16 – bit RISC microprocessor Power estimation and optimization using 0.13µ SOI ULV library

Sahil M. BANSAL

Pr.Amara AMARA

Bachelor of Engineering,

Pr.Thomas EA

Electronics & Electrical Communication,

ISEP, Paris,

Punjab Engineering College,

FRANCE.

Chandigarh, INDIA.

Preface

The project on the power optimization of a 16 bit RISC processor using the 0.13µ SOI Ultra Low Voltage library was a part of my summer internship project at the Institut Superiur d’Electronique de Pairs. The summer internship is required according my syllabus at Punjab Engineering College, Chandigarh, INDIA.

The project was based on development of the RTL code for a 16 bit RISC processor which would be used along with the wavelet packet algorithm for image capture in the project IRISEP for a security system based on Iris identification.

The project was divided into two modules. The first was to develop a VHDL code for the 16-bit RISC processor. The processor was tested using a program for generating the first 10 numbers of the Fibonacci series. The next stage was to calculate the power consumption during the execution of the Fibonacci series program & to optimize it using clock gating & operand isolation.

This report presents the details of the project along with how to execute the code to calculate the power consumption & also links to the synthesized gate level netlist which includes clock gating and operand isolation.

Sahil M Bansal

Bachelor of Engineering,

Final Year, E& EC,

Punjab Engineering College,

Chandigarh,

INDIA

Acknowledgements

I would like to take this opportunity to thank all the support that I have received from ISEP during my project. Without the guidance of Pr.Amara AMARA it would not have been possible to adjust in the new environment of Paris. He had been motivational and always ready to help whenever I needed it.

I would also like to thank Thomas EA for his support with the lab work. Providing the necessary resources and the help & guidance, he was always present whenever I was faced with a problem in using the various tools. He helped a lot in providing a congenial and work-friendly environment along with helping me in understanding the basics of VHDL as well as helped in using Power Compiler as a tool for power optimization.

Alexander VALENTIAN was also instrumental in helping me provide the present shape to my project. He helped a lot by providing me a tutorial for the entire synthesis flow including the details of Design Compiler & PrimePower.

Without the help & support of the people at ISEP it would not have been possible for me to complete the project.

Sahil M Bansal

Bachelor of Engineering,

Final Year, E& EC,

Punjab Engineering College,

Chandigarh,

INDIA

Contents

1. Introduction

2. Architecture of 16 bit RISC microprocessor

3. Synthesis & Power optimization

4. Results

5. Difficulties and Future Work

6. References

7. Appendix A – VHDL code

8. Appendix B – testbench

9. Appendix C – Synthesis script file

10. Appendix D – Power estimation script file

11. Appendix E – Links to files

12. Appendix F – Submission to design conference

Introduction

I had the good fortune to get to know about the Institut Superiur d’Electronique de Paris when Pr. Amara AMARA had visited Punjab Engineering College, Chandigarh, INDIA, last year. I came to know about the research projects underway at ISEP and was really fortunate to have got an opportunity to work on Power optimization of a 16 bit RISC processor.

Architecture of the 16 bit RISC microprocessor

The RTL code for a 16-bit RISC microprocessor was written using the VHSIC Hardware Description Language (VHDL). The basic architecture for the microprocessor includes a Control Unit and the Datapath. The instructions for the program to be executed are stored in the memory. The Datapath includes the Program Counter (which points to the next memory location to fetch the instruction), the instruction register (to store the instruction), the ALU (to perform the mathematical & logical operations) and multiplexers to choose the inputs to the various components [1]. The details of the 16 bit RISC microprocessor are as follows : -

1. 16 bit memory locations addressable using 8 bit memory address. Total of 256*16 bit memory space.

2. 16 registers of 16 bit each used to store the intermediate data and final results during program execution.

3. A 4 bit opcode that can be used to execute a maximum of 16 instructions. At present 12 instructions can be executed.

4. A 16 bit ALU to perform mathematical & logical calculations.

5. A control unit to generate control signals based on the present state in the FSM.

The bit-wise details of the instructions are provided below [2]

	S.No.
	Instruction
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	1
	ADD
	0
	0
	0
	0
	Source Reg 1
	Source Reg 2
	Destination Reg

	2
	SUB
	0
	0
	0
	1
	Source Reg 1
	Source Reg 2
	Destination Reg

	3
	AND
	0
	0
	1
	0
	Source Reg 1
	Source Reg 2
	Destination Reg

	4
	OR
	0
	0
	1
	1
	Source Reg 1
	Source Reg 2
	Destination Reg

	5
	XOR
	0
	1
	0
	0
	Source Reg 1
	Source Reg 2
	Destination Reg

	6
	Store Word
	0
	1
	0
	1
	Reg with Mem Address
	Reg With Data to store
	4 bit Mem. Offset

	7
	Load Word
	0
	1
	1
	0
	Reg with Mem Address
	Reg to load data to.
	4 bit Mem. Offset

	8
	Jump address
	0
	1
	1
	1
	Jump Address
	X
	X
	X
	X

	9
	Move Imm.
	1
	0
	0
	0
	8 bit data extended to 16 bit
	Destination Reg

	10
	Jump on Zero
	1
	0
	0
	1
	Jump Address
	Reg to check

	11
	Sleep
	1
	0
	1
	0
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X

	12
	Halt
	1
	1
	1
	1
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

The top level design of the microprocessor consists of the following ports:

1. Clock – used as input to provide clock pulse

2. Reset – used to reset the microprocessor.

3. ALUOut_processor – used to monitor the output of the ALU.

4. Wake – A user defined logic ‘1’ at this port is used to bring the processor out from the sleep state.

A 24ns time period clock cycle was used in the processor. The testbench [Appendix B] is used to generate the clock at the clock port of the processor. Initially the reset port is given a logic ‘1’ signal to put the processor into a reset state & to clear the contents of the program counter and the registers. The reset state remains high for the first 48 ns that is two clock periods to allow sufficient time to clear the registers and to prepare the processor for the next clock cycle. After the reset signal goes low at 48ns the FSM goes to a state S0. The next positive clock pulse during state S0 is used to pass the beginning memory address to the input of the Program Counter (PC). The program counter input is now “0000000000000000” (ZERO). The execution of the instructions after this step is explained below.

1. The FSM goes to state S1 and the control signals are used to read the memory address from the input of the PC. The PC output is connected to the address port of the memory which now has the starting memory location of ZERO. The next two clock cycles are used to read the instruction stored at ZERO and to store it in the Instruction Register (IR). The PC control goes low to preserve the present address. During these clock cycles the ALU performs an addition on the present address stored in the PC and increments it by ‘1’ to point to the next memory location and passes it to the PC input.

2. The next step is to decode the opcode. The control unit reads the instruction from the IR and the FSM goes to the next state according to the 4 bit opcode (instruction bits 15 to 12).

3. For the mathematical or logical instructions i.e. ADD, SUB, AND, OR, XOR the ALU reads the data from the registers specified in the instruction bits 11 to 8 and 7 to 4 and performs the calculation on the data as decoded in the opcode fetch cycle. The control unit generates the appropriate control signals on the ALUControl bus. In the next clock cycle the data calculated is stored in the appropriate register as specified in the instruction bits 3 to 0.

4. For memory load instructions after the instruction decode step the ALU calculates the memory address from where the data load is to be performed. The memory address is stored in the register which is specified in the instruction bits 11 to 8. An optional 4 bit offset can be added to the memory address which increases the memory address capability. The 4 bit offset is sign extended to 16 bits by appending 12 logical ‘0’ signals along with it and adding the 16 bit offset address thus formed with the address read from the register in the ALU. The appropriate memory location is then read in the next clock cycle. The data is read from the memory location whose address is calculated by the ALU. The data thus read is written to the register in the next clock cycle. The register is specified in the instruction bits 7 to 4 and offset in bits 3 to 0.

5. For memory store instructions after the address has been calculated as mentioned above, the data to be stored is read from the register mentioned in the instruction bits 7 to 4 and stored in the memory location addressed by the results of the ALU.

6. For the jump address instruction the contents of the program counter are changed to the address given by the instruction bits 11 to 4 instead of the incremented memory address provided by the ALU. The instruction fetch begins from the address specified again.

7. For the Move immediate data instruction the data provided in the instruction bits is 11 to 4 is concatenated with eight logically ‘0’ signals which are added at the bit positions 15 to 8 and the instruction bits 11 to 4 are added to position 7 to 0 to form 16 bit data which is stored in the register specified in the instruction bits 3 to 0.

8. For the jump on zero instruction the register whose contents are to be checked for zero is specified in instruction bits 3 to 0. If the contents of that register have gone to ZERO in the previous clock cycle then the contents of the PC are changed to the memory address given by instruction bits 11 to 4.

9. The Sleep instruction is used to put the processor temporarily in a state of sleep. No clock signal will come to any of the components and the contents of the register will not change. No operation is performed by the processor. An externally provided wake signal is used to come out of the sleep state and begin program execution again. At present all the instructions and input/output ports related to sleep instruction or wake signal are commented out from both the VHDL code for the processor and the testbench. They can be included in the code by referring to [3].

10. The halt instruction is used to stop program instruction. The FSM will stay in its preset state so long as the clock signal arrives.

The architecture for the processor is shown below

[image: image1.png]Clock Reset Wake

PCConi PCsowree
TosD 1
Control oy jasy
MemWrite Unit ALUSreB Control
p— Zen 0
)
v
H
MemioReg \Code 3,
RWris 10 L
- gz MV o) s
Regbst
ms
0
1 L [reatkegl g
e[u it [T AL eeiregs Do ALUOW
X | Address —
g ® kil Reg File
wamber Reat
Memory Bol [¥ —L
‘Write Data
MemOut ol

e } &

The various components are explained below starting from left to right : -

1. PC – the program counter is used to store the address of the memory location from where the instruction is to be read.

