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Abstract

The motivation behind the research on thermal transport in nanostructure is the continuous in-

crease in the density of components of the integrated circuits leading to a detrimental effect on

thermal management. As the number of components increase the heat dissipation becomes a

major concern. The simple heat approximation of Fourier law is no longer valid at nanoscopic

levels. Other laws such as the Boltzmann Transport Equation, Greens function and Drift diffu-

sion have to be considered for the thermal analysis.

Thermal energy transport in nanostructures is based on the vibration of particles in the material;

the particles oscillate in a harmonic way and they accept or lose only discrete amounts of

energy. This energy is termed a phonon. Phonons like photons obey Bose-Einstein distribution

of energy. Phonons can be treated as particles having a spherical shape and definite size to

consider them for collisions in molecular dynamics simulations or in Monte Carlo simulation.

A literature review was made on phonons, their characteristics and on the papers based on

the thermal transport in micro and nanostructures. The Monte Carlo method of simulation and

molecular dynamics method of simulations were also studied. The C++ programming language

was chosen to write the codes of the simulation as it is versatile and it has many standard

libraries. Considerable time was spent on understanding the C++ codes. Before writing the

codes for phonon simulation, an analogous system consisting of ideal gas was simulated using

the molecular dynamics method to obtain a Maxwell-Boltzmann distribution.

Future work involves implementation of phonons in place of gas particles in the ideal gas

simulation. This is then taken to the device level and implementing all the quantum effects.

This report is divided into tree parts, literature review, ideal gas simulation and the future work.



Chapter 1

Introduction

The number of transistors in an integrated circuit has touched the one billion mark, and the rate

of increase of these transistors is exponential with respect to time. This exponential increase

in packing density creates tremendous increase in heat generation in the device. Dissipation

of this heat has become a prime factor for the optimal performance of the semiconductor de-

vices. A complete empirical exploration has not yet taken place in this area. Although there are

advances in thermal metrology such as the 3ω method, time domain thermoreflectance, micro-

fabricated test structures and the scanning thermal microscope [2], they do not suffice for the

entire empirical exploration of thermal transport. There is an urgent requirement for supporting

these experiments with the predictive device performance and reliable simulations. In order to

obtain a reliable and a predictive simulation, a thorough understanding of physical principles

of carrier transport at the nanolevel is essential.

Phonon transport is the main mechanism for heat transfer in semiconductor materials. The

mean free path of a thermal phonon in silicon at room temperature is 300nm [3, 4] which

is far greater than the channel length of modern day transistors. When the mean free path

is comparable to the device scale, phonon travel is more ballistic, and bulk scattering is less

frequent. If the mean free path is smaller than the device scale then the number of scattering

events is high hence there will be thermal equilibrium [5]. As devices become smaller and

smaller, the surface to volume ratio increases and boundary scattering begins to plays a larger
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role in the thermal transport. In heterostructures interference reflection plays a critical role in

determining the effective thermal conductance. When the device dimensions are comparable to

phonon wavelengths, coherence effects come into picture [6]. These effects are not taken into

account by the classical Fourier theory for heat conduction.

There are many laws which can account for many of these effects; Boltzmann transport equation

(BTE), Greens function, drift diffusion equation, hydrodynamic energy transport equations,etc.

There are some works on analytical solution of BTE of phonons using the Monte Carlo method

of simulation[3, 7]. Molecular dynamics method of simulation has not been very popular be-

cause of its intense computational requirements. Only a few hundreds to thousands of particles

can be considered for simulation with this method which is very few compared with the num-

ber of particles in a real system. The highest number of particles being used is one million

at NASA Ames Research Centre by Leonardo Dagum to simulate hypersonic flow conditions

[8]. With the availability of faster computers the number of particles in a real system can be

matched with the number of particles in a simulation. It was useful to start with a simple sys-

tem analogous to phonon transport for molecular dynamics method of simulation. An ideal gas

system with elastic boundaries and neglecting multiple collisions was considered to obtain a

Maxwell-Boltzmann distribution.
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Chapter 2

