoot);
}

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 38 of 63 April 28, 2004

/** Returns the View corresponding to elem if it is present in the direct
 * or indirect children of view.
 * @param elem the element
 * @param view the View to search for
 * @return the View corresponding to elem, if present in the hierarchy of view,
 * null otherwise.
 */
private View getViewInView(Element elem, View view)
{
 if(view.getElement() == elem)
 return view;
 View v = null;
 int len = view.getViewCount();
 int i = 0;
 while((i < len) && (v == null))
 {
 View child = view.getView(i);
 v = getViewInView(elem,child);
 i++;
 }
 return v;

}

With this method, I obtained a reference to the View of the renamed element, and
changed the caption of its component. I also had to change the “xpath” attribute of all the
direct and indirect children of the renamed element.
5.2.4. Split / Merge
Split and Merge are convenience operations, meaning that the same effect can be
achieved using primitive operations such as insert and delete. However, these operations
provide a quick way to split an element into two, or merge two consecutive elements.
Split Element:
This operation splits an element into two at the cursor position, resulting in two consecutive
elements of the same type. After this operation, all the children of the original element are
distributed between itself and the newly created element: all the children up to the cursor
position remain children of the original element, and all the children after the cursor
position are made children of the second element.
To understand the significance of this operation, consider the scenario of an author using
this editor to write a book in XML format. The book is organized in many chapters.
Suppose each chapter is represented by a <chapter> element in the document (which is
natural, considering the structural nature of XML). Now suppose the author wants to split a
chapter into two. Without the Split operation, he would have to remove the last few
sections or paragraphs of the chapter, create a new chapter, and paste the removed
sections/paragraphs to the new chapter. On the other hand, with the Split operation, just
positioning the cursor at the right place and calling “Split Element” does the trick.
The user can split any element except the root. The root element cannot be split; and an
attempt to do so will cause an error message to appear.
Figures 5.12a and 5.12b show an example of Split operation.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 39 of 63 April 28, 2004

Figure 5.12a. Before Splitting <chapter> Figure 5.12b. After Splitting <chapter>

My approach in the implementation was simple: I used the primitive operations. I first made
deep copies of the elements that needed to be moved to the new element, removed those
elements from the original position using remove, created a new element with exactly the
same attributes as the original one and finally inserted the removed elements to the new
element using insert.
Merge Elements:
This is an inverse operation of split – it merges two adjacent elements if possible.
Extending the example of the author, this operation can be used to merge two chapters.
Only adjacent elements with the same name can be merged.
The semantics of the operation are as follows: when the user calls “Merge Elements”, the
editor first attempts to merge the element surrounding the cursor with the element above it.
If these two elements are incompatible, it tries to merge the current element with the one
below it. If these two are also incompatible, an error message is displayed.
Figure 5.13b shows the merging of chapter two and three of Figure 5.13a.

Figure 5.13a. Before Merging two <chapter>s Figure 5.13b. After Merging two <chapter>s

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 40 of 63 April 28, 2004

The implementation of this operation was also done using primitive operations. I first
cloned the second element, removed it and then inserted its children at the end of the first
element. The implementation was straightforward in most cases, except when merging
resulted in two consecutive content nodes. I had to explicitly check for this condition, and
merge the two consecutive content nodes.
5.2.5. Enclose / Open
Enclose and Open are also convenience operations. They allow the user to quickly insert
an element in a way that it encloses a set of elements, or remove an element in a way that
its children are retained by “promoting” them.
Enclose Element:
This operation encloses a set of consecutive elements inside a new element. The element
is first inserted, and the selected elements are then moved as its children. For example,
consider the following element structure:
<a>
 <c> … </c>
 <d> … </d>

If <c> and <d> are enclosed within , the following element structure would result:
<a>

 <c> … </c>
 <d> … </d>

This operation is needed as a result of some formatting operations in an XML document.
For example, consider the following xhtml document:
<xhtml>
 <body>
 This is some sample text.
 <p>
 This is another sample text.
 </p>
 </body>
</xhtml>
Now, suppose the user wants to underline the paragraph. The resulting document will be:
<xhtml>
 <body>
 This is some sample text.
 <u>
 <p>
 This is another sample text.
 </p>
 </u>
 </body>
</xhtml>
As seen above, this is effectively the same as enclosing the element <p> in element <u>.
Figure 5.14a shows how this works in the editor.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 41 of 63 April 28, 2004

Figure 5.14a. Enclose Element
This operation encloses complete elements only. If the user partially selects an element, it
does not attempt to enclose just the selected part of the element by splitting it. In this case,
the operation is executed as if the element were completely selected. This means that
currently, this operation cannot selectively enclose text content: if some text is selected,
the complete content node is enclosed in the new element. See Figure 5.14b below.

Figure 5.14b. Enclose Content

As this is not a primitive operation, it was natural for me to use primitive operations in its
implementation. My approach was as follows: I first inserted the new element at the correct
position, made deep copies of the elements to be enclosed, removed those elements from
their original positions and re-inserted them as children of the new element.
“Open up” an Element
This operation is an inverse of the enclosing operation. It removes the element at the
cursor position without removing its children. The children of the removed element are

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 42 of 63 April 28, 2004

“promoted” to one level up. The only restriction in this operation is that the root element
cannot be opened.
Again, this operation is also needed as a side-effect of some formatting operations. For
example, removing the underlining of the element <p> in the above example is equivalent
to calling Open <u> Element.
Figure 5.15 shows Open Element in the editor.