2. 2 to 1 Mux – used to select between the next memory location to be read or the address computed by the ALU during load word or store word instructions.

3. Memory – The memory unit stores data and instructions for the execution of a program. The starting memory address from where program execution begins is ZERO. The memory is addressed using 8 bit address stored in the program counter or calculated by the ALU.

4. IR – The instruction register is used to store the instruction that is being executed at the moment.

5. 3 to 1 Mux – used to select between the data calculated by ALU that is to be written in register file or the data to be loaded from memory or to move immediate data from a instruction in a register.

6. 2 to 1 Mux – used to select the appropriate write register. The write register is given by instruction bits 3 to 0 for arithmetic and logical instructions while it selects the instruction bits 7 to 4 when a load from memory is to be performed.

7. Register File – The register file (RF) is a group of sixteen 16 bit registers used to store intermediate data and final results.

8. Control Unit – the Control unit generates appropriate control signals according to the opcode (instruction bits 15 to 12).

9. 2 to 1 Mux – used to select between data fed to ALU port A, either data from register 1 or the contents of PC so that they can be incremented.

10. 3 to 1 Mux – used to select between data fed to ALU port B, either data read from register 2 or the bits “0000000000000001” to increment the PC contents or the instruction bits 3 to 0 which is the offset for memory related instructions.

11. ALU – used to perform arithmetic or logical operations on the data on ports A & B.

12. Obuff – the output buffer used to store the incremented PC address which is calculated in the first clock cycle.

13. 2 to 1 Mux – used to select between the incremented PC address or the jump address which is fed to the program counter.

The complete VHDL code for the processor is given in the Appendix A. The top level entity is called microprocessor which has two components Datapath & Control Unit. The third component has been separated out as comment and included the code for implementing the sleep instruction. The Control Unit is a FSM which has the states defined for execution of the instructions & provides the control signals for the processor. The Datapath comprises of the PC, Memory, IR, Register File, ALU, Output Buffer and some multiplexers. The instructions and input output ports related to sleep instructions are separated as comments. They can be included in the program by separating the comment identifier “--”. Also [3] should be referred to while defining the hardware for stopping the clock signal from reaching the processor when the sleep instruction is issued. A latch and a AND gate can be used for this purpose [3].

Synthesis & Power Optimization

After completing the VHDL code for the microprocessor, the code was checked for validation and debugging using Mentor Graphics’ ModelSim. The results of the execution of the program for the Fibonacci series are stored in the memory. The next step was to generate the gate level netlist from the VHDL code. Synopsys’ Design Compiler was used for this purpose. The following steps illustrate the methodology to generate the synthesized gate-level netlist : -

1. Start the user account in the Unix environment using the following commands

Username: sbansal

Password: isep2005

2. The next step is to load the environment files for starting Design Compiler DC. The files are loaded using the command

source /opt/soft3/synopsys/synopsys.env

3. The commands are written in the DC shell which is started after loading the environment files using the command

dc_shell

4. The first step in the synthesis process is to read the design. The following commands are presented for the synthesis of the gate level netlist using the nominal SOI 0.5V library. The library file is kept in the folder /home/stages/sbansal/libraries. The appropriate changes were made to the synopsys setup files to point to provide the target library and the link library parths. The VHDL source file is named 16RISCmicroprocessor.vhd & is kept in the folder /home/stages/sbansal/my_proce/SOI_0.5V_nom. The command to read the design is

dc_shell>read -f vhdl /home/stages/sbansal/my_proce/SOI_0.5V_nom/16RISCmicroprocessor.vhd

5. The next step is to write the synopsys design file using

dc_shell> write –f db /home/stages/my_proce/SOI_0.5V_nom/microprocessor.db

(Henceforth the path /home/stages/sbansal shall be represented by ./)

6. Next step is to analyze, elaborate and link the design

dc_shell> analyze ./my_proce/SOI_0.5V_nom/16RISCmicroprocessor.vhd

dc_shell> elaborate microprocessor

7. The next step is to run the DC script file for the design microprocessor. The design compiler script file used for the synthesis is given in Appendix C. The appropriate delay constraints are specified & the timing results are checked for slack violation. If there is a slack violation then the delay constraints are adjusted accordingly. To execute the script file we first exit from the dc_shell. The command to execute the script file is

dc_shell –tcl_mode –f ./my_proce/SOI_0.5V_nom/dc.tcl

The maximum delay at the outputs for the SOI 0.5V library was set as 21ns. The synthesized gate level netlist is stored in the folder ./my_proce/SOI_0.5V_nom/ and is named 16RISCmicroprocessor_SOI_21_out.v

The timing and area constraint files are also stored in the same folder and are named timing_SOI_21.res and area_SOI_21.res
Power Estimation

After generating the synthesized gate level netlist the next step is to generate the activity file which shall be used in the estimation of the power consumed by the microprocessor for the execution of the Fibonacci series program.

The command for generating the activity file is included in the testbench (refer appendix B) is

$dumpfile("/home/stages/sbansal/my_proce/SOI_0.5V_nom/activity_file_SOI_HS.dump")

The activity file named activity_file_SOI_HS.dump is stored in the folder ./my_proce/SOI_0.5V_nom/

The activity file is generated by simulating the testbench using the VHDL code for the microprocessor in ModelSim.

The power is estimated using Prime Power. The environment file for primepower is loaded using the following command:

source ./my_proce/primepower.env

The script file for estimation of the power consumption is provided in Appendix D and the command to run the script file is:

pp_shell –f ./my_proce/SOI_0.5V_nom/vcd.tcl

The output of the execution of the script file is the list of the power consumption of the various components of the processor and is stored in the folder ./results/SOI_0.5V/

The capacitance output file is named all.wc and the power consumption file is named vcd.rpt

The above process is carried out with the ULV and nominal voltage SOI library (libSOI_HS.db and libSOI_LL.db) and the ULV and nominal voltage library files for the Bulk technology (libBULK_HS.db and libBULK_LL.db)

The links to the output files for all the above cases is given in the appendix E.

Power Optimization

The power optimization was done using the Synopsys tool Power Compiler. Two main techniques were adopted for minimizing the power consumption, namely, Clock Gating and Operand Isolation [5]. Clock gating refers to including a latch or flip-flop in the clock path so that the clock does not reach the registers when they are not required to be read or written. When the register read enable or write enable are not set to logic ‘1’ then the clock gating circuit disconnects the clock signal from reaching the register bank thus saving power. This is achieved using AND gates and latch based design to avoid glitches in the flip-flop based design.

Clock gating was performed on the Instruction Register, the sixteen 16-bit register bank, the obuff register (which stores the incremented PC address until it is required to be written to PC) and the register containing the states of the FSM (this was added internally by Design Compiler during the synthesis). The operand isolation was performed on the operands that are used to calculate the jump address of the memory when the “jump address” or “jump on zero” instructions are invoked. These operands change during the other instructions as one of them is the instruction bits 11 to 4 but the output (the target jump address) is selected by a multiplexer to write to the PC only when the jump instructions are invoked. So the operand isolation makes sure that when the Jump instructions aren’t invoked then the instruction bits maintain their previous values. This is achieved using buffers and a control signal.

In order to specify the operands that have to be isolated, we have to include the following comment in the VHDL source file:

-- pragma isolate_operands or

-- synopsys isolate_operands

The first step is to load the Power Compiler environment file.

source ./my_proce/powercompiler.env

After loading power compiler and performing clock gating and operand isolation on the synthesized netlist, the changed gate level netlist is used again to calculate the power consumption using primepower. The following commands were used to insert clock gating and operand isolation in dc_shell : -

dc_shell> do_operand_isolation = “true”

dc_shell> read –f vhdl ./my_proce/SOI_0.5V_nom/16RISCmicroprocessor.vhd

dc_shell> set_clock_gating_style –sequential_cell latch

dc_shell> set_clock_gating_signals –design memory –exclude {Memout memory_sig}

dc_shell>set_clock_gating_signals –design control_unit –exclude {ALUControl_ctrl ALUSrcA_ctrl ALUSrcB_ctrl}

(This was done because the synthesized netlist was treating the control signals and the memory units as registers)

dc_shell> analyze –f vhdl ./my_proce/SOI_0.5V_nom/16RISCmicroprocessor.vhd

dc_shell> elaborate microprocessor

dc_shell> link

dc_shell> uniquify

dc_shell> create_clock –period 24 clock –name clock

dc_shell> set_operand_isolation_style

dc_shell> set_operand_isolation_slack 1

dc_shell> insert_clock_gating –hier –gtech

dc_shell> propagate_constraints –gate_clock

dc_shell> set_dont_use libSOI_HS/F*_DT

dc_shell> set_dont_use libSOI_HS/B*_DT

dc_shell> set_dont_use libSOI_HS/FD*QLLT0 (this was done only for the SOI 0.5V case as the synthesized gate level netlist included some DTMOS based gates that were not in the synopsys library

dc_shell> compile –map_effort high –area_effort high

dc_shell> change_names –rules verilog

dc_shell> write –f verilog –hier –o ./my_proce/SOI_0.5V_nom/16RISCmicroprocessor_SOI_HS_clock_gating_op_iso.v

The output is the gate level netlist after clock gating and operand isolation have been inserted. In order to estimate the power consumption after optimization we have to generate the activity file again using the above gate level verilog file and the testbench. After running the simulation in Modelsim the following activity file is generated activity_file_SOI_HS_clock_gating_op_iso. The appropriate changes are made in the testbench to generate this file using the $dumpvars command.

The next step is to make the changes in the vcd.tcl file to include the new gate level netlist and the new activity file. The power consumption is estimated using primepower as explained earlier.