Literature Review

2.1 Introduction

The understanding of many concepts of solid state physics is essential when dealing with the

problems that arise in simulation of particles in nanostructures. A detailed literature review of

the fundamentals of solid state physics are presented in this report. Fourier analysis, reciprocal

lattice vectors, Brillouin zone, phonon definition, types of phonons, phonon heat capacity, den-

sity of states model, thermal resistivity of phonon gas and Umklapp processes are presented in

detail. Fundamentals of the Monte Carlo method of simulation of phonons and electrons are

reviewed, an introduction to molecular dynamics method of simulation is also presented in this

chapter.
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2.2 Lattice translation vectors

A crystal structure is a regular arrangement of particles in all directions. A lattice is a rep-

resentation of the crystal structure but with out the actual particles, in other words a periodic

array of points. The lattice is defined by three translation vectors a1, a2, a3 such that the atomic

arrangement looks the same in every respect when viewed from the point r as when viewed

from the point

r′ = r + u1a1 + u2a2 + u3a3 (2.1)

where u1, u2, u3 are arbitrary integers.

There are many operations carried out on the lattice, including translation operation, point

operation (rotation and reflection) and the combination of both translation and point operations.

A lattice translation operation is defined as the displacement of a crystal by a crystal translation

vector.

T = u1a1 + u2a2 + u3a3 (2.2)

Any two lattice points are connected by this form of vector.

2.3 Types of Lattices

There are 14 different lattice types from the seven basic types: triclinic, monoclinic, orthorhom-

bic, tetragonal, cubic, trigonal and hexagonal. There are three different lattices in the cubic

lattice: simple cubic (SC), body centered lattice (BCC) and face centered cubic lattice (FCC).

There is a special kind of cubic lattice crystal structure known as the diamond structure. It has

tetrahedral bonding characteristics; each atom has 4 nearest neighbors and 12 next neighbours.

Carbon, silicon, germanium and tin all exhibit this kind of crystal lattice structure. The figure
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Figure 2.1: Diamond Crystal structure

2.2 is a diamond crystal structure of silicon. The table 2.1 lists all the lattice types [1, 9, 10].

2.4 Fourier Analysis

Fourier analysis is an important tool when dealing with electron density. Electron density is a

periodic function of r with the periods a1, a2, a3.

n(r+T)=n(r).

The function n(x) with period a in the x direction may be expanded in a Fourier series of sines

and cosines as follows:

n(x) = n0 +
∑

p>0

[Cpcos(2πpx/a) + S psin(2πpx/a)] (2.3)
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Table 2.1: Different lattice types.

System Number of Lattice axes and angles restriction

triclinic 1 a1 , a2 , a3, α , β , γ

monoclinic 2 a1 , a2 , a3, α= γ=90 , β

orthorhombic 4 a1 , a2 , a3, α= β=γ=90

tetragonal 2 a1 = a2 , a3, α= β=γ=90

simple cubic 3 a1 = a2 = a3, α= β=γ=90

trigonal 1 a1 = a2 = a3, α= β=γ¡120,, 90

hexagonal 1 a1 = a2 , a3, α= β=90 γ=120

where p is a positive integer and Cp and S p are constants called the Fourier coefficients of

expansion. The factor 2 π/a ensures that n(x) has a period a. It can be written as follows in

compact form.

n(x) =
∑

p

npexp(i2πpx/a) (2.4)

The Fourier analysis of a periodic function n(r) in three dimensions can be written as

n(r) =
∑

G

nGexp(iG.r) (2.5)
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2.5 Reciprocal Lattice Vectors

Every crystal structure has two lattices associated with it; the crystal lattice and the reciprocal

lattice. The diffraction pattern of the crystal lattice is the map of the reciprocal crystal lattice.

The two lattices are related by the following expressions in equation.

b1 = 2π
a2 × a3

a1.a2 × a3
; (2.6)

b2 = 2π
a3 × a1

a1.a2 × a3
; (2.7)

b3 = 2π
a1 × a2

a1.a2 × a3
(2.8)

where a1, a2, a3 are primitive vectors of the crystal lattice and b1,b2,b3 are the primitive vectors

of the reciprocal lattice

A reciprocal lattice is mapped by the following equation

G = v1b1 + v2b2 + v3b3 (2.9)

where v1, v2, v3 are integers. A vector of this type is a reciprocal vector.