Figure 5.15. Open Up Element

The implementation of Open Element was analogous to Enclose: I first made deep copies
of the children of the element, removed the element and re-inserted the children at one
higher level.

5.3. Undo / Redo
In this section, I will discuss the undo/redo functionality of my project, along with the
implementation issues that I faced.
5.3.1. Need of Undo/Redo
Undo and redo are important edit operations in an (XML or text) editor. They allow the
users to correct their mistakes by allowing them to undo their actions. In my project, I have
implemented undo and redo in conjunction with all of the edit operations explained in
Section 5.2. In addition, I have also implemented undo/redo with the action of changing
between in-line and pop-view of attributes, as a proof-of-concept that undo/redo can be
provided not just with conventional mutating operations, but also with non-mutating
actions.
5.3.2. Implementation Issues
In general, Swing does not provide a ready-to-use undo support. However, Swing text
components are an exception: their Documents have a built-in capability to undo and redo
basic text-related actions. For example, the insertString and remove methods
generate UndoableEditEvents with corresponding UndoableEdits. The edits have
enough information to undo and redo the corresponding operations when their undo and
redo methods are called respectively. The client just needs to add an appropriate
UndoableEditListener to the corresponding Document to start listening to the
generated UndableEditEvents. Undo framework also provides a ready-to-use
UndoableEditListener - UndoManager, which works fine in most cases.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 43 of 63 April 28, 2004

Document doc = new XMLDocument();
doc.addUndoableEditListener(new UndoManager());

Once the listener is in place, it receives all the UndoableEditEvents from the document,
and calls the undo and redo methods of the corresponding UndoableEdits when the
user undoes or redoes an edit. By default, UndoManager holds the last 100 actions.
Hence, the user can undo and redo up to 100 actions. However, this limit can be changed
using its setLimit method.
Though the built-in support is adequate for text documents, it is not enough for structured
documents like XML. The reason is that this support only deals with text content, and does
not consider the element structure. For example, if insertion in the document changes the
underlying element structure, the default undo support does not restore the old element
structure while undoing it. Also, the default implementation does not produce the desired
result while undoing/redoing text insertion at the boundary of an element (see the
discussion in Section 5.2.1). As a result, I had to re-implement all the undo related
functionalities, including the ones for inserting and removing text.
I first implemented an UndoableEdit class for each undoable operation available. The
UndoableEdit stored enough information to undo or redo the effect of the corresponding
operation. For example, the UndoableEdit for insertElement looked like this:
public class InsertElementEdit extends AbstractUndoableEdit
{
 public InsertElementEdit(XMLDocument doc, int offset, String name)
 {
 this.doc = doc;
 this.offset = offset;
 this.name = name;
 }

 public void undo() throws CannotUndoException
 {
 super.undo();
 //call the corresponding method in XMLDocument
 ((XMLDocument)doc).undoInsertElement(offset);
 }

 public void redo() throws CannotRedoException
 {
 super.redo();
 //call the corresponding method in XMLDocument
 ((XMLDocument)doc).redoInsertElement(offset,name);
 }

 public String getPresentationName()
 {
 return "InsertElement";
 }

 private XMLDocument doc;
 private String name; //the element name
 private int offset; //offset of the element
}

Next, I implemented undoxxxx and redoxxxx methods in XMLDocument for each
undoable operation. The undoxxxx and redoxxxx methods used the information in the
corresponding UndoableEdit, and undid and redid the operation respectively. These
methods were called from the undo and redo methods of the corresponding
UndoableEdit (see the code for InsertElementEdit above).

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 44 of 63 April 28, 2004

public void undoInsertElement(int offset)
{
 //code to undo InsertElement
}

public void redoInsertElement(int pos, String name)
{
 //code to redo InsertElement
}

Then, I generated UndoableEditEvents at the end of each undoable operation.
public void insertElement(String name, int pos)
{
 //insert element at the position

 //generate event
 InsertElementEdit edit = new InsertElementEdit(this,pos,name);
 XMLUndoableEditEvent chng = new XMLUndoableEditEvent(this, edit);
 fireUndoableEditUpdate(chng);
}

Finally, I implemented Actions corresponding to undo and redo, and attached them to
their corresponding menu items.
//Undo Action
public class UndoAction extends AbstractAction
{
 public UndoAction(XMLUndoManager manager)
 {
 this.manager = manager;
 }
 public void actionPerformed(ActionEvent event)
 {
 try
 {
 manager.undo();
 }catch(CannotUndoException e)
 {
 System.out.println("Cannot Undo!");
 }
 }
 private XMLUndoManager manager;
}

//Redo Action
public class RedoAction extends AbstractAction
{
 public RedoAction(XMLUndoManager manager)
 {
 this.manager = manager;
 }

 public void actionPerformed(ActionEvent event)
 {
 try
 {
 manager.redo();
 }catch(CannotRedoException e)
 {
 System.out.println("Cannot Redo!");
 }
 }
 private XMLUndoManager manager;
}

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 45 of 63 April 28, 2004

//attach the actions to their corresponding menu items
//manager is an instance of XMLUndoManager
undoItem.addActionListener(new UndoAction(manager));
redoItem.addActionListener(new RedoAction(manager));