The power was optimized for all the cases, namely, Bulk 1.2V and 0.5V, SOI 0.5V and 1.2V.

However for the Bulk technology it was observed that the slack in timing was too large and unacceptable thus making the operand isolation meaningless. The power consumption increased for the Bulk technology after the operand isolation due to the large slack in timing. So the clock gating results are the only level of optimization that could be performed on the Bulk technology.

Results

The detailed results are present in the following directory

/home/stages/sbansal/results

A brief overview of the results is provided here. Table 1 provides the power consumption values without any optimization for the SOI & Bulk ULV case for the execution of the Fibonacci series program. Table 2 provides the same values at nominal voltage of 1.2V Table 3 provides the values after clock gating and operand isolation were applied to the SOI and Bulk ULV based netlists.

Table 1. Power Consumption for Ultra Low Voltage SOI & Bulk Si based 16 bit RISC processor

	Technology used
	Power consumption in Watt

	130nm 0.5V
	Datapath + Memory
	Memory
	Reg File
	ALU
	
	Total

	SOI
	 5.307e-04
	4.702e-04
	5.088e-05
	3.025e-06
	
	5.374e-04

	Bulk
	6.337e-04
	5.777e-04
	4.552e-05
	3.721e-06
	
	6.402e-04

Table 2. Power Consumption for SOI & Bulk Si based 16 bit RISC processor at nominal voltage
	Technology used
	Power consumption in Watt

	130nm 1.2V
	Datapath + Memory
	Memory
	Reg File
	ALU
	
	Total

	SOI
	2.972e-03
	2.728e-03
	2.021e-04
	1.065e-05
	
	3.007e-03

	Bulk
	 3.381e-03
	3.102e-03
	2.314e-04
	1.371e-05
	
	3.418e-03

Table 3. Power optimization for ULV SOI & Bulk Si based 16 bit RISC processor using clock gating and operand isolation

	Technology used
	Power consumption in Watt

	130nm 0.5V with clock gating and operand isolation
	Datapath + Memory
	Memory
	Reg File
	ALU
	
	Total

	SOI
	4.919e-04
	 4.571e-04
	3.082e-05
	 7.564e-07
	
	4.957e-04

	Bulk
	6.130e-04
	5.715e-04
	3.695e-05
	6.830e-07
	
	6.164e-04

The figure 1 on the next page shows the comparison of SOI and Bulk technologies at nominal voltage and also at ULV with clock gating and operand isolation applied. The SOI technology based processor consumes 16% less power than Bulk technology without optimization and it consumes 20% less power with optimization with negligible effect on area constraints.

[image: image2.wmf]Power Optimization

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

1.2V

0.5V with clk gating &

op. isolation

Technology

Power in Watt

SOI

Bulk

 Figure 1: SOI vs. Bulk for ULV applications

Difficulties and Future Work

Some problems were encountered during the project related to the synthesis process and power optimization as well as while writing the source code in VHDL. Some of them are stated below : -

1. The sleep instruction could not be synthesized. Although the code was included initially but while performing synthesis it was noticed that a timing arc was being formed when we tried to prevent the clock from reaching the processor after the sleep instruction was executed. Due to shortage of time all the commands related to sleep instruction and “wake” signal had to be separated as comments.

2. The instruction set should be expanded to include instructions to move data from one register to another. Again due to less time this instruction could not be included and in order to move data from one register to another it needed to be moved to the memory first using store word instruction and then loaded again. This process consumed a lot of power and can be avoided by including the instruction to move data from one register to another.
3. While performing operand isolation using the Bulk 0.5V and 1.2V technologies it was observed that the increase in the number of gates violated the timing slack and the net result was an increase in power consumption. Hence operand isolation is not feasible with the Bulk 0.5 V or 1.2V technologies with the present design.
4. During the synthesis of the SOI 0.5 V technology based design, Design Compiler used some DTMOS based gates which were not available in the library and the command set_dont_use had to performed on those cells. The resulting gate level netlist was then formed by DC using other gates which increased the number of cells and increased power consumption.
5. Some of the control signals like ALUScrA_ctrl, ALUSrcB_ctrl and ALUControl_ctrl were interpreted as registers and thus they had to be marked for not applying clock gating. The same process had to be done for the memory.
Some of the possible options for future work are given below :

1. The instruction set should be extended to include the move instruction from one register to another and maybe some other instructions as well. At present a maximum of 16 instructions can be implemented with the four bit op-code. However that can be extended by reducing the number of registers from 16 to 8 and thus having an extra bit available for op-code increasing the possible number of instructions to 32.

2. The sleep instruction needs to be verified and changes can be made by referring to [3].
3. The power consumption can be decreased a lot if the DTMOS cells can be used in the gate level netlist.
4. At present the step involving the calculation of memory address during jump instructions has been the target of the operand isolation. Some of the other steps can be checked for usefulness of operand isolation.
References

[1] “Computer Organization and Design” by Patterson D. and Hennessy J., Second Edition, Morgan Kaufmann

[2] “Kraken - a 16 bit RISC processor” Kim D., Lin A., Stanford University, 2000

[3] “Low Power Electronics Design”, Christian Piguet, CRC Press.

[4] Synosys user guide and synopsys online documentation (SOLD)

Appendix A – VHDL code for 16 bit RISC microprocessor

Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity microprocessor is

 port (clock: in std_logic;

 reset: in std_logic;

 -- wake: in std_logic;

 ALUout_processor: out std_logic_vector(15 downto 0));

 end microprocessor;

 architecture microprocessor_arch of microprocessor is

 component datapath is

 port (clock_dp: in std_logic;

 reset_dp: in std_logic;

 PCcontrol_dp: in std_logic;

 IorD_dp: in std_logic;

 MemRead_dp: in std_logic;

 MemWrite_dp: in std_logic;

 IRWrite_dp: in std_logic;

 Mem2Reg_dp: in std_logic_vector(1 downto 0);

 RegDst_dp: in std_logic;

 obuf_dp: in std_logic;

 RegWriteControl_dp: in std_logic;

 ALUSrcA_dp: in std_logic;

 ALUSrcB_dp: in std_logic_vector(1 downto 0);

 ALUcontrol_dp: in std_logic_vector(2 downto 0);

 PCsource_dp: in std_logic;

 instruction_opcode_dp: out std_logic_vector(3 downto 0);

 zero_dp: out std_logic;

 ALUout_dp: out std_logic_vector(15 downto 0));

end component;

component control_unit is

 port (clock_ctrl: in std_logic;

 reset_ctrl: in std_logic;

 zero_ctrl: in std_logic;

-- wake_ctrl: in std_logic;

 -- sleep_ctrl: out std_logic;

 obuf_ctrl: out std_logic;

 instruction_opcode_ctrl: in std_logic_vector(3 downto 0);

 PCcontrol_ctrl: out std_logic;

 IorD_ctrl: out std_logic;

 MemRead_ctrl: out std_logic;

 MemWrite_ctrl: out std_logic;

 IRwrite_ctrl: out std_logic;

 Mem2Reg_ctrl: out std_logic_vector(1 downto 0);

 RegDst_ctrl: out std_logic;

 RegWriteControl_ctrl: out std_logic;

 ALUSrcA_ctrl: out std_logic;

 ALUSrcB_ctrl: out std_logic_vector(1 downto 0);

 ALUControl_ctrl: out std_logic_vector(2 downto 0);

 PCsource_ctrl: out std_logic);

end component;

--component sleep_mux is

 -- port (control: in std_logic;

 -- clock: in std_logic;

 -- sleep: in std_logic;

 --clockG: out std_logic); wake, sleep_sig,

 --end component; sleep_sig, sleep_clk, clock_out_sig,

signal zero_sig, obuf_sig, PCcontrol_sig, IorD_sig, MemRead_sig, MemWrite_sig, IRwrite_sig, RegDst_sig, RegWriteControl_sig, ALUSrcA_sig, PCsource_sig: std_logic;

signal Mem2Reg_sig, ALUSrcB_sig: std_logic_vector(1 downto 0);

signal ALUControl_sig: std_logic_vector(2 downto 0);

signal opcode: std_logic_vector(3 downto 0);

 begin

 datapath_mapping: datapath port map (clock, reset, PCControl_sig, IorD_sig, MemRead_sig, MemWrite_sig, IRwrite_sig, Mem2Reg_sig, RegDst_sig, obuf_sig, RegWriteControl_sig, ALUSrcA_sig, ALUSrcB_sig, ALUControl_sig, PCsource_sig, opcode, zero_sig, ALUout_processor);

 control_unit_mapping: control_unit port map (clock, reset, zero_sig, obuf_sig, opcode, PCControl_sig, IorD_sig, MemRead_sig, MemWrite_sig, IRwrite_sig, Mem2Reg_sig, RegDst_sig, RegWriteControl_sig, ALUSrcA_sig, ALUSrcB_sig, ALUControl_sig, PCsource_sig);

-- sleep_mux_mapping: sleep_mux port map(sleep_sig, clock, sleep_clk, clock_out_sig);

-- sleep_clk <= '0';

 end microprocessor_arch;

--Library ieee;

 -- use ieee.std_logic_1164.all;

 -- use ieee.std_logic_arith.all;

 -- use ieee.std_logic_unsigned.all;

 -- entity sleep_mux is

 -- port (control: in std_logic;

 -- clock: in std_logic;

 -- sleep: in std_logic;

 -- clockG: out std_logic);

-- end sleep_mux;

 --architecture sleep_arch of sleep_mux is

 -- begin

 -- process(clock, control, sleep)

 -- begin

 -- case control is

 -- when '1' => clockG <= sleep;

 -- when others => clock_out <= clock_in;

 -- end case;

 -- end process;

 -- end sleep_arch;

Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity datapath is

 port (clock_dp: in std_logic;

 reset_dp: in std_logic;