2.6 Brillouin Zones

When a number of vectors are drawn from any point to the various lattices and perpendicular

bisectors are drawn for those vectors, the smallest enclosed area is the Wigner-Seitz primitive

cell. It is also called as first Brillouin Zone when the construction is made in the reciprocal

lattice. The figure 2.2 shows the first Brillouin Zone [1]

7



Figure 2.2: Brillouin Zone

The plot of the ω and the wave vector K shows the first Brillouin zone graphically[1]. K will

have a range of −πa to π
a . Values of K outside the first Brillouin zone reproduce the lattice mo-

tions described by the values within the −πa to π
a limits. This means we can treat the K values

outside these limits by subtracting the integer multiples of 2π
a that will give wave vectors inside

these limits.

The shortest wavelength a phonon can have is 2a. The phonon energy is directly proportional to

the frequency of oscillation. The phonon energy is governed by Bose-Einstein statistics which

means that the energy of a particular mode of oscillation is nhv where h is Planck’s constant, v
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Figure 2.3: Graphical representation of Brillouin Zone

is the frequency and n is an integer whose value at temperature T is given by

n = (exp
hν
kT −1)−1 (2.10)

The Brillouin zones for different lattice structures will be different. The Brillouin zone for a

simple cubic lattice structure is as shown below in figure 2.4 [1].

Figure 2.4: The Brillouin zone for simple cubic lattice structure

The Brillouin zone for a body centered lattice structure is as shown in figure 2.5 [1]
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Figure 2.5: The Brillouin zone for a Body Centred Cubic lattice structure

The Brillouin zone for a face centered lattice structure is as shown in the figure 2.6 [1]

Figure 2.6: The Brillouin zone for a Face Centered Cubic lattice structure
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2.7 Types of Phonons

Phonons can be classified in two ways, one based on the direction of the vibration with respect

to the crystal lattice and the other is based on the frequency and the wavelength. The type

of phonons classified on the basis of direction of oscillation are longitudinal and transverse

phonons. The longitudinal phonons oscillate in the direction of propagation and the transverse

phonons oscillate in the direction perpendicular to the direction of propagation. The types of

phonons classified based on the frequency and the wavelength are acoustic and optical phonons.

The acoustic phonons are those whose frequencies become small at the longer wavelengths and

which travel at the velocity of sound in the lattice. Optical phonons have a minimum frequency

even at very long wavelengths and they occur only in crystals which have more than one atom

per unit cell.

The figure 2.7 and 2.8 shows the acoustic and optical phonons in monatomic and diatomic

crystals respectively.

Figure 2.7: Acoustic Phonon [1]

Figure 2.8: Optical Phonon[1]
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The dispersion curves for all types of phonons is shown in the figure 2.9 [1].

Figure 2.9: Dispersion relation for all types of phonons

2.8 Dispersion Curve

The dispersion relation between the frequency of the phonon ω and the wave vector K is given

by

ωk =
√

2ω2(1 − cos(ka)) (2.11)
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The speed of the phonon is the speed of the sound in the crystal and is equal to the slope of

the curve in the above graph. At the low values of k the dispersion relation is almost linear and

speed of the sound is ωa which is almost independent of the phonon frequency.

Figure 2.10: The Phonon dispersion relation[1]

2.9 Phonon Momentum

A phonon does not actually have a momentum but it interacts with the other particles like

protons, electrons, etc as if it has a momentum equal to ~K called the crystal momentum.

Phonons do not have a momentum because their coordinates involve relative coordinates; the

term exp(iNKa) in equation 2.13 becomes 1 when s is run over N atoms. Hence they do not

carry linear momentum. The phonon dispersion relation is mainly determined by the inelastic

scattering of neutrons with the emission or absorption of a phonon.
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ρ = M(d/dt)Σus (2.12)

ρ = M(d/dt)
∑

s

exp(isKa)us = M(du/dt)[1 − exp(iNKa)]/[1 − exp(iKa)] (2.13)

2.10 Phonon Heat Capacity

Heat capacity at constant volume is more fundamental than heat capacity at constant pressure

and is widely used. Heat capacity at constant volume is defined by Cv = (dU/dT )v where U

is the energy and T is the temperature. The contribution of phonons to the heat capacity of the

crystal is called lattice heat capacity which is denoted by Clat. The total vibrational energy of a

phonon at a temperature t in a crystal may be written as the sum of energies over all the phonon

modes[5].