At this point, I needed to distinguish between my UndoableEditEvents and the default
UndoableEditEvents generated by AbstractDocument. This was necessary because
I needed to discard the default events. The reason was this: if I did not discard the default
events, the UndoManager would store two events for each primitive operation – one
generated by XMLDocument that considered element structure, and one generated by
default that did not deal with elements. For example, if I remove some characters and then
insert some other characters, the UndoManager would actually store four events: two for
each action. Attempt to undo the insert would result in undoing one of the two events
corresponding to insert. Now, attempt to undo another action (remove in our example)
would actually undo the second event corresponding to insert – resulting in unexpected
results. So, I implemented my own extension of UndoableEditEvent:
XMLUndoableEditEvent. This was done just to differentiate the events generated by
XMLDocument from the default events generated by AbstractDocument,
XMLUndoableEditEvent did not provide any additional functionality.
public class XMLUndoableEditEvent extends UndoableEditEvent
{
 public XMLUndoableEditEvent(Document source, UndoableEdit edit)
 {
 super(source, edit);
 }
}
I then re-implemented the undoableEditHappened method of UndoManager to check
the input edit event, and add only the events generated by XMLDocument.
public class XMLUndoManager extends UndoManager
{
 /**
 * Called when an UndoableEditEvent is fired.
 * @param e the UndoableEditEvent
 */
 public void undoableEditHappened(UndoableEditEvent e)
 {
 UndoableEdit ed = e.getEdit();
 //add edits only if the event is XMLUndoableEditEvent
 if(e instanceof XMLUndoableEditEvent)
 {
 addEdit(ed);
 }
 }

 public void undo()
 {
 super.undo();
 }

 public void redo()
 {
 super.redo();
 }
}
This way, the default events were discarded, and undo/redo operations behaved in the
expected manner.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 46 of 63 April 28, 2004

5.4. Flat Paragraph View
In this section, I will discuss FlatParagraphView – another view that I have
implemented. FlatParagraphView was the most ambitious part of my project, because
it needed a lot of modification in the default behavior provided by Swing.
In the following subsections, I will first explain why this view is required, then I will discuss
the strengths and the limitations of a similar view in the javax.swing.text package and
finally I will explain the implementation issues of FlatParagraphView.
5.4.1. Need for a New View
As explained in Section 5.1, TreeView clearly identifies the parent-child relationship
among the elements in an XML document. This way, TreeView helps in easily
understanding the underlying document structure and is the preferred view to edit an XML
document. However, there are cases when TreeView actually makes it difficult for the
user to understand the underlying document structure. For example, consider the following
xhtml document:
<xhtml>
 <body>
 <p> This is normal text. </p>
 This text is bold.</p>
 </body>
</xhtml>

Figure 5.16 shows how the above document is displayed using TreeView.

Figure 5.16. tag using TreeView

As seen above, TreeView treats the (bold) tag as any other child of <body>, and
displays it in a tree structure. This representation is not consistent with the natural
understanding of this tag. Hence, we need another view that displays the children of an
element one after another in a flat way. Moreover, we also need the view to wrap along the
x-axis when required. This is necessary because if the view does not wrap, it will appear
as one long line, possibly getting clipped at the right side.
5.4.2. ParagraphView of the javax.swing.text Package
ParagraphView in the javax.swing.text package provides some of the
functionalities mentioned above: it displays the children of an element one after another
along the x-axis, and also provides the wrapping functionality. ParagraphView is a
concrete implementation of the abstract class: FlowView. It works as follows:

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 47 of 63 April 28, 2004

(Note: all the code fragments in this section are taken directly from the corresponding
source file of the javax.swing.text package.)
• The loadChildren method of FlowView is re-implemented in ParagraphView to

not load any children directly. Instead, a variable – layoutPool – is initialized by an
instance of the inner class – LogicalView.

 /**
 * Loads all of the children to initialize the view.
 * This is called by the <code>setParent</code> method.
 * This is reimplemented to not load any children directly
 * (as they are created in the process of formatting).
 * If the layoutPool variable is null, an instance of
 * LogicalView is created to represent the logical view
 * that is used in the process of formatting.
 * @param f the view factory
 */
 protected void loadChildren(ViewFactory f)
 {
 if (layoutPool == null)
 {
 layoutPool = new LogicalView(getElement());
 }
 layoutPool.setParent(this);
 .
 .
 }
• As explained in [API03], LogicalView “can be used to represent a logical view for a

flow...It doesn't do any rendering, layout, or model/view translation.” LogicalView is a
subclass of CompositeView. It creates a LabelView if the element is a leaf, and
calls the loadChildren method of the superclass otherwise.
loadChildren of LogicalView:
protected void loadChildren(ViewFactory f)
{
 Element elem = getElement();
 if (elem.isLeaf())
 {
 View v = new LabelView(elem);
 append(v);
 } else
 {
 super.loadChildren(f);
 }
}

• The layout(FlowView fv) method in FlowView performs the layout of the given
FlowView: it calls the createRow method of the FlowView to create a row of views.
One row represents one line in the resulting paragraph. createRow is an abstract
method in FlowView. It is implemented in ParagraphView to create an instance of its
package protected inner class Row.
protected View createRow()
{
 return new Row(getElement());
}
ParagraphView.Row is a subclass of javax.swing.text.BoxView, with its
loadChildren method re-implemented to do nothing. This is done because the row is
populated using the layoutRow method of FlowView.