 PCcontrol_dp: in std_logic;

 IorD_dp: in std_logic;

 MemRead_dp: in std_logic;

 MemWrite_dp: in std_logic;

 IRWrite_dp: in std_logic;

 Mem2Reg_dp: in std_logic_vector(1 downto 0);

 RegDst_dp: in std_logic;

 obuf_dp: in std_logic;

 RegWriteControl_dp: in std_logic;

 ALUSrcA_dp: in std_logic;

 ALUSrcB_dp: in std_logic_vector(1 downto 0);

 ALUcontrol_dp: in std_logic_vector(2 downto 0);

 PCsource_dp: in std_logic;

 instruction_opcode_dp: out std_logic_vector(3 downto 0);

 zero_dp: out std_logic;

 ALUout_dp: out std_logic_vector(15 downto 0));

 end datapath;

 architecture datapath_bhv of datapath is

 component PC is

 port(reset: in std_logic;

 PCcontrol: in std_logic;

 PCin: in std_logic_vector(15 downto 0);

 PCout: out std_logic_vector(15 downto 0));

 end component;

 component mux2to1 is

 port (control: in std_logic;

 a: in std_logic_vector(15 downto 0);

 b: in std_logic_vector(15 downto 0);

 output: out std_logic_vector(15 downto 0));

 end component;

 component memory is

 port (reset: in std_logic;

 clock: in std_logic;

 MemRead: in std_logic;

 MemWrite: in std_logic;

 address: in std_logic_vector(15 downto 0);

 writedata: in std_logic_vector(15 downto 0);

 Memout: out std_logic_vector(15 downto 0));

 end component;

 component IR is

 port(clock: in std_logic; reset: in std_logic;

 IRwrite: in std_logic;

 IRIn: in std_logic_vector(15 downto 0);

 instruction: out std_logic_vector(15 downto 0));

 end component;

 component smallmux2to1 is

 port (control: in std_logic;

 a: in std_logic_vector(3 downto 0);

 b: in std_logic_vector(3 downto 0);

 output: out std_logic_vector(3 downto 0));

 end component;

 component Regfile is

 port(clock: in std_logic;

 zero: out std_logic;

 reset: in std_logic;

 RegWriteControl: in std_logic;

 ReadReg1: in std_logic_vector(3 downto 0);

 ReadReg2: in std_logic_vector(3 downto 0);

 WriteReg: in std_logic_vector(3 downto 0);

 WriteData: in std_logic_vector(15 downto 0);

 ReadData1: out std_logic_vector(15 downto 0);

 ReadData2: out std_logic_vector(15 downto 0));

 end component;

 component mux3to1 is

 port(a: in std_logic_vector(15 downto 0);

 b: in std_logic_vector(15 downto 0);

 c: in std_logic_vector(15 downto 0);

 control: in std_logic_vector(1 downto 0);

 output: out std_logic_vector(15 downto 0));

 end component;

 component alu is

 port(A: in std_logic_vector(15 downto 0);

 B: in std_logic_vector(15 downto 0);

 result: out std_logic_vector(15 downto 0);

 alu_control: in std_logic_vector(2 downto 0);

 reset: in std_logic);

 end component;

 component obuf is

 port (clock: in std_logic;

 reset: in std_logic;

 control: in std_logic;

 a: in std_logic_vector(15 downto 0);

 b: out std_logic_vector(15 downto 0));

 end component;

 signal imm_data, PCinc, PC2mux, muxtomem, mem2IR, jump_addr, instruction, mux_data2RF, ReadData1_sig, ReadData2_sig, mux2ALU, bigmux2ALU, ALUresult_sig, mux2PC, signextnd, buff_2_mux: std_logic_vector(15 downto 0);

 signal smallmux2RF, opcode: std_logic_vector(3 downto 0);

 begin

 PC_mapping: PC port map(reset_dp, PCcontrol_dp, mux2PC, PC2mux);

 PC_2_Mem_mux: mux2to1 port map(IorD_dp, PC2mux, ALUresult_sig, muxtomem);

 memory_mapping: memory port map(reset_dp, clock_dp, MemRead_dp, MemWrite_dp, muxtomem, ReadData2_sig, mem2IR);

 IR_mapping: IR port map (clock_dp, reset_dp, IRWrite_dp, mem2IR, instruction(15 downto 0));

 smallmux_mapping: smallmux2to1 port map(RegDst_dp, instruction(7 downto 4), instruction(3 downto 0), smallmux2RF);

 Write_data_select: mux3to1 port map(ALUresult_sig, mem2IR, imm_data, Mem2Reg_dp, mux_data2RF);

 RF_mapping: RegFile port map(clock_dp, zero_dp, reset_dp, RegWriteControl_dp, instruction(11 downto 8), instruction(7 downto 4), smallmux2RF, mux_data2RF, ReadData1_sig, ReadData2_sig);

 ALU_SrcA_mux: mux2to1 port map(ALUSrcA_dp, PC2mux, ReadData1_sig, mux2ALU);

 bigmux_mapping: mux3to1 port map(ReadData2_sig, PCinc, signextnd, ALUSrcB_dp, bigmux2ALU);

 alu_mapping: alu port map(mux2ALU, bigmux2ALU, ALUresult_sig, ALUcontrol_dp, reset_dp);

 obuf_mapping: obuf port map(clock_dp, reset_dp, obuf_dp, ALUresult_sig, buff_2_mux);

 alu_2_PC_mux: mux2to1 port map(PCsource_dp, buff_2_mux, jump_addr, mux2PC);

 imm_data <= "00000000" & instruction(11 downto 4);

 jump_addr <= "00000000" & instruction(11 downto 4); -- pragma isolate_operands
 PCinc <= "0000000000000001";

 signextnd <= "000000000000" & instruction(3 downto 0);

 opcode <= instruction(15 downto 12);

 instruction_opcode_dp <= opcode;

 AlUout_dp <= ALUresult_sig;

 end datapath_bhv;

 Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity control_unit is

 port (clock_ctrl: in std_logic;

 reset_ctrl: in std_logic;

 zero_ctrl: in std_logic;

-- wake_ctrl: in std_logic;

 -- sleep_ctrl: out std_logic;

 obuf_ctrl: out std_logic;

 instruction_opcode_ctrl: in std_logic_vector(3 downto 0);

 PCcontrol_ctrl: out std_logic;

 IorD_ctrl: out std_logic;

 MemRead_ctrl: out std_logic;

 MemWrite_ctrl: out std_logic;

 IRwrite_ctrl: out std_logic;

 Mem2Reg_ctrl: out std_logic_vector(1 downto 0);

 RegDst_ctrl: out std_logic;

 RegWriteControl_ctrl: out std_logic;

 ALUSrcA_ctrl: out std_logic;

 ALUSrcB_ctrl: out std_logic_vector(1 downto 0);

 ALUControl_ctrl: out std_logic_vector(2 downto 0);

 PCsource_ctrl: out std_logic);

 end control_unit;

 architecture control_unit_arch of control_unit is

 type state is (S0, S1, S1a, S1b, S2, S3, S3a, S4, S4a, S5, S5a, S6, S6a, S7, S7a, S8, S8a, S8b, S9, S9a, S9b, S10, S11, S11a, S12, S14);

 signal state_sig: state;

 signal opcode: std_logic_vector(3 downto 0);

 begin

 process(clock_ctrl, reset_ctrl, zero_ctrl, instruction_opcode_ctrl)

 begin

 opcode <= instruction_opcode_ctrl;

 case reset_ctrl is

 when '1' => state_sig <= S0;

 PCcontrol_ctrl <= '0';

 IorD_ctrl <= '0';

 -- sleep_ctrl <= '0';

 MemWrite_ctrl <= '0';

 IRwrite_ctrl <= '0';

 Mem2Reg_ctrl <= "00";

 RegDst_ctrl <= '0';

 RegWriteControl_ctrl <= '0';

 ALUSrcA_ctrl <= '0';

 ALUSrcB_ctrl <= "00";

 ALUControl_ctrl<= "000";

 PCsource_ctrl <= '0';

 MemRead_ctrl <= '0';

 obuf_ctrl <= '0';

 when others =>

 if clock_ctrl'event and clock_ctrl = '1' then

 case state_sig is

 when S0 => MemRead_ctrl <= '1';

 obuf_ctrl <= '1';

 state_sig <= S1;

 when S1 => MemRead_ctrl <= '1';

 ALUSrcA_ctrl <= '0';

 ALUSrcB_ctrl <= "01";

 ALUControl_ctrl <= "000";

 PCsource_ctrl <= '0';

 RegWriteControl_ctrl <= '0';

 PCcontrol_ctrl <= '1';

 IorD_ctrl <= '0';

 obuf_ctrl <= '1';

 MemWrite_ctrl <= '0';

 IRwrite_ctrl <= '1';

 -- sleep_ctrl <= '0';

 state_sig <= S1a;

 when S1a =>

 PCcontrol_ctrl <= '0';

 MemRead_ctrl <= '0';

 state_sig <= S1b;

 when S1b => IRwrite_ctrl <= '0';

 state_sig <= S2;

 when S2 => obuf_ctrl <= '0';

 case opcode is

 when "0000" => state_sig <= S3; -- ADD

 when "0001" => state_sig <= S4; -- SUB

 when "0010" => state_sig <= S5; -- AND

 when "0011" => state_sig <= S6; -- OR

 when "0100" => state_sig <= S7; -- XOR

 when "0101" => state_sig <= S8; -- SW

 when "0110" => state_sig <= S9; -- LW

 when "0111" => state_sig <= S10; -- Jump Addr

 when "1000" => state_sig <= S11; -- Mov Imm Data

 when "1001" => state_sig <= S12; -- JZ

 -- when "1010" => state_sig <= S13; -- Sleep

 when "1111" => state_sig <= S14; -- Halt

 when others => state_sig <= S2;

 end case;

 when S3 => RegWriteControl_ctrl <= '1'; -- ADD

 RegDst_ctrl <= '1';