EV =
∑

k

∑

p

UK,p =
∑

k

∑

p

(
〈n〉 + 1

2

)
~ω (2.14)

where 〈n〉 is the thermal equilibrium occupancy of phonons of wave vector Kand polarisation

p. The form of 〈n〉 is given by the Planck distribution function.

〈n〉 =
1

exp
[
~ω
kBT

]
− 1

(2.15)

2.11 Thermal Conductivity

The thermal conductivity coefficient K of a solid is defined by:

jU = −KdT/dx (2.16)
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where jU is the flux of thermal energy, or the energy transmitted across unit area per unit time

[1].

The thermal conductivity in any material is a random process; heat does not just enter at one end

and exit at the other end of a material without suffering any collisions rather it diffuses in the

material suffering constant collisions, hence thermal conductivity depends on the temperature

gradient not just temperature difference. The expression for the thermal conductivity K is given

by

K =
1
3

Cvl (2.17)

where C is the heat capacity per unit volume, v is the average particle velocity, and l is the mean

free path of a particle between collisions.

2.12 Thermal Resistivity

The phonon mean free path is determined predominatly by two factors; geometrical scattering

and scattering by other phonons. There would be no mechanism for collisions between the

phonons if the attraction force between the atoms were purely harmonic. The mean free path

would only depend on collisions of phonons with the boundary and with lattice imperfections.

An anharmonic lattice interaction provides a coupling between different phonons which limit

the value of the mean free path. At high temperatures the number of exited phonons is pro-

portional the temperature T . The collision frequency of a given phonon should be proportional

to the number of phonons with which it can collide. Hence the mean free path l is inversely

proportional to the temperature T .
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2.13 Umklapp Processes

The important three phonon processes that cause thermal resistivity are of the form given in

2.18

K1 + K2 = K3 + G (2.18)

where G is a reciprocal lattice vector.

There can be examples of wave interaction processes in the crystals for which the total wave

vector change need not be zero, but may be a reciprocal lattice vector. The meaningful phonon

K always lie in the first Brillouin zone, so any longer K produced in a collision must be brought

back into the first Brillouin zone by addition of a reciprocal lattice vector G. A collision of two

phonons with the negative wave vectors K can be an Umklapp process create a phonon with

the positive wave vector K. This process is also called a U process.

Figure 2.11: Normal K1 +K2 = K3 and Umklapp K1 +K2 = K3 +G phonon collision processes
in a 2-dimensional square lattice
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2.14 Fundamentals of Monte Carlo simulation

The Monte Carlo (MC) method is the branch of experimental mathematics that uses random

numbers. MC calculations can be considered as simulation experiments. The simulation results

have to be interpret in physical terms for better understanding of the problem. Its application

is in wide range of fields from casinos to simulation of phonon transport in nanostructures[7].

The application of MC can be divided into two major groups; direct simulation of statisti-

cal problems and simulation of a deterministic problem with a statistical interpretation which

mainly involves solution of a well defined mathematical equation describing a particular prob-

lem. The majority of real cases are a mixture of both the kind of applications. The application

of MC simulation to the transport equations is a good example. Transport problems are basi-

cally statistical in nature but they are also described by mathematical equation to some extent

of accuracy. The application of MC technique to high field transport in semiconductors was

first introduced in a semiconductor conference in 1966 by Kurosawa [11, 12]. Since then the

MC technique became popular in the field of transport theories in semiconductor devices.