• While laying out a given row, the available span and the next view to layout are
examined. First of all, all the views that can be completely represented in the given

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 48 of 63 April 28, 2004

span are added to the current row. This also includes calling createFragment to add
the fragment of a view that has already been broken along rows.

 while (pos < end && spanLeft > 0)
 {
 View v = createView(flowview, pos, spanLeft, rowIndex);
 if (v == null)
 {
 break;
 }
 }

• Next, the getBreakWeight method of the view that could not be laid out completely is
called. If the view supports breaking (i.e. the returned breakWeight is greater than or
equal to ForcedBreakWeight), the breakView method is called on the view and the
returned fragment is added to the current row.

 if (v.getBreakWeight(flowAxis, pos, spanLeft) >= ForcedBreakWeight)
 {
 int n = row.getViewCount();
 if (n > 0)
 {
 v = v.breakView(flowAxis, pos, x, spanLeft);
 .
 . //some book-keeping work
 }
 if (v != null)
 {
 row.append(v);
 pos = v.getEndOffset();
 }
 .
 .
 }

Thus, the breaking is left entirely to the view to be laid out: the view being broken is
responsible for returning an appropriate fragment of itself. If a view does not support
breaking, it returns itself in response to createFragment and breakView. The
ParagraphView does not make any attempt to break a view that does not support
breaking. In that case, the view will be clipped at the right edge.

This way, the whole view is laid out in the given span. Figure 5.17 shows how the sample
xhtml file is displayed using ParagraphView.

Figure 5.17a ParagraphView Figure 5.17b The view structure in ParagraphView

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 49 of 63 April 28, 2004

There are a couple of problems in directly using the ParagraphView:
• The first problem is apparent in the figure: though all the children of <body> are laid

out one after another, the elements and <p> themselves are shown in TreeView.
The reason is clear from the code fragment of the method loadChildren of
LogicalView: the views of the child elements of <body> are created using the
ViewFactory, and the default view in XMLViewFactory is TreeView. This problem
can be partially overcome by specifying RowView for <p> and elements. However,
this undermines the usefulness of ParagraphView, because to get the desired result,
we need to specify RowView for all the elements that can be children of the element
being represented as ParagraphView (<body> in our example)! This is a serious
limitation. Besides, we may want to represent elements like <p> using RowView only in
ParagraphView, but using TreeView otherwise. Hence, we need another way to lay
out the child views of ParagraphView.

• Another problem (not seen in Figure 5.17) is that ParagraphView delegates the
responsibility of breaking to the view being laid out. By default, only GlyphView (an
indirect superclass of XMLLabelView) in the javax.swing.text package has the
ability to return a fragment of itself. All other views, specifically the CompositeView
and its subclasses, do not support breaking. As a result, these views can get clipped
while displayed in a ParagraphView. This is not acceptable. So, we need a
mechanism to support breaking for these views as well.

I implemented a subclass of ParagraphView – FlatParagraphView – with the above
goals in mind. The next section discusses the implementation details of
FlatParagraphView.
5.4.3. My Extension of ParagraphView – FlatParagraphView
As mentioned in Section 5.4.2, the major goals of FlatParagraphView were to make
sure that

1. All the container child views of FlatParagraphView were RowViews, irrespective
of the ViewFactory.

2. All container views supported breaking.
Creating the correct views:
I started the implementation with the first goal in mind: to make sure that all the container
views were RowViews. As the child views of a ParagraphView are created by
FlowView.LogicalView, I just needed to modify a couple of methods in
LogicalView. Then, I only needed to change the FlatParagraphView so that it used
my implementation of LogicalView instead of the default one.
public class FlatParagraphView extends ParagraphView
{
 public FlatParagraphView(Element elem)
 {
 super(elem);
 }
 protected void loadChildren(ViewFactory f)
 {
 if (layoutPool == null)
 layoutPool = new FlatParagraphView.MyLogicalView(getElement());
 layoutPool.setParent(this);
 .
 .
 }

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 50 of 63 April 28, 2004

 /**
 * This class can be used to represent a logical view for
 * a flow. It keeps the children updated to reflect the state
 * of the model, gives the logical child views access to the
 * view hierarchy, and calculates a preferred span. It doesn't
 * do any rendering, layout, or model/view translation.
 */
 protected static class MyLogicalView extends CompositeView
 {
 .
 .
 .
 }
}

I just needed to re-implement the loadChildren and the updateChildren methods of
FlowView.LogicalView to get the desired result. However, LogicalView is a
package-protected inner class of FlowView. Hence I needed to implement a new class –
MyLogicalView – from scratch.
I implemented the method loadChildren of MyLogicalView in such a way that a
HiddenTagView got created for all the delimiter (-leaf) elements. For all other leaf
elements (mainly content nodes), XMLLabelViews got created; and for all container
views, RowViews got created.
/**
 * Loads all of the children to initialize the view.
 * This is called by the <code>setParent</code> method.
 * @param f the view factory
 */
protected void loadChildren(ViewFactory f)
{
 Element elem = getElement();
 if (elem.isLeaf())
 {
 View v = null;
 if(elem.getName().endsWith("-leaf"))
 v = new HiddenTagView(elem);
 else
 v = new XMLLabelView(elem);
 append(v);
 }
 else
 {
 int n = elem.getElementCount();
 if (n > 0)
 {
 View[] added = new View[n];
 for (int i = 0; i < n; i++)
 {
 Element child = elem.getElement(i);
 if(child.isLeaf())
 {
 if(child.getName().endsWith("-leaf"))
 added[i] = new HiddenTagView(child);
 else
 added[i] = new XMLLabelView(child);
 }
 else
 added[i] = new RowView(child);
 }
 replace(0, 0, added);
 }
 }
}