 ALUsrcA_ctrl <= '1';

 ALUSrcB_ctrl <= "00";

 ALUControl_ctrl <= "000";

 Mem2Reg_ctrl <= "00";

 state_sig <= S3a;

 when S3a => RegWriteControl_ctrl <= '0';

 Mem2Reg_ctrl <= "00";

 state_sig <= S1;

 when S4 => RegWriteControl_ctrl <= '1'; -- SUB

 RegDst_ctrl <= '1';

 ALUsrcA_ctrl <= '1';

 ALUSrcB_ctrl <= "00";

 ALUControl_ctrl <= "001";

 Mem2Reg_ctrl <= "00";

 state_sig <= S4a;

 when S4a => RegWriteControl_ctrl <= '0';

 Mem2Reg_ctrl <= "00";

 state_sig <= S1;

 when S5 => RegWriteControl_ctrl <= '1'; -- AND

 RegDst_ctrl <= '1';

 ALUsrcA_ctrl <= '1';

 ALUSrcB_ctrl <= "00";

 ALUControl_ctrl <= "010";

 Mem2Reg_ctrl <= "00";

 state_sig <= S5a;

 when S5a => RegWriteControl_ctrl <= '0';

 Mem2Reg_ctrl <= "00";

 state_sig <= S1;

 when S6 => RegWriteControl_ctrl <= '1'; -- OR

 RegDst_ctrl <= '1';

 ALUsrcA_ctrl <= '1';

 ALUSrcB_ctrl <= "00";

 ALUControl_ctrl <= "011";

 Mem2Reg_ctrl <= "00";

 state_sig <= S6a;

 when S6a => RegWriteControl_ctrl <= '0';

 Mem2Reg_ctrl <= "00";

 state_sig <= S1;

 when S7 => RegWriteControl_ctrl <= '1'; --XOR

 RegDst_ctrl <= '1';

 ALUsrcA_ctrl <= '1';

 ALUSrcB_ctrl <= "00";

 ALUControl_ctrl <= "100";

 Mem2Reg_ctrl <= "00";

 state_sig <= S7a;

 when S7a => RegWriteControl_ctrl <= '0';

 Mem2Reg_ctrl <= "00";

 state_sig <= S1;

 when S8 => -- SW

 ALUsrcA_ctrl <= '1';

 ALUSrcB_ctrl <= "10";

 ALUControl_ctrl <= "000";

 MemWrite_ctrl <= '1';

 IorD_ctrl <= '1';

 Mem2Reg_ctrl <= "00";

 state_sig <= S8a;

 when S8a =>

 MemWrite_ctrl <= '0';

 RegWriteControl_ctrl <= '0';

 IorD_ctrl <= '0';

 state_sig <= S1;

 when S9 => -- LW

 ALUsrcA_ctrl <= '1';

 ALUSrcB_ctrl <= "10";

 ALUControl_ctrl <= "000";

 IorD_ctrl <= '1';

 MemWrite_ctrl <= '0';

 MemRead_ctrl <= '1';

 Mem2Reg_ctrl <= "01";

 state_sig <= S9a;

 when S9a => RegDst_ctrl <= '0';

 MemRead_ctrl <= '1';

 RegWriteControl_ctrl <= '1';

 IorD_ctrl <= '0';

 state_sig <= S9b;

 when S9b => MemRead_ctrl <= '0';

 Mem2Reg_ctrl <= "00";

 RegWriteControl_ctrl <= '0';

 state_sig <= S1;

 when S10 => PCsource_ctrl <= '1'; -- Jump Addr

 MemRead_ctrl <= '0';

 MemWrite_ctrl <= '0';

 IRwrite_ctrl <= '0';

 state_sig <= S1;

 when S11 => Mem2Reg_ctrl <= "10"; -- MOV Imm

 RegWriteControl_ctrl <= '1';

 RegDst_ctrl <= '1';

 state_sig <= S11a;

 when S11a => RegWriteControl_ctrl <= '0';

 state_sig <= S1;

 when S12 => if zero_ctrl = '1' then -- JZ

 PCsource_ctrl <= '1';

 else PCsource_ctrl <= '0';

 end if;

 IRwrite_ctrl <= '0';

 state_sig <= S1;

 -- when S13 => case wake_ctrl is

 -- when '1' => sleep_ctrl <= '0';

 -- when others => sleep_ctrl <= '1';

 -- end case;

 -- state_sig <= S13;

 when S14 => state_sig <= S14; -- Halt

 PCcontrol_ctrl <= '0';

 IorD_ctrl <= '0';

 MemRead_ctrl <= '1';

 MemWrite_ctrl <= '0';

 IRwrite_ctrl <= '0';

 Mem2Reg_ctrl <= "00";

 RegDst_ctrl <= '0';

 RegWriteControl_ctrl <= '0';

 ALUSrcA_ctrl <= '0';

 ALUSrcB_ctrl <= "00";

 ALUControl_ctrl<= "000";

 PCsource_ctrl <= '0';

 obuf_ctrl <= '1';

 when others =>

 end case;

 end if;

 end case;

 end process;

 end control_unit_arch;

 Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity PC is

 port (reset: in std_logic;

 PCcontrol: in std_logic;

 PCin: in std_logic_vector(15 downto 0);

 PCout: out std_logic_vector(15 downto 0));

 end PC;

 architecture PC_bhv of PC is

 signal PC_sig: std_logic_vector(15 downto 0);

 begin

 process (reset, PCcontrol, PCin)

 begin

 case reset is

 when '1' => PC_sig <= "0000000000000000";

 when '0' => if PCcontrol'event and PCcontrol = '1' then

 PC_sig <= PCin;

 end if;

 when others =>

 end case;

 end process;

 PCout <= PC_sig;

 end PC_bhv;

 Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity mux2to1 is

 port (control: in std_logic;

 a: in std_logic_vector(15 downto 0);

 b: in std_logic_vector(15 downto 0);

 output: out std_logic_vector(15 downto 0));

 end mux2to1;

 architecture mux_arch of mux2to1 is

 begin

 process(control, a, b)

 begin

 if control = '0' then

 output <= a;

 elsif control = '1' then

 output <= b;

 end if;

 end process;

 end mux_arch;

 Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity memory is

 port (reset: in std_logic;

 clock: in std_logic;

 MemRead: in std_logic;

 MemWrite: in std_logic;

 address: in std_logic_vector(15 downto 0);

 writedata: in std_logic_vector(15 downto 0);

 Memout: out std_logic_vector(15 downto 0));

 end memory;

architecture memory_bhv of memory is

 type memory_space is array (0 to 255) of

 std_logic_vector(15 downto 0);

 signal memory_sig: memory_space;

begin

process(reset, clock, MemRead, MemWrite, address, Writedata)

 begin

 if clock'event and clock = '1' then

 case reset is

 when '1' => memory_sig <= (0 => "1000001100100100", -- Mov 50 in R4

 1 => "1000000000000000", -- Mov 0 in R0

 2 => "1000000000010001", -- Mov 1 in R1

 3 => "1000000000010011", -- Mov 1 in R3

 4 => "1000000010010101", -- Mov 9 in R5

 5 => "0101010000000000", -- Store R0 in [R4]

 6 => "0000010000110100", -- R4 + R3 => R4 *

 7 => "0101010000010000", -- Store R1 in [R4]

 8 => "0000000000010010", -- R0 + R1 => R2

 9 => "0101010000011110", -- Store R1 in [R4 + 14]

 10 => "0110010000001110", -- Load from [R4 +14] in R0

 11 => "0101010000101111", -- Store R2 in [R4 + 15]

 12 => "0110010000011111", -- Load from [R4 + 15] in R1

 13 => "0001010100110101", -- R5 - R3 => R5

 14 => "1001000100000101", -- Jump on R5 = Zero to [16]

 15 => "0111000001100000", -- Jump to *

 16 => "1111000000000000", -- halt

 others => "0000000000000000");

 when others => if MemRead = '1' and MemWrite = '0' then

 memout <= memory_sig(conv_integer(address));

 elsif MemWrite = '1' and MemRead = '0' then

 memory_sig(conv_integer(address)) <= writedata;

 end if;

 end case;

 end if;

 end process;

 end memory_bhv;

Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity IR is

 port(clock: in std_logic; reset: in std_logic;

 IRwrite: in std_logic;

 IRIn: in std_logic_vector(15 downto 0);

 instruction: out std_logic_vector(15 downto 0));

 end IR;

architecture IR_bhv of IR is

begin

process(IRin, reset, IRwrite, clock)

begin

 if clock'event and clock = '1' then

 case reset is

 when '1' => instruction <= "0000000000000000";

 when others => if IRwrite = '1' then

 instruction <= IRIn;

end if;

end case;

end if;

end process;

end IR_bhv;

Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity smallmux2to1 is

 port (control: in std_logic;

 a: in std_logic_vector(3 downto 0);

 b: in std_logic_vector(3 downto 0);

 output: out std_logic_vector(3 downto 0));

 end smallmux2to1;

 architecture mux_arch of smallmux2to1 is

 begin

 process(control, a, b)

 begin

 if control = '0' then

 output <= a;

 elsif control = '1' then

 output <= b;

 end if;

 end process;

 end mux_arch;

Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity Regfile is

 port (clock: in std_logic;

 zero: out std_logic;

 reset: in std_logic;

 RegWriteControl: in std_logic;

 ReadReg1: in std_logic_vector(3 downto 0);

 ReadReg2: in std_logic_vector(3 downto 0);

 WriteReg: in std_logic_vector(3 downto 0);