2.14.1 Random Number Generation

Random number generation is an important part of the MC technique. The most popular and

simplest method of generating a random number with uniform distribution is to use a recursive

formula.

xi = ax(i − 1) + c (modulo m) (2.19)

All integers between 0 and m − 1, used as r=x/m

In the above equation the next number makes use of the previous one to generate a random

number. The sequence has to start with a freely chosen number x0 known as seed. The numbers

generated by equation 2.19 are not truly random in actual sense as in a sequence of random

numbers it should not be possible to predict the next number, but it is possible in the equation

2.19.
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The other method of random number generation is by transformation of the distribution gen-

erated from the recursion formula 2.19. Let f(t) be a single-valued function of the variable t

defined for ts < t < t f − f(t) [13] should have the properties that

f (t1) < f (t2) for t1 < t2 (2.20)

and

∫ t f

ts

f (t)dt = 1 (2.21)

condition 2.20 says that f(t) is a monotonously growing function of the independent variable t

and condition 2.21 says that the function can be normalised.

If ri is a flat random number of uniform distribution then r’ is a number of stochastic density.

2.14.2 Simulation Procedure

In most of the Monte Carlo simulations, first the geometry of the system is defined considering

the boundary contacts, air-boundary interface, etc. then the initial conditions such as position,

velocity, potential, field etc are assigned. Position and velocities are randomly assigned using

certain distribution. The time cycle is defined which is used for updating the velocity, position

and other properties after each cycle. Free flight, acceleration (not for phonons), displacement

is calculated before every scattering event. The scattering mechanism is determined depending

on the probability rate of each type of scattering process. In some models the electron-electron

scattering is considered independently similar to self scattering mechanism[14]. Now all the

properties of the system i.e. velocity, position, potential, field etc are calculated using appro-

priate laws.

The Monte Carlo method of simulation is a well established technique and it is not computa-

tionally very intense, hence this technique is quite popular in device simulations.
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2.15 Molecular Dynamics Method

Molecular dynamics is the study of motion of molecules (particles) to gain a deeper understand-

ing of many chemical reactions, fluid flow, phase transition and other physical phenomenon

such as heat transfer, droplet formation,etc. Much of the molecular dynamics method uses sim-

ple Newtonian mechanics. Scientific visualisation is important for understanding the results

of a molecular dynamics method. The history of position and velocity of millions of particles

have to be calculated and they need to be updated after every time step. The computations are

quite simple but are many in number. To achieve greater accuracy the time steps needs to be

quite small. The amount of computation at each step can be quite extensive. Thus it consumes

large amount of machine cycles.

There are mainly three different models of molecular dynamics: Hooke’s Law model, Lennard-

Jones model and hard sphere model[8, 15]. In Hooke’s model the force acts as if the particles

were connected to their neighbours by a spring. The Lennard-Jones model takes into account

the large repulsive force at very short interparticle distances, attractive forces at larger distances

and extremely weak attractive forces at very large distances. And in the hard sphere model,

the particles are treated similar to billiard balls- they bounce off each other when they are a

certain distance apart, otherwise they do not interact. Solving the equations of motion for a

hard sphere model requires solving simple geometric problems. It is very simple in one and

two dimensions, but a three dimensional approach requires the knowledge of vector analysis.

With Hooke’s model and Lennard-Jones model we must solve a system of differential equations

using Euler’s and Verlet’s method.

There are some basic assumptions in the molecular dynamics method, they are:-

a) each particle is treated as a point mass;

b) simple force rules describe the interactions between atoms ie the total force acting on a

particle due to the other particles is the sum of the forces between pairs of particles;
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fi =

n∑

j=1, j,i

fi, j (2.22)

c) Newton’s equations are integrated to advance the atomic positions and velocities;

d) thermodynamic statistics are extracted from the atoms.

The hard sphere molecular dynamics method is preferred over the other two models because, it

is easy to implement all types of phonon scattering mechanism using this molecular dynamics

method. The hard sphere molecular dynamics method is explained in detail.