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 51 of 63 April 28, 2004

I also needed to change the implementation of updateChildren to make sure that the
correct views got created for newly inserted elements.
/** Called to update child views when the model is changed.
 * @param ec the changes in the element of this view
 * @param e the change information from the Document
 * @param f the ViewFactory
 * @return true if the child views represent children of this view’s element
 * false otherwise.
 */
protected boolean updateChildren(DocumentEvent.ElementChange ec,
 DocumentEvent e, ViewFactory f)
{
 Element[] removedElems = ec.getChildrenRemoved();
 Element[] addedElems = ec.getChildrenAdded();
 View[] added = null;
 if (addedElems != null)
 {
 added = new View[addedElems.length];
 for (int i = 0; i < addedElems.length; i++)
 {
 Element child = addedElems[i];
 if(child.isLeaf())
 {
 if(child.getName().endsWith("-leaf"))
 added[i] = new HiddenTagView(child);
 else
 added[i] = new XMLLabelView(child);
 }
 else
 added[i] = new RowView(child);
 }
 }
 int nremoved = 0;
 int index = ec.getIndex();
 if (removedElems != null)
 {
 nremoved = removedElems.length;
 }
 replace(index, nremoved, added);
 return true;
}

However, this was not enough. The reason was that MyLogicalView correctly created
views for all the direct children of the element being represented as ParagraphView; but
the ViewFactory was still used to create views for the indirect child elements. For
example, consider the following xhtml document:
<xhtml>
 <body>
 <p>This is an <u>underlined</u> paragraph.</p>
 bold
 </body>
</xhtml>
In the above example, the views for the elements <p> and correctly got created as
RowViews. However, the view for <u> still got created using the ViewFactory, because
it was created by the loadChildren method of the RowView corresponding to <p>. To
overcome this problem, I implemented another view – LogicalRowView.
LogicalRowView was very similar to RowView, except that its loadChildren and
updateChildren methods were re-implemented.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 52 of 63 April 28, 2004

public class LogicalRowView extends BoxView
{
 public LogicalRowView(Element elem)
 {
 super(elem,View.X_AXIS);
 }

 protected void loadChildren(ViewFactory f)
 {
 Element elem = getElement();
 int n = elem.getElementCount();
 if (n > 0)
 {
 View[] added = new View[n];
 for (int i = 0; i < n; i++)
 {
 Element child = elem.getElement(i);
 if(child.isLeaf())
 {
 if(child.getName().endsWith("-leaf"))
 added[i] = new HiddenTagView(child);
 else
 added[i] = new XMLLabelView(child);
 }
 else
 added[i] = new LogicalRowView(child);
 }
 replace(0, 0, added);
 }
 }

 protected boolean updateChildren(DocumentEvent.ElementChange ec,
 DocumentEvent e, ViewFactory f)
 {
 Element[] removedElems = ec.getChildrenRemoved();
 Element[] addedElems = ec.getChildrenAdded();
 View[] added = null;
 if (addedElems != null)
 {
 added = new View[addedElems.length];
 for (int i = 0; i < addedElems.length; i++)
 {
 Element child = addedElems[i];
 if(child.isLeaf())
 {
 if(child.getName().endsWith("-leaf"))
 added[i] = new HiddenTagView(child);
 else
 added[i] = new XMLLabelView(child);
 }
 else
 added[i] = new LogicalRowView(child);
 }
 }
 int nremoved = 0;
 int index = ec.getIndex();
 if (removedElems != null)
 {
 nremoved = removedElems.length;
 }
 replace(index, nremoved, added);
 return true;
 }
}

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 53 of 63 April 28, 2004

I then used LogicalRowView in place of RowView in MyLogicalView. Now, the correct
views got created in all cases.
Support for breaking:
Next, I tried to achieve the second goal – supporting breaking behavior for container views
in FlatParagraphView. The easiest way to provide this support was to implement
breaking in LogicalRowView. This was the most challenging part of my project, because
there was absolutely no documentation regarding how to implement breaking. There were
also no examples. No container view in the javax.swing.text package currently
supports breaking, so I could not get any help even by looking at the source code.
I implemented breaking in LogicalRowView by implementing two methods:
createFragment and breakView. Both these methods returned an inner class of
LogicalRowView – RowFragment. RowFragment represented a fragment of a
LogicalRowView.
public class LogicalRowView extends BoxView
{
 .
 .
 .
 //represents a fragment
 public static class RowFragment extends BoxView
 {
 public RowFragment(Element elem)
 {
 super(elem,View.X_AXIS);
 }

 //doesn't do anything, children are added by LogicalRowView
 public void loadChildren(ViewFactory f)
 {
 //System.out.println("load children called!");
 }
 .
 .
 } //end of RowFragment
} //end of LogicalRowView
The loadChildren method of RowFragment was re-implemented to do nothing. This
was required because children were added to the RowFragment by the calling method.
(See the discussion of createFragment and breakView below.)
createFragment returns a view that represents a portion of the element. Two document
offsets – p0 and p1 – are provided as the input to the method. The general idea in my
implementation of createFragment was as follows:

• I first created an instance of RowFragment. This instance initially did not have any
children.

• Next, I calculated the index of the child view represented by the offset p0. If the start
offset of this element was greater than p0 (meaning that the view was already
broken), I called createFragment on this view with appropriate parameters, and
added the returned view to the RowFragment.

• Then, I added all the views that could be completely represented between p0 and
p1 (that is, their start offset >= p0 and end offset < p1).

• Finally, I called createFragment on the child that had start offset >= p0 but end
offset >= p1 (if there was such a child), and added the returned view to the
RowFragment.