 WriteData: in std_logic_vector(15 downto 0);

 ReadData1: out std_logic_vector(15 downto 0);

 ReadData2: out std_logic_vector(15 downto 0));

 end Regfile;

 architecture Regfile_bhv of Regfile is

 type Registers_type is array (0 to 15) of

 std_logic_vector(15 downto 0);

 signal reg_sig: Registers_type;

 begin

 process(clock, reset, WriteData, WriteReg, RegWriteControl)

 begin

 case reset is

 when '1' => reg_sig(0) <= "0000000000000000";

 reg_sig(1) <= "0000000000000000";

 reg_sig(2) <= "0000000000000000";

 reg_sig(3) <= "0000000000000000";

 reg_sig(4) <= "0000000000000000";

 reg_sig(5) <= "0000000000000000";

 reg_sig(6) <= "0000000000000000";

 reg_sig(7) <= "0000000000000000";

 reg_sig(8) <= "0000000000000000";

 reg_sig(9) <= "0000000000000000";

 reg_sig(10) <= "0000000000000000";

 reg_sig(11) <= "0000000000000000";

 reg_sig(12) <= "0000000000000000";

 reg_sig(13) <= "0000000000000000";

 reg_sig(14) <= "0000000000000000";

 reg_sig(15) <= "0000000000000000";

 when others =>

 if clock'event and clock = '1' then

 if RegWriteControl = '1' then

 reg_sig(conv_integer(WriteReg)) <= WriteData;

 end if;

 end if;

 end case;

 if reg_sig(conv_integer(WriteReg)) = "0000000000000000" then

 zero <= '1';

 else zero <= '0';

 end if;

 end process;

 process(clock, ReadReg1)

 begin

 if clock'event and clock = '1' then

 ReadData1 <= reg_sig(conv_integer(ReadReg1));

 end if;

 end process;

 process (clock, ReadReg2)

 begin

 if clock'event and clock = '1' then

 ReadData2 <= reg_sig(conv_integer(ReadReg2));

 end if;

 end process;

 end Regfile_bhv;

 Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity mux3to1 is

 port(a: in std_logic_vector(15 downto 0);

 b: in std_logic_vector(15 downto 0);

 c: in std_logic_vector(15 downto 0);

 control: in std_logic_vector(1 downto 0);

 output: out std_logic_vector(15 downto 0));

 end mux3to1;

 architecture mux_arch of mux3to1 is

 signal output_sig: std_logic_vector(15 downto 0);

 begin

 process(control, a, b, c)

 begin

 -- if clock'event and clock = '1' then

 case control is

 when "00" => output_sig <= a;

 when "01" => output_sig <= b;

 when "10" => output_sig <= c;

 when others => output_sig <= b;

 end case;

 -- end if;

 end process;

 output <= output_sig;

 end mux_arch;

 Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 -- 16 bits ALU

 entity alu is

 port (A: in std_logic_vector(15 downto 0);

 B: in std_logic_vector(15 downto 0);

 result: out std_logic_vector(15 downto 0);

 alu_control: in std_logic_vector(2 downto 0);

 reset: in std_logic);

 end;

 architecture alu_arch of alu is

 signal result_sig: std_logic_vector(15 downto 0);

 begin

 process(alu_control, A, B, reset)

 begin

 case reset is

 when '1' => result_sig <= "0000000000000000";

 when others => case ALU_control is

 when "000" => result_sig <= A+B;

 when "001" => result_sig <= A + ((not B) + "0000000000000001");

 when "010" => result_sig <= A and B;

 when "011" => result_sig <= A or B;

 when "100" => result_sig <= A xor B;

 when "101" => result_sig <= A+B;

 when "110" => result_sig <= A+B;

 when others => result_sig <= A+B;

 end case;

 end case;

 end process;

 result <= result_sig;

 end alu_arch;

Library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_arith.all;

 use ieee.std_logic_unsigned.all;

 entity obuf is

 port (clock: in std_logic;

 reset: in std_logic;

 control: in std_logic;

 a: in std_logic_vector(15 downto 0);

 b: out std_logic_vector(15 downto 0));

 end obuf;

 architecture arch of obuf is

 begin

 process(a, control, reset, clock)

 begin

 case reset is

 when '1' => b <= "0000000000000000";

 when others => if clock'event and clock = '1' then

 case control is

 when '1' => b <= a;

 when others =>

 end case;

 end if;

 end case;

 end process;

 end arch;

Appendix B – Testbench to generate Fibonacci series

`timescale 1ns / 10ps

module test_processor;

 reg clock;

 reg reset;

 wire [15:0] ALUout_processor;

microprocessor u0(clock, reset, ALUout_processor);

parameter p = 24;
// clock period

parameter q = 48; // reset state

initial

begin

 // clock generation

 clock = 0;

repeat (2300) begin

// for at least 50 microseconds of execution time

 #(p/2) clock = ~clock;

 end

 end

// initialization

initial

begin

 reset = 1;

 #q reset = 0;

end

initial

#50024 $finish;

initial

begin

// activity file

 $dumpfile("/home/stages/sbansal/my_proce/SOI_0.5V_nom/activity_file_SOI_HS_clock_gating_op_iso.dump");

 $dumpvars(0, test_processor.u0);

end

endmodule

Appendix C – Synthesis script file for SOI 0.5V library

#---

 set search_path {list . /home/stages/sbansal/libraries /home/stages/sbansal/my_proce/SOI_0.5V_nom/}

 set link_library {* libSOI_HS.db}

 set target_library {libSOI_HS.db}

#--

Read design

#--

read_db /home/stages/sbansal/my_proce/SOI_0.5V_nom/microprocessor.db

#--

Define constraints

#--

set_max_delay 20 -to [all_outputs]

create_clock -period 24 -waveform [list 0 12] clock

set_output_delay -max 1 -clock clock {bus_data}

set_flatten -phase true -effort high

set_driving_cell -cell BFLLT1 -pin Z [all_inputs]

set_load 0.1 [all_outputs]

set_dont_use [list libSOI_HS/F*_DT]

set_dont_use [list libSOI_HS/BF*_DT]

set_dont_use [list libSOI_HS/FD*QLLT0]

#--

Uniquify and compile

#--

uniquify

compile -map_effort high -area_effort medium -incremental_mapping

#change_names -rules vhdl

#--

Write compilation result

#--

write -f verilog -hier -out "/home/stages/sbansal/my_proce/SOI_0.5V_nom/16RISCmicroprocessor_SOI_20_out.v"

report_timing > /home/stages/sbansal/my_proce/SOI_0.5V_nom/timing_SOI_20.res

report_area > /home/stages/sbansal/my_proce/SOI_0.5V_nom/area_SOI_20.res

quit

Appendix D – Script file for Power estimation

#--

#The following is a template PrimePower TCL file for the VCD/Verilog flow.

1. Comments are denoted with "#".

2. Tool default values are provided. They can be modified.

3. Users must replace the term "fillin" with appropriate options/values.

4. Refer to the man pages for detailed command information.

#--

Set Search Path / Library : (Can be placed in .pp_synopsys.setup)

#--

 set search_path {list . /home/stages/sbansal/libraries /home/stages/sbansal/my_proce/SOI_0.5V_nom }

 set link_library {* libSOI_HS.db}

#--

Load Design and Activity Files

#--

read_verilog {/home/stages/sbansal/my_proce/SOI_0.5V_nom/16RISCmicroprocessor_SOI_21_clock_gating_op_iso.v}

current_design microprocessor

link

read_vcd -strip_path test_processor/u0 /home/stages/sbansal/my_proce/SOI_0.5V_nom/activity_file_SOI_HS_clock_gating_op_iso.dump

#--

Apply Default Parameters

#--

set hierarchy_separator /

set_input_transition .1 [all_inputs]

#--

Backannotation : Uncomment the commands which apply

#--

set auto_wire_load_selection true

#read_parasitics wire.spef

current_instance fillin

source fillin

#--

Power Analysis and Waveform Generation

#--

#set_operating_conditions fillin

set_waveform_options -interval 1 -file vcd_clock_gating_op_iso -format fsdb

calculate_power -waveform

report_power -file vcd_clock_gating_op_iso -threshold 0 -sortby power -leaf

#--

report capacitance

#--

report_wire * -sortby cap > /home/stages/sbansal/my_proce/SOI_0.5V_nom/all_clock_gating.wc

quit

Appendix E – Links to files

Apart from the paths mentioned above in the report, the various files are also present at the following address

/home/stages/sbansal/internship

The folder internship contains two subfolders, namely, SOI and BULK. Each of these folders has the source VHDL code for the RISC processor, the synthesized gate level netlist with and without power optimization, the timing and area result files from synthesis process, the capacitance and power consumption files without optimization, with clock gating and with clock gating and operand isolation.

All the above files are provided for the Bulk 0.5 V and 1.2V technology library based processor and SOI 0.5V and 1.2V based processor

Appendix F – Submission to VLSI Design Conference 2006

130nm Partially-Depleted SOI for Ultra Low Power Applications

Abstract: This paper focuses on the 130nm Silicon On Insulator (SOI) technology for Ultra Low Voltage and Power applications. A 16bit RISC microprocessor was considered for this purpose and the power consumption was evaluated using the 500mV, 130nm PD SOI technology. The power consumption was reduced using two techniques for power optimization - Clock Gating and operand isolation. Clock Gating involves disabling the clock when it is not required and Operand Isolation involves holding the input operands to a multiplexer or ALU stable when its output is not required. The power consumption of the 16 bit RISC microprocessor has been calculated for a simple program of Fibonacci series. Clock Gating on the register bank and isolation of operands involved in calculation of memory address for instruction fetch and jump cycles have been used to reduce the power consumption.