The hard sphere method assumes the constituent particle as a spheres traveling at a constant

speed and in straight line before the collision. Determining the sequence of the collision is

computationally intense. If the particles collide head on and if we consider them only in one

dimension then, conservation of momentum equation 2.23 and conservation of energy equation

2.24can solve for the resulting new position and velocity[16].

m1u1old + m2u2old = m1u1new + m2u2new (2.23)

m1u2
1old + m2u2

2old = m1u2
1new + m2u2

2new (2.24)

In three dimensions the particles need not collide head on, it can be oblique as illustrated in the

figure 2.12. In an oblique collision, the interaction between the particles is along the line drawn

between the centres of the particles at the instant of the collision. There is no force exerted on

the particles in the plane tangent to the particles at impact. Only a component of the velocity is

exchanged along the line joining the centres of the two particles. This is illustrated in the figure

2.13.

The main step in updating the velocities is determining which particle is going to collide next.

The test to determine if two particles collide is divided into two steps; one to test if the particles

are approaching each other and the second is to test if the particles which are approaching each
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Figure 2.12: Oblique collision

other will come closest to the collision distance. The particles approach each other if the dot

product of the relative velocity and relative position of two particles is less than zero shown in

equation 2.27. The relative positions and relative velocities can be calculated and represented

in 2.25 and 2.26 respectively.

ui, j = u1 − u2 (2.25)

ri, j = r1 − r2 (2.26)

ri, j.vi, j < 0 (2.27)

The other step to determine if two particles collide or not is by the condition 2.28

||bi, j|| = σ; (2.28)
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Figure 2.13: Velocity exchange between two particles in three dimensions
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where

||bi, j||2 = ||ri, j||2 −
(
ri, j.vi, j

vi, j

)2

(2.29)

With some simple geometrical consideration from the figure 2.30, the time of collision [17]can

be calculated by the equation 2.14

Figure 2.14: Time of collision is the time taken by particle 1 to reach the collision point

ti j = − 1
||vi j||

(
ri j.vi j

||vi j|| + (D2 − ||bi j||2)1/2
)

(2.30)

The equation2.30 can be understood by observing the second term
( ri j.vi j

||vi j || + (D2 − ||bi j||2)1/2
)

as

the distance traversed in the direction of vi, j before the collision.

The change in velocity is calculated after the collision. There is no change in velocity in the

plane tangent to the spheres at the collision point; the velocity changes only in the direction of

the line between the centres of the particle as illustrated in figure 2.15.
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Figure 2.15: Change in velocity is only in the direction of line between the centre of the parti-
cles

Thus change in velocity is given by the equation 2.31.

∆vi = −∆v j =
(ri j.vi j)ri j

||ri j||2 (2.31)

The resultant velocity of both the particles is given by equations 2.32 and 2.33

vi = vi + ∆vi (2.32)

v j = v j − ∆v j (2.33)
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Chapter 3

Ideal Gas Simulation

3.1 Introduction

Ideal gas system is the simplest system to consider for simulation using molecular dynamics

as there are well established laws for the velocity distribution, energy distribution, boundary

conditions, etc. There are some basic assumptions when an ideal gas system is considered [18].

They are:

a) the gas molecules have no volume.

b) there are no forces between the gas molecules.

c) no energy is lost in collision of molecules; the impacts are completely elastic.

d) the temperature of a gas is the average kinetic energy of all of the molecules.

e) the interaction is only between a pair of particles(there are no multiple collision)

f) the boundaries of the system are elastic(the particle leaving the system through one wall

enters through the other wall with the same velocity).

The ideal gas is governed by an equation known as ideal gas equation 3.1.
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PV = nRT (3.1)

where P is pressure, V is volume of the gas, n is number of moles, R is the gas constant, T is

the temperature

The average kinetic energy of the ideal gas is given by the equation 3.2

KEavg =
3
2

kT (3.2)

where k is the Boltzmann constant and T is the temperature.

The root mean square velocity of the molecules is given by 3.3

vrms =

√
3RT
M

(3.3)

where M is the molar mass.

The Maxwell-Boltzmann energy distribution is shown in the figure 3.1

Figure 3.1: Maxwell-Boltzmann energy distribution
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3.2 Method Applied

A system consisting of 1000 identical particles in a 3 dimensional volume V is considered.

