CONTENIDO

Prefacio
1. Mecánica
2. Propiedades de los Fluidos
3. Gases
4. Fenómenos Térmicos
5. Sonido y Luz
6. Varias
7. Apéndice
titulo

74. Vórtices en el agua.
Al vaciar la bañera, nos damos cuenta de que junto a su orificio de desagüe se forma un remolino.
¿En qué sentido gira éste, en el de las agujas del reloj o en sentido contrario? ¿Por qué?


El problema planteado atrajo en su tiempo la atención de D. Grave, famoso matemático ruso, que señaló lo siguíente.
«Si un recipiente se vacía mediante un orificio abierto en su fondo, encima de él se forma un torbellino de líquido que gira, en el hemisferio boreal, en sentido contrario a las agujas del reloj, y en el austral, en sentido inverso. Cada lector puede comprobar la validez de esta observación dejando salir agua de la bañera. Para que la rotación del vórtice sea más evidente, se puede echar al agua trocitos de papel. Esta experiencia evidente comprueba la rotación de la Tierra, aunque se realiza por medios caseros.»
A continuación este autor manifiesta lo siguiente: «Lo dicho permite sacar conclusiones muy importantes relativas a las turbinas hidráulicas. Si una turbina hidráulica horizontal gira en sentido antihorario, la rotación del Globo contribuirá a su funcionamiento; y a la inversa: si gira en sentido horario, el giro del Globo frenará la rotación del artefacto.» « Por ello -concluye el académico-, al fabricar nuevas turbinas hay que inclinar sus paletas de modo que giren en el sentido deseado.»
Estos razonamientos aparecen muy verosímiles. Todo el mundo sabe que la rotación de la Tierra condiciona la forma vorticial de los ciclones, un desgaste mayor del carril derecho de las vías férreas, etc. A lo mejor, se podría esperar que la rotación del planeta influiría de alguna manera en los embudos de agua que surgen en los recipientes durante el vaciado, o en las turbinas hidráulicas.


Esquema del movimiento vorticial: arriba, al salir el líquido por el desagüe de la bañera; abajo, del aire en un ciclón.

No obstante, no debemos dejarnos cautivar por esta primera impresión. El comportamiento del embudo de agua que se forma encima del orificio de vaciado se comprueba fácilmente y, de hecho, no se ajusta a la descripción que acabamos de citar: en unos casos el remolino se enrosca en sentido antihorario, y en otros, en sentido opuesto. La dirección de giro, lejos de ser constante, no revela ninguna tendencia predominante, máxime si las observaciones se llevan a cabo en diferentes recipientes, y no en uno mismo.
El cálculo nos proporciona un resultado que concuerda muy bien con las observaciones: la magnitud de la llamada aceleración de Coriolis es muy pequeña y se calcula según la fórmula siguiente:


donde a es la aceleración de Coriolis, v, la velocidad del cuerpo en movimiento, w , la velocidad angular de rotación de la Tierra y j , la latitud del lugar. Por ejemplo, en la latitud de San Petersburgo, siendo la velocidad del chorro de agua de 1 m/s se obtienen los datos siguientes: v = 1 m/s, w = 2/86.400 s; sen j = sen 60° = 0.87

m/s2
 
Como la aceleración de la gravedad es de 9,8 m/s, la de Coriolis vale una cienmilésima de ésta. En otras palabras, el esfuerzo que surge es igual a una cienmilésima parte del peso del agua que forma el torbellino. Está claro que cualquier irregularidad en la forma del recipiente, por ejemplo, su asimetría respecto del orificio de vaciado, deberá influir mucho más en el sentido de rotación del chorro de agua que el giro del planeta. El hecho de que al observar el vaciado de un mismo recipiente a veces se suele colegir que el sentido de rotación del vórtice siempre es uno mismo, no comprueba, ni mucho menos, la tan esperada regla de rotación, pues los factores predominantes que intervienen en este caso son la forma del fondo de la pila y sus irregularidades, y no la rotación de la Tierra.
Por esta razón, a la pregunta planteada hay que responder del modo siguiente: es imposible predecir en qué sentido girará el vórtice de agua junto al orificio situado en el fondo de la pila, ya que éste depende de toda una serie de circunstancias difíciles de considerar. Además, los torbellinos que se crean en el flujo de líquido y que pudieran atribuirse a la rotación del Globo, deben de tener, según comprueba el cálculo, un diámetro mucho mayor que los pequeños remolinos que surgen en torno al orificio de vaciado de un recipiente. Por ejemplo, en la latitud de San Petersburgo, para la velocidad de corriente de 1 m/s, el diámetro de semejante torbellino debería ser de 18 m; para la velocidad de 0,5 m/s, de 9 m, etc., es decir, variaría en razón directa a la velocidad de corriente.
Como colofón vamos a acotar algo más sobre la supuesta influencia de la rotación del planeta en el funcionamiento de las turbinas hidráulicas. Teóricamente, se podría demostrar que toda rueda que gira, es incitada por la rotación de la Tierra a ocupar una posición tal que su eje sea paralelo al del planeta, y que el sentido de giro de ambos cuerpos sea igual. No obstante, el efecto de semejante influencia es ínfimo, al igual que en el caso del embudo de agua formado en el recipiente que se vacía; en otras palabras, la acción del giro de la Tierra constituye menos de una cienmilésima parte de la fuerza de la gravedad. Por consiguiente, toda irregularidad de forma del cuerpo de la turbina que gira, por más insignificante que sea, de por sí muy natural e inevitable, debe influir mucho más y camuflar la influencia que el giro del Globo ejerce sobre dicho artefacto. Por lo tanto, no se han de cifrar muchas esperanzas en que la rotación de la Tierra contribuya ostensiblemente al funcionamiento de los mecanismos.



Página Anterior Volver al Indice Página Siguiente