1. Introduction

Scaling down the device size leads to an increase of speed and also an increase of dynamic and static power consumption. There are a wide range of applications where the speed is not the main driver but Ultra Low Power (ULP) is a real issue (pacemakers, hearing devices, wearable devices, wrist watches etc). Achieving ULP and sufficient computing power is a conflicting requirement that can be trade-off by scaling down the power supply Vdd according to a given application. Reducing Vdd is very attractive because dynamic power is strongly reduced and given the fact that leakage currents are directly related to the electric field in the device, leakage power components are also drastically reduced. In this paper we deal with power supply of about 500mV targeting applications that need Ultra Low Power. The capability of SOI technology as a substitute to Bulk technology in applications at low voltage has been of interest in many applications [1].

Initially dedicated to military applications, SOI technologies have seen an increasing interest during the current decade thanks to a substantial progress in wafer fabrication. Many advantages are associated to SOI: good device isolation, reduced parasitic capacitances, better dynamic device characteristics, good robustness against soft errors and finally better Ion/Ioff trade-off. Some drawbacks have been reported mainly for Partially-Depleted devices and are due to the floating body effect: kink effect, history effect, parasitic bipolar transistor and finally self heating. All these drawbacks are eliminated when running SOI circuits in ULV [2].

The aim of this paper is to analyze the performance of a ULV 16 bit RISC microprocessor and to use clock gating and operand isolation to minimize the power consumption for applications related to iris identification. Iris feature extraction using a wavelet packets algorithm has been presented earlier in [3]. Using the ULV RISC processor, an SoC for Iris identification is intended to be made operating with low power consumption. The algorithm for iris identification is given in [3, 4].

The architecture and the instruction set of the processor are presented along with the power consumption results of clock gating and operand isolation for both SOI and Bulk technologies as a comparison. The power has been estimated for both nominal voltage of 1.2V as well as for ULV of 500mV for both SOI and Bulk technologies.

2. Design Flow

The design flow involves the following steps as shown in Figure 1. First the code for the 16 bit RISC processor was written using VHDL with stress on coding style for low power as given in [5]. The architecture of the RISC processor is given later. Initially only a few instructions have been added in the code but the code will be extended for the application of Iris identification. The next step was to synthesize the code using Design Compiler. The synthesized gate level netlist was used to generate the activity file using a testbench. The testbench provides a clock and a reset signal. The reset input is held active for the first 24ns and the clock cycle continues with period of 24ns. In case a sleep instruction is to be executed then a wake signal can be added in the testbench. The output of the ALU can be monitored at the ALUOut port. The annotated switching activity was used to estimate the power consumption using PrimePower. The power was estimated for nominal voltage of 1.2V and for ULV of 500mV. A reduction in power consumption was then attempted by introducing latch based clock gating and introducing combinational gates controlled by a signal to keep the operands at their previous values when they are not used for memory address calculation [6]. Power Compiler was used for the purpose of inserting clock gating and operand isolation.

[image: image3.png]VHDL code

N3

Synthesized Gate
level netlisy

—

Power calculation
for PD SOI & Bulk

R

Clock Gating and
Operand Isolation

2

Power Calculation
after optimization

Figure 1: Design Flow

The Clock Gating is used to deactivate the clock when it is not required by the register bank so that the power consumption is reduced. The Operand isolation prevents the inputs of the multiplexer from changing when its output is not required which again saves power. The operand isolation is performed on the step that calculates the target memory address to be written into the Program Counter.

The power optimization is achieved for the PD SOI ULV library. A significant saving in power is achieved over the nominal 1.2V library by using the ULV library with clock gating and operand isolation.

3. RISC architecture

The 16 bit RISC microprocessor that was coded in VHDL has the following specifications: -

1. 4 bit op-code for a maximum of 16 instructions

2. 16 bit register bank of 16 registers

3. 256*16 bit memory space addressable using 8 bit address.

4. 16 bit ALU to perform the logical operations

The RISC microprocessor was made with the following instructions: -

1. Arithmetic & Logical – ADD, SUB, OR, AND, XOR

2. Memory related – Load from memory and Store to memory address

3. Immediate – Move immediate data

4. Conditional – Jump to memory address if condition is true

5. Unconditional Jump to a memory address to loop a program

6. Halt to stop the program

7. Sleep instruction

The RISC processor was tested using a program to generate the Fibonacci series. The sleep instruction is used to put the processor in a temporary state where neither the inputs or outputs of any of the registers or memory locations change. The clock cycle is prevented from reaching the processor by using a latch controlled by a signal which is generated when the instruction is executed. The processor comes out of the sleep state when an external wake signal is asserted.

The simulations were done for a total run-time of about 50 microseconds out of which the processor was idle after the execution of the program (to generate 10 Fibonacci series numbers) was completed at about 26 microseconds.

A clock cycle with time period of 24ns was used with a 50% duty cycle. The first state is the reset state when the external input reset goes high for the first 24ns. Then the next clock cycle is used to fetch the instruction from memory. The fetch is competed at the beginning of third clock cycle which is the op-code decode cycle. On the basis of the opcode appropriate control signals are issued in the next clock cycle to begin the command execution.

The Logical commands take two more clock cycles to read the data, perform the calculation and then to store it in the register file.

However if the instruction is memory related then the first clock cycle after the opcode is decoded is used to calculate the memory address, the next to read the value to be loaded or stored & the final cycle to store in memory or Register file. The conditional instructions check whether the contents of the specified register are zero and accordingly read the memory address to jump to. The bit-wise Instruction Set architecture and the processor architecture are shown on Figure 2 and Figure 3 [7, 8]. The difference between sleep and halt is that the processor can come out of the sleep state when an external wake signal is issued and continue its execution.

	S.No.
	Instruction
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	1
	ADD
	0
	0
	0
	0
	Source Reg 1
	Source Reg 2
	Destination Reg

	2
	SUB
	0
	0
	0
	1
	Source Reg 1
	Source Reg 2
	Destination Reg

	3
	AND
	0
	0
	1
	0
	Source Reg 1
	Source Reg 2
	Destination Reg

	4
	OR
	0
	0
	1
	1
	Source Reg 1
	Source Reg 2
	Destination Reg

	5
	XOR
	0
	1
	0
	0
	Source Reg 1
	Source Reg 2
	Destination Reg

	6
	Store Word
	0
	1
	0
	1
	Reg with Mem Address
	4 bit Mem. Offset
	Reg With Data to store

	7
	Load Word
	0
	1
	1
	0
	Reg with Mem Address
	4 bit Mem. Offset
	Reg to load data to.

	8
	Jump address
	0
	1
	1
	1
	Jump Address
	X
	X
	X
	X

	9
	Move Imm.
	1
	0
	0
	0
	8 bit data extended to 16 bit
	Destination Reg

	10
	Jump on Zero
	1
	0
	0
	1
	Jump Address
	Reg to check

	11
	Sleep
	1
	0
	1
	0
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X

	12
	Halt
	1
	1
	1
	1
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 2: The Instruction Set architecture for the 16 bit RISC microprocessor

[image: image4.png]Clock Reset Wake
i 1 1
PCControl PCSource
=) 1
ey Control =y aLu ‘
MemWrite Unit ALUSreB. | Control
— Zero 0
H
v
g
MemioReg — 16 1
wevie Regwiie . s
Regpst UEE |
|
o 4 L
i L -
H sdiress e ¢
1 ® | e
Ly
Memory ba X e
; Vo Daia
MemOut Rin]—
WrieDen
. J
05 ()

104

ALUOwt

Figure 3: The 16 bit RISC processor architecture
4.Power Estimation

The power consumed by the 16 bit RISC processor was evaluated using the 0.13 micron PD SOI library. A significant improvement was achieved with clock gating on the Register Bank, the output buffer register and the Instruction Register. Latch based gating was used along with AND gate and a control signal to enable the latch (Figure 4).

[image: image5.png]EN

CLK

Latch

CLK

AND
clock

gate

} ENCLK

Register
bank

Figure 4: Clock Gating using latch & AND gate

The values of the power consumed are shown below for the various cases. A comparison between the Bulk & SOI technologies shows the advantage of SOI over the Bulk technology for ULV applications.

Table 1. shows the values for the ULV case when the 0.13 micron 500mV libraries were used. The values reported are without clock gating and operand isolation for both SOI & Bulk Si. Even though the power consumed by the Register File is more for the SOI technology than that consumed by the Bulk Si, the overall power consumption in the SOI 500mV case is much less as compared to the Bulk 500mV case. There is a power saving of about 16.25% with the SOI technology as compared with the Bulk technology.

Table 1. Power Consumption for Ultra Low Voltage SOI & Bulk Si based 16 bit RISC processor

	Technology used
	Power consumption in Watt

	130nm 0.5V
	Datapath + Memory
	Memory
	Reg File
	ALU
	
	Total

	SOI
	 5.307e-04
	4.702e-04
	5.088e-05
	3.025e-06
	
	5.374e-04

	Bulk
	6.337e-04
	5.777e-04
	4.552e-05
	3.721e-06
	
	6.402e-04

Table 2. Power Consumption for SOI & Bulk Si based 16 bit RISC processor at nominal voltage
	Technology used
	Power consumption in Watt

	130nm 1.2V
	Datapath + Memory
	Memory
	Reg File
	ALU
	
	Total

	SOI
	2.972e-03
	2.728e-03
	2.021e-04
	1.065e-05
	
	3.007e-03

	Bulk
	 3.381e-03
	3.102e-03
	2.314e-04
	1.371e-05
	
	3.418e-03

Table 2. reports the power consumption for the nominal voltage libraries of 1.2V. This helps in distinguishing the advantage of operating the transistors at ULV instead of at nominal voltage.