The interactions between the spheres is hard core interaction: u(r)=0 for r > σ and u(r)=∞
for r < σ. Where r is the separation of the centers of a pair of particles and σ is the collision

diameter. The volume V is a box with the penetrable wall and particles are constrained in such

a way that their number in the box remains constant. The particles which leave the wall through

one end are placed in the box with unchanged speed but with having opposite direction. The

position of the particle is changed based which boundary it has crossed. For the right and the

upper boundaries the particles position is changed according to equations 3.4 and 3.5, and for

the left and the lower boundary the particle’s position is changed according to the equation

3.6 and 3.7. This is illustrated in the figure 3.2. For all the particles positions and velocities

are randomized first using the random number generator. The positions and velocities of all the

particles relative to other particles are calculated using the equations 2.25 and 2.26. This means

each particle will have N(N-1)/2 relative velocities and N(N-1)/2 relative positions.

The particles are approaching each other if the dot product of the relative velocity and rela-

tive positions of the particles is less than zero, otherwise the particles are moving away from

each other. The particles will collide each other if the equation 2.28 is satisfied, otherwise the

collision time is treated as ∞. For the particles colliding each other, collision time called ti j is

calculated which is equal to the time required to reach the separation of D; D being the diameter

of the particles.

P(x, y, z) = 2P(boundary − right − coordinates) − P(x, y, z) (3.4)

P(x, y, z) = 2P(boundary − top − coordinates) − P(x, y, z) (3.5)

P(x, y, z) = 2P(boundary − le f t − coordinates) + P(x, y, z) (3.6)
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Figure 3.2: Elastic boundary illustration

P(x, y, z) = 2P(boundary − bottom − coordinates) + P(x, y, z) (3.7)

The collision time of all the colliding particles is put in a list and sorted in an ascending order.

The first element of the collision-time list or the lowest collision time, corresponds to the par-

ticles which will collide first. Once these particles collide their new velocities are calculated

using the equations 2.32, 2.33. The new positions of all the particles are calculated using the

equations 3.8. The lowest collision time is subtracted with all the members of the collision-time

list. Now the collided particles are again checked with all other particles for collision. If their

collision time with any other particle is less than the highest collision time in the list then it is

added to collision-time list. After every collision velocity, positions are updated. This process

is repeated till the equilibrium is attained. The energy of all the particles is calculate using the

formula 3.9. A graph of energy is plotted against the number of particles. This graph is then

compared with the Maxwell-Boltzmann equation. The mass of the particle can be calculated

using the equation 3.10. For simplicity the gas considered for the simulation is hydrogen. The

mass of one atom of hydrogen is 1.66 × 10−24 kg.
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Pnew = P + vnew(tcollision) (3.8)

E =
m||v||2

2
(3.9)

mhydrogenparticle =
atomic mass unithydrogen

Avogadro Number
(3.10)

3.3 Results

The simulations were run with varying particle numbers, initial velocity of the particle and the

size of the block. Since the energy of each particle is too small to represent in the graph, the

x-axis is scaled down to the value of the mass of a hydrogen atom(1.66 × 10−24). Figure 3.3

shows the simulation of 800 particles run for 100 iterations.

Figure 3.3: simulation of 800 particles over 100 iterations
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Figure 3.4 shows the simulation of 500 particles run for 50 iterations

Figure 3.4: simulation of 500 particles over 50 iterations

3.4 Conclusion

The molecular dynamics method of simulation was applied to an ideal gas to check if the al-

gorithm works. The algorithm was not just devised to simulate ideal gas, it considered three

dimensions and it considered that the entire system is divided into periodic blocks, and the par-

ticles leaving one block enters the adjoining block thus maintaining the same number of particle

when any block is considered. All these consideration are very useful when the algorithm will

be applied to phonon simulation. The graph of energy distribution against number of particles

did not exactly match the Maxwell-Boltzmann distribution but has a similar shape. There are

large numbers of particles at the average energy than at the high and low energy levels. This is

due to some of the particles which are not colliding with any other particles and their energy is

not changed from its average energy which is assigned in the beginning.
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Chapter 4

