EN1042-Maple ${ }^{\circledR}$ Lab-02 Instructions

M Ghassempoory

January 23, 2006

1 Substitution

Use the subs, sort, collect and simplify commands to derive the following results
(a)

$$
\begin{aligned}
& A=a x^{3}+b x^{2}+c x+d \\
& x=X-\frac{b}{3 a} \Rightarrow A=a X^{3}+\left(c-\frac{b^{2}}{3 a}\right) X-\frac{b c}{3 a}+d+\frac{2 b^{3}}{27 a^{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& C=\frac{z-3}{z^{2}-3 z+2} \\
& z=2 x+6 \Rightarrow C=\frac{2 x+3}{2(2 x+5)(x+2)}
\end{aligned}
$$

2 Identities

(a) Find A, B and C in the following identity

$$
\frac{x^{2}+3 x+4}{(x+1)(x-2)(x+7)} \equiv \frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{x+7}
$$

(b) Find $C_{0}, C_{1} \cdots C_{4}$ in the following identity

$$
\frac{x^{4}}{(x+1)^{3}(x-1 / 2)(x+1 / 3)} \equiv \frac{C_{0}}{(x+1)}+\frac{C_{1}}{(x+1)^{2}}+\frac{C_{2}}{(x+1)^{3}}+\frac{C_{3}}{(x-1 / 2)}+\frac{C_{4}}{(x+1 / 3)}
$$

(c) Verify cases (a) and (b) by using convert function with parfrac option.

3 Integration

(a) Evaluate the following integrals (some of them may not have an analytical answer):

$$
\begin{array}{lll}
\int_{0}^{x_{0}} x^{5} \mathbf{e}^{-x} \mathbf{d} x & \int_{0}^{\infty} x^{5} \mathbf{e}^{-x} \mathbf{d} x & \int_{0}^{\infty} x^{\frac{5}{3}} \mathbf{e}^{-x} \mathbf{d} x \\
\int_{0}^{x_{0}} \sin (x) \sqrt{1-x^{2}} \mathbf{d} x & \int_{a}^{b} \frac{\sin (x)}{\sqrt{x^{3}}} \mathbf{d} x & \int \frac{