• I returned the RowFragment at the end of this method.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 54 of 63 April 28, 2004

/**
 * Creates a view that represents a portion of the element.
 * @param p0 starting offset(inclusive) >= 0
 * @param p1 end offset (non-inclusive) > p0
 * @return the view fragment
 */
public View createFragment(int p0, int p1)
{
 RowFragment v = new RowFragment(getElement());
 int startPos = p0;
 Element elem = getElement();
 int index = this.getViewIndex(p0, Position.Bias.Forward);
 View child = this.getView(index);

 //first child if it is partial
 if(child.getStartOffset() < p0)
 {
 if(child.getEndOffset() <= p1)
 {
 child = child.createFragment(p0,child.getEndOffset());
 }
 else
 {
 child = child.createFragment(p0,p1);
 }
 v.append(child);
 startPos = child.getEndOffset();
 }
 index = this.getViewIndex(startPos, Position.Bias.Forward);
 child = this.getView(index);

 //full children, if any
 while((child.getStartOffset() == startPos) && (child.getEndOffset() <= p1))
 {
 v.append(child);
 startPos = child.getEndOffset();
 if(startPos == p1)
 break;
 else
 {
 index = this.getViewIndex(startPos, Position.Bias.Forward);
 child = this.getView(index);
 }
 }

 //last child
 if(startPos < p1)
 {
 child = child.createFragment(startPos,p1);
 v.append(child);
 }

 return v;
}
breakView method breaks a view along the given axis, and returns a fragment that can
be displayed within the given span. The starting position is also provided. The general idea
in my implementation of breakView was as follows:

• I first created a new (empty) instance of RowFragment.
• I then added all those children of LogicalRowView that could fit completely within

the specified span.
• Next, If the span was > 0, I called breakView method on the child that could not fit

completely – if that child supported breaking (tested using the getBreakWeight
method), and added the returned fragment.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 55 of 63 April 28, 2004

• Finally, I returned the Rowfragment.
/**
 * Attempts to break the view along the given axis.
 * @param axis the axis to break along - x or y-axis
 * @param p0 the starting offset
 * @param pos used for tab calculation
 * @param len available span
 * @return the fragment of this view
 */
public View breakView(int axis, int p0, float pos, float len)
{
 if (axis == View.X_AXIS)
 {
 RowFragment v = new RowFragment(getElement());
 if(this.getStartOffset() == p0)
 {
 int index = 0;
 float spanLeft = len;
 while(index < this.getViewCount())
 {
 View child = getView(index);
 if(child.getPreferredSpan(axis) <= spanLeft)
 {
 v.append(child);
 int chunkSpan = 0;
 if ((axis == View.X_AXIS) && (child instanceof TabableView))
 {
 chunkSpan = (int)((TabableView)child).getTabbedSpan(pos,null);
 }
 else
 {
 chunkSpan = (int) child.getPreferredSpan(axis);
 }
 spanLeft -= chunkSpan;
 pos += chunkSpan;
 index++;
 }
 else
 {
 if(child.getBreakWeight(axis, pos, spanLeft) !=
 View.BadBreakWeight)
 {
 View broken =
 child.breakView(axis,child.getStartOffset(),pos,spanLeft);
 v.append(broken);
 }
 break;
 }
 }
 }
 else
 {
 //never called
 return this;
 }
 return v;
 } //end if
 //cannot break along y-axis, return itself
 return this;
}

I later realized that I also needed to implement getBreakWeight method for the correct
behavior. getBreakweight method determines whether or not it is a good idea to break
a given view at the given position. My approach in implementing this method was also

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 56 of 63 April 28, 2004

recursive: I determined the breakWeight of LogicalRowView by examining the
breakWeights of appropriate child views.
/**
 * Test of how attractive it is to break this view
 * @param axis he axis to break along
 * @param pos the start location the broken view would occupy – used for tab
 calculation
 * @param len available span
 * @return one of: BadBreakWeight,GoodBreakWeight,ExcellentBreakWeight or
 ForcedBreakWeight
 */
public int getBreakWeight(int axis, float pos, float len)
{
 if (axis == View.X_AXIS)
 {
 if(this.getPreferredSpan(axis) <= len)
 return View.ExcellentBreakWeight;
 else if(this.getViewCount() > 0)
 {
 View child = getView(0);
 if(child.getPreferredSpan(axis) > len)
 return child.getBreakWeight(axis,pos,len);
 }
 return View.ExcellentBreakWeight;
 }
 return super.getBreakWeight(axis, pos, len);
}

I also needed to implement breakView, getBreakWeight and createFragment
methods in RowFragment to get the correct behavior when a RowFragment itself needed
to break (due to resizing of the window for example).
The above implementation worked well in some cases, but did not work in some other
cases. Specifically, the HiddentagViews corresponding to some delimiter tags were not
displayed in some cases (refer to Figure 5.18).

Figure 5.18. HiddenTagView in FlatParagraphView

This problem was extremely difficult to solve due to poor documentation. I spent months
debugging to track down this problem Finally, I noticed that the containers of the missing

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 57 of 63 April 28, 2004

HiddenTagViews were becoming invalid, and as a result, those views were not painted.
For some reason, the parents of some LogicalRowViews were not getting updated,
resulting in invalid components. I updated the setParent methods of LogicalRowView
and RowFragment as follows:
/**
 * Sets the parent of the view.
 * @param parent the new parent of the view
 */
public void setParent(View parent)
{
 super.setParent(parent);
 int numChild = this.getViewCount();
 if(parent != null)
 {
 //update parent of all the child views
 for(int i = 0; i < numChild; i++)
 {
 View child = getView(i);
 child.setParent(this);
 }
 }
}
Then, the HiddenTagViews were displayed properly.