Future work

4.1 Introduction

Ideal gas simulation was a foundation for writing simulation codes in C++ for phonon trans-

port. Phonon’s properties are different from those of an ideal gas particle, their momentum

and energy conservation is governed by different laws. There are different types of phonon

interactions unlike only one interaction in an ideal gas. There are also two types of phonons as

mentioned in earlier chapters, but we neglect optical phonons as their effect on thermal trans-

port is negligible. Unlike in ideal gas simulation the number of phonons in a given volume

is constant. They also have different polarisation. A phonon is either assigned a longitudinal

acoustic(LA) branch or a transverse acoustic(TA) branch depending on the Bose-Einstein dis-

tribution. The phonons when they interact can either merge to become a single phonon or a

single phonon might scatter into two other phonons. Thus future work can be divided into three

categories.

a) implementation of phonons in the existing ideal gas molecular dynamics simulation.

b) phonon simulation applied to heterogeneous bulk materials like GaAs, AlGaAs, InGaAs

and GaN.

c) phonon simulation applied to devices such as MOSFET, HEMT and SOIFET
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4.2 Molecular Dynamic Simulation of Phonons

The details of the phonons properties that are to be considered and the scattering mechanisms

are discuscussed in this section of the report.

Initial volume of the block that is considered in the ideal gas simulation remains the same.

The number of phonons in the block can not be randomly assigned as in ideal gas simulation,

they are governed by the equation 4.1, but we get a very large number of phonons using this

equation which is difficult to consider for molecular dynamic simulation. This number can be

scaled down to a suitable number for our simulation.

N(p) =

Nb∑

i=1

〈n(ωo,i, p)〉D(ωo,i, p)∆ωi (4.1)

The positions of the phonons are assigned randomly in the block similar to ideal gas simulation.

The velocity will be the group velocity given by the equation 4.2 [1, 19].

Vg = 5kω (4.2)

The frequency of the phonon is determined using the dispersion relationship of the material.

The maximum cut off frequencies of LA and TA are found from the dispersion curve. The

frequency space betweenωmaxLA is divided into N different spectral intervals. A random number

is drawn which is within the spectral interval. The frequency of the phonon can be given by the

equation 4.3

ω = ω0,i + (2R − 1)
∆ωi

2
(4.3)
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4.3 Polarisation

To determine whether a phonon belongs to LA or TA branch the Bose-Einstein distribution is

used. A random number is drawn between zero and unity; if the random number is less than

Pi(LA/T A) then the phonon belongs to LA branch, otherwise it belongs to TA branch.

4.4 Scattering

Phonons engage is three-phonon elastic interacting of two types: Normal scattering and Umk-

lapp scattering process [1]. The energy conservation for both the types of scattering is given by

the equation 4.4

ω1 + ω2↔ ω3 (4.4)

The momentum conservation for normal scattering is given by the equation 4.5.

K1 + K2 ↔ K3 (4.5)

The momentum conservation for Umklapp scattering is given by the equation 2.18.

When both the momentum and energy are conserved only certain types of scattering between

the polarisation branches is possible: LA⇔ LA + T A and LA⇔ T A + T A [20, 21]

This part of work is the most challenging to implement in molecular dynamics using a hard

sphere modell. In ideal gas if two particles scatter they remain two particles even after the

collision but in the case of phonons two phonons scatter to become one. Exact method to

implement this process has to be researched.
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4.5 Phonon Simulation Applied to Heterogeneous Bulk Ma-

terial

In reality the materials used for semiconductor devices are not homogeneous, they are doped

with other materials. Taking the phonon molecular dynamic simulation to the heterogenous

bulk material is another challenging work. In the heterogeneous material the major constituent

can be considered as the main material and the other as a defect in the crystal when the simula-

tions are carried out. When the phonons encounter these defects, the scattering mechanism will

be different form the normal or Umklapp scattering. Momentum and energy conservation for

this kind of scattering has to be researched. Other problems in heterogeneous materials have to

be explored and solved.

4.6 Phonon Simulation Applied to Devices

The devices will have many interfaces between different materials. The molecular dynamics

simulation of phonons in these devices will be the most challenging task. The interface between

two different materials will lead to different densities and different sound speeds resulting in

an acoustic impedance mismatch. This acoustic impedance mismatch will have an effect on

phonon transmission. This effect needs to be considered in momentum and energy conservation

laws for molecular dynamic simulation of phonons
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