Thus it can be seen that by using the ULV SOI library we can achieve a power saving of about 82% over the nominal voltage of 1.2V. This significant saving in power offsets the decrease in performance as we scale down the voltage. It can be seen that most of the power is consumed by the Memory unit (more than 90% of the total power). Also it is seen that the power consumption increases in the Register file in the SOI technology as we scale down to

the ULV over the Bulk technology for the same case. Thus in order to save the power we have implemented clock gating over the register file thus disallowing the clock from reaching the registers when they are not being read. Also in order to save some power in the memory unit we have performed operand isolation over the operands that calculate the memory address thus holding the inputs of the multiplexer connected to the Program Counter stable when its output is not being used in the clock cycles where the contents of PC are not to be changed. The results of the power estimation are shown in Table 3. for the Ultra Low Voltage case.

Table 3. Power optimization for ULV SOI & Bulk Si based 16 bit RISC processor using clock gating and operand isolation

	Technology used
	Power consumption in Watt

	130nm 0.5V with clock gating and operand isolation
	Datapath + Memory
	Memory
	Reg File
	ALU
	
	Total

	SOI
	4.919e-04
	 4.571e-04
	3.082e-05
	 7.564e-07
	
	4.957e-04

	Bulk
	6.130e-04
	5.715e-04
	3.695e-05
	6.830e-07
	
	6.164e-04

By using the clock gating and operand isolation the power saving in PD ULV SOI over Bulk Si for Vdd = 500mV has increased to almost 20% and over the nominal voltage it has increased to about 84%. Thus it can be seen that ULV SOI is a much favourable candidate for low voltage low power applications.

The Figure 5. shows the improvement in power saving when we use the nominal voltage for the processor & when we use the Ultra low voltage SOI technology with clock gating and operand isolation

A comparison between SOI and Bulk technologies can also be made from the graph.

[image: image6.wmf]Power Optimization

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

1.2V

0.5V with clk gating & op.

isolation

Technology

Power in Watt

SOI

Bulk

Figure 5: SOI vs. Bulk for ULV applications
5. Iris Identification Application

5.1. Overview

In applications where power consumption is more an issue than speed the SOI 500mV technology can be useful. The techniques of clock gating and operand isolation also help in optimizing the power.

One such application that involves the use of such a low power microprocessor is the SoC for Iris identification as mentioned in [4]. This paper presents a biometric technology for identifying people based on iris. An algorithm using wavelet packet analysis is presented. The complete implementation overview is presented on Figure 6 for such applications.

[image: image7.wmf]

Avalon Bus

Local data bus

IP

I/O

Ethernet

NIOS

RA

M

DMA

External

database

Camera

Wavelet Packet blocks

Figure 6: implementation overview

At this time, the processor, called NIOS from Altera Inc., is used to read the image acquired by the camera, to extract and to unwrap the iris and to send it to a wavelet packets IP. After applying the wavelet packets transformation, interesting packets are exploited by the NIOS to generate a signature. Thus, the two main components are the processor and the wavelet packets IP.

5.2. Wavelet packets architecture

Figure 7 describes the wavelet packets architecture.

[image: image8.wmf]

Data

Register

4

x

16

b

LP

filter

Local d

ata bus 16 bit

FIFO

128

x

16

b

Overflow

Register

4

x

16

b

Coefficients

Register

2

x

6

x

16

b

HP

LP

RAM

512

x

128

x

16

b

FiniteStateMachine

Fsm

2

FiniteStateMachine

Fsm

1

Adresse

Data bus : 16 bit

Address bus : 18 bit

HP

filter

Figure 7: Wavelet packets architecture
The original image is located into an external RAM, and we have chosen an algorithm that works only with one memory bus. Thus, we organize the processing to get one RAM access per clock cycle.

The first level of decomposition (applied on the complete 2D image) requires one full read and one full write for lines processing, and one full read and one full write for columns processing. For a 512 by 128 pixels image, it requires approximately 256 kclock cycles. The size of unwrap iris image is a parameter and could be change for any unwrap image size (power of 2). We set by default the maximum size to 512x128 pixels. Each pixel is extended to 16-bit length because 16-bit operation is enough to give a good accuracy for wavelet decomposition coefficients.

The filters contain 6 parallel MACs (Multiplier-Accumulators). The products of multiplication are accumulated and the final result is truncated to 16 bits. The LP filter output is connected to local data bus because the result of this filtering is stored directly into RAM, at the already read pixel location. The HP filter output could not be stored into the RAM because it will erase a non-read pixel. The result of this HP filtering is stored into a FIFO.

To down-sample the input signal, filters are shifted by two pixels at each new processing step. Thus, four pixels are common to two following processing step: instead to read again four pixels from RAM, these four pixels are stored into the data register.

The coefficients register stores LP and HP filters coefficients. The FIFO memory stores data coming from HP filter processing till the location where they should write into RAM is available. For an image size of 512x128 pixels, its size is set to 128 words because writing into RAM memory could start when filters reach half image size. The overflow register is used to manage boundary effects. The first 4 pixels are stored inside this register and are used at the end of the processing. Two state machines manage the FWT processing.

5.3. Synthesis results

The wavelet packets IP is synthesized on Bulk and SOI technologies at Vdd = 500mV and the results presented on Figure 8 show that SOI technology dissipates 16% less dynamic power than bulk technology for the wavelet packet IP.

	
	Pdyn(µW)
	Pleak(µW)

	Bulk
	11.39
	59.2

	SOI
	9.53
	22

Figure 8: Dynamic & Leakage Power Dissipation

6. Conclusion and future work

The RISC microprocessor that has been discussed here for shows nearly 20% savings in dynamic power over the Bulk Si technology with power optimization. In portable applications where the life of the battery determines the feasibility of the application, it becomes imperative to try and optimize power as much as possible even if it is at a slight disadvantage to the performance in terms of speed. The speed is not a critical issue in the processor developed & hence we have used a clock period of 24ns.

Future work involves using such Ultra Low Power processors as presented here and combining it with the wavelet packets IP to realize our iris identification application on a SoC. The wavelet IP currently simulated with the NIOS processor IP shows a 16% saving while the power optimization applied on SOI 500mV library with the RISC processor shows a 20% saving. This processor is intended to be used in this application with the wavelet packet IP further.

6. References

[1] Akihiro Ebina, “Ultra-low power CMOS IC using partially depleted SOI technologies”, EPSON, SOI workshop Paris France.

[2] Olivier T., “SOI Partially-Depleted Ultra Low Voltage Memory and Digital Circuit Design”, ICIDT 2005.

[3] Rossant F. et al, “IRIS identification and robustness evaluation of a wavelet packets based algorithm”, ICIP 2005, September 2005, Belgium.

[4] Ea T. et al, “Implementation on SoPC of algorithms dedicated to Iris identification” DCIS 2005, November 2005, Portugal

[5] “Low Power Electronics Design”, Christian Piguet, CRC Press.

[6] Synopsys Power Compiler & Prime Power User guide.

[7] “Computer Organization and design” Patterson D., Hennessey J., 2nd Ed. M.Kaufmann

[8] “Kraken” a 16bit RISC processor developed by Kim D., Lin A., Stanford University, 2000.

[9] Rydgren E. et al, “Iris Features Extraction Using Wavelet Packets”, ICIP 2004, October 2004, Singapore.

_1183463393

_1183799763.xls
Graph3

		1.2V		1.2V

		0.5V with clk gating & op. isolation		0.5V with clk gating & op. isolation

SOI

Bulk

Technology

Power in Watt

Power Optimization

0.00307

0.003418

0.0004957

0.0006164

Feuil1

		Technology used		Total Power consumption in Watt

		130nm 1.2V		Datapath + Memory		Memory		Reg File		ALU				Total

		SOI		4.919e-04		4.571e-04		3.082e-05		7.564e-07				4.957e-04

		Bulk		6.130e-04		5.715e-04		3.695e-05		6.830e-07				6.164e-04

		Component		Power consumption

		Processor		5.374e-04

		Memory		4.702e-04

		Reg File		5.088e-05

		ALU		3.025e-06

		Category		Total Power consumption

		SOI 1.2V		0.003007

		SOI 0.5V		0.0005374

		SOI 0.5V with clock gating & operand isolation		0.0004957

				SOI		Bulk

		1.2V		0.00307		0.003418

		0.5V with clk gating & op. isolation		0.0004957		0.0006164

Feuil1

		0

		0

		0

Total Power consumption

Technology

Power in Watt

Feuil2

		0		0

		0		0

SOI

Bulk

Technology

Power in Watt

Power Optimization

Feuil3

		

		

_1183198210

_1183217905.xls
Graph3

		1.2V		1.2V

		0.5V with clk gating & op. isolation		0.5V with clk gating & op. isolation

SOI

Bulk

Technology

Power in Watt

Power Optimization

0.00307

0.003418

0.0004957

0.0006164

Feuil1

		Technology used		Total Power consumption in Watt

		130nm 1.2V		Datapath + Memory		Memory		Reg File		ALU				Total

		SOI		4.919e-04		4.571e-04		3.082e-05		7.564e-07				4.957e-04

		Bulk		6.130e-04		5.715e-04		3.695e-05		6.830e-07				6.164e-04

		Component		Power consumption

		Processor		5.374e-04

		Memory		4.702e-04

		Reg File		5.088e-05

		ALU		3.025e-06

		Category		Total Power consumption

		SOI 1.2V		0.003007

		SOI 0.5V		0.0005374

		SOI 0.5V with clock gating & operand isolation		0.0004957

				SOI		Bulk

		1.2V		0.00307		0.003418

		0.5V with clk gating & op. isolation		0.0004957		0.0006164

Feuil1

		0

		0

		0

Total Power consumption

Technology

Power in Watt

Feuil2

		0		0

		0		0

SOI

Bulk

Technology

Power in Watt

Power Optimization

Feuil3

		

		

_1183197940