Figure 5.19. Correct behavior of FlatParagraphView

FlatParagraphView is also extensible: currently, it flattens all its child views; but it can
be easily extended to selectively flatten views. For example if <body> is being
represented by FlatParagraphView, currently all the child elements of <body> are
represented by LogicalRowView. However, the loadChildren and the
updateChildren methods can be easily modified in a way that only some elements (say,
the elements mentioned in a configuration file) get represented by LogicalRowView, and
others get represented by the views returned by the ViewFactory. This way,
FlatParagraphView can be used to represent an xhtml document in such a way that
the formatting tags such as , <u> and <i> are flattened and the other elements are
represented in their natural way.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 58 of 63 April 28, 2004

5.5. Save
Any editor – text or XML – is of little use if the user cannot save the changes that he
makes to the document. Therefore, I have implemented save functionality in my XML
editor.
In terms of the user interface, I present the user with a JFileChooser dialog to select or
supply the file in which the document should be saved (Figure 5.20).

Figure 5.20. Save Dialog
The input file is then provided to the method saveDocument(see below) as the argument.
As a result, the XML document is saved in the selected file.
Unfortunately, there is no direct way to save an XML file using the org.w3c.dom
package. Hence, in my implementation, I followed the idea outlined in [H02]. Basically, I
created an instance of the org.w3c.dom.Document class, and created the element
hierarchy in it. I then used an appropriate Transformer class to save the
org.w3c.dom.Document to a file.
/** Saves the XMLDocument in a file.
 * @param file the file to save the XML document in.
 */
public void saveDocument(File file)
{
 try
 {
 //first create an empty document
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();
 org.w3c.dom.Document doc = builder.newDocument();

 //next, create the element hierarchy
 Element defaultRoot = this.getDefaultRootElement().getElement(0);
 Element rootElem = defaultRoot.getElement(0);
 org.w3c.dom.Element root = doc.createElement(rootElem.getName());

 //get the attributes of the root element
 AttributeSet set = rootElem.getElement(0).getAttributes();
 Boolean bool = (Boolean)set.getAttribute("hasAttributes");
 if((bool != null) && (bool.booleanValue() == true))
 {
 Enumeration enum = set.getAttributeNames();
 while(enum.hasMoreElements())
 {
 String key = enum.nextElement().toString();

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 59 of 63 April 28, 2004

 if(key.startsWith("myatt"))
 {
 /** all the attributes of the XML element are stored as
 * “myatt”+attributename in the start tag. The prefix
 * “myatt” is used to distinguish this attributes from
 * other book-keeping attributes of the start tag.
 */
 String value = (String)set.getAttribute(key);
 root.setAttribute(key.substring(5),value);
 }
 }
 }

 /** Then generate the root element, effectively generating the full
 * hierarchy.
 */
 generateCompleteElement(doc,root,rootElem);
 doc.appendChild(root);

 //finally, save the org.w3c.dom.Document
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.transform(new DOMSource(doc),new StreamResult(file));

 }catch(Exception e)
 {
 System.out.println("Exception in saveDocument");
 e.printStackTrace();
 }
}

/**
 * Recursively generates the complete hierarchy with the given element as its
 * root.
 * @param doc the org.w3c.dom.Document to which the element tree belongs.
 * @param domElement the root org.w3c.dom.Element of the tree to be generated
 * @param elem the javax.swing.text.Element corresponding to the domElement.
 * The tree will be generated as with this element
 * as a reference.
 */
private void generateCompleteElement(org.w3c.dom.Document doc,
org.w3c.dom.Element domElem, Element elem)
{
 int size = elem.getElementCount()-1;
 for(int i = 1; i < size; i++)
 {
 //leave out the first and the last element(delimiter tags)
 Element child = elem.getElement(i);
 try
 {
 if(child.isLeaf() && child.getName().equals("content"))
 {
 //generate org.w3c.dom.Text element for content nodes.
 int start = child.getStartOffset();
 int end = child.getEndOffset();
 String text = this.getText(start, end-start);
 Text textElem = doc.createTextNode(text);
 domElem.appendChild(textElem);
 }
 else
 {
 org.w3c.dom.Element childElem = doc.createElement(child.getName());

 //get attributes
 AttributeSet set = child.getElement(0).getAttributes();
 Boolean bool = (Boolean)set.getAttribute("hasAttributes");

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 60 of 63 April 28, 2004

 if(bool.booleanValue() == true)
 {
 Enumeration enum = set.getAttributeNames();
 while(enum.hasMoreElements())
 {
 String key = enum.nextElement().toString();
 if(key.startsWith("myatt"))
 {
 String value = (String)set.getAttribute(key);
 childElem.setAttribute(key.substring(5),value);
 }
 }
 }
 generateCompleteElement(doc,childElem,child);
 domElem.appendChild(childElem);
 }
 }catch(BadLocationException ble)
 {
 System.out.println("Bad Location in generateCompleteElement");
 ble.printStackTrace();
 }
 }
}
This way, the XML document is saved in the file provided by the user.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 61 of 63 April 28, 2004

6. Conclusion
Java Swing provides an extensive framework for designing custom text editors. In this
project, I developed a user-friendly and platform-independent XML editor using Swing. The
goal of the project was to test the usability, extensibility and robustness of the underlying
framework.
During the course of the project, I made the following major achievements:
• I implemented various editing operations, including insert/delete, cut-copy-paste,

search/replace, split/merge and enclose/open, using the basic functionality provided by
Swing. As explained in Section 5.2, Swing provides text-only support for some of these
operations, with no support for elements. Hence, I had to re-implement all the
operations to deal with the element structure of an XML document. The main challenge
in this implementation was to deal with the inconsistencies of the insertString
method in Swing. insertString did not behave in the expected way while inserting
at the boundary of an element, because it made an incorrect assumption about the
insertion position. The unexpected behavior, combined with poor documentation, made
it a very difficult problem to solve.

• I also provided undo/redo functionality with all the above edit operations using the Undo
framework of Swing. As Section 5.3 pointed out, Swing does not provide a ready-to-use
undo support. I had to implement corresponding UndoableEdit class for each
undoable operation, and store enough information to undo and redo the operation. I
also had to write code for undoing and redoing a specific operation. Swing just stored
the UndoableEdits in a transparent way, and called undo and redo methods
appropriately; but the actual implementation was my responsibility. I also provided
undo/redo with a couple of functionalities implemented by Nupura Neurgaonkar,
including the operation of changing between different views for attributes. This was
different from other operations in that this operation just changed the visual appearance
of the document, but did not make any changes to the document itself. This operation
proved that undo/redo can be provided with non-mutating actions as well.

• I extended the view structure of the framework by implementing two custom views:
TreeView and FlatParagraphView. The purpose of these views was to display an
XML document in a more intuitive way so that the underlying structure is easy to
visualize. TreeView displayed the child elements of an element at an offset from the
parent element to clearly identify the parent-child relationship (Section 5.1).
FlatParagraphView flattened the hierarchy of an element for a better visualization of
formatting elements like and <i> (Section 5.4). FlatParagraphView was the
most ambitious part of the project: it required substantial modification of an existing
view and, as always, there was little documentation. Specifically, Swing did not provide
any information about how to support breaking in a view (meaning that the view can
wrap along the x-axis when required), so I had to figure out myself how to do it. The
problem that gave me most grief was that parent-child relationship did not get updated
properly when a view broke along the x-axis, resulting in an invalid hierarchy. I had to
then specifically update child views of a given view to correct this behavior.

• Finally, I also implemented the ability to save the changes made to an XML file to
complete the set of features that a reasonable editor should provide (Section 5.5).

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 62 of 63 April 28, 2004

I observed the following points about the Swing framework during my implementation:
• The framework provides a fairly rich set of primitive edit operations that can be

combined to provide new custom operations. Though the primitive operations are
reliable and robust in most cases, some behave in a non-intuitive way in boundary
cases.

• Similarly, the framework provides a good set of basic views, which can be extended to
provide custom behavior. In most cases, just changing a small set of methods achieves
a custom behavior. However, providing a custom behavior can be challenging in a
complex view like ParagraphView.

• Undo/Redo framework is quite robust and flexible: it can be extended to provide
undo/redo with mutating as well as non-mutating operations.

• Swing framework lacks direct support for some fairly basic functionalities. For example,
it does not directly support a breaking behavior in views. The designer has to write
extensive code to support breaking. Similarly, the DefaultCaret in the
javax.swing.text package does not handle BadLocationException gracefully.

Probably the biggest drawback of the Swing framework is that it is very poorly
documented. Poor documentation, together with the framework’s immense complexity,
makes the framework very difficult to use.
However, if understood properly, the Swing framework can be extended to provide a fairly
complete editor for any type of document.

XML Editor Commands With Multiple Undo/Redo Swati Pathak

CS298, Spring 2004 Page 63 of 63 April 28, 2004

References
[API03] Overview (Java 2 Platform SE v1.4.2)(2003).
http://java.sun.com/j2se/1.4.2/docs/api/overview-summary.html.
 [GHJV02] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (2002). Design Patterns.
Addison Wesley.
[H02] Horstmann, C. (2002). Big Java. John Wiley & Sons. Inc.
[LEWEC02] Loy, M., Eckstein, R., Wood, D., Elliott, J. & Cole, B. (2002). Java Swing.
O’Reilly.
[P04] Prinzing, T. (2004). Using the Swing Text Package.
http://java.sun.com/products/jfc/tsc/articles/text/overview/index.html.
[S02] Sun, C. (2002). Undo as Concurrent Inverse in Group Editors. ACM Transactions on
Computer-Human Interaction, v 9, n 4, p 309-361.
[T00] Topley, K. (2000). Core Swing Advanced Programming. Prentice Hall.

[V03] Violet, S. (2003). Understanding the ElementBuffer.
http://java.sun.com/products/jfc/tsc/articles/text/element_buffer.

[W98] Walsh, N. (1998). A Technical Introduction to XML.
http://www.xml.com/pub/a/98/10/guide0.html.

[WBT01] Wallace, G., Biddle, R. & Tempero, E. (2001). Smarter Cut-and-Paste for
Programming Text Editors. Proceedings of the 2nd Australasian Conference on User
interface, p 56-63.
[WCHZ04] Walrath, K., Campione, M., Huml, A., & Zakhour, S.(2004). The JFC Swing
Tutorial: A Guide to Constructing GUIs, Second Edition, Addison – Wesley.

[WF02] Washizaki, H. & Fukazawa, Y. (2002). Dynamic Hierarchical Undo Facility in a
Fine-grained Component Environment. Proceedings of the Fortieth International
Conference on Tools Pacific: Objects for internet, mobile and embedded applications, v
10, SESSION: Design, p 191-199.

[ZW00] Zhang, M. & Wang, K. (2000). Implementing Undo/Redo in PDF studio using
object-oriented design pattern. Proceedings of the Conference on Technology of Object-
Oriented Languages and Systems, v TOOLS, n TOOL 36, p 58-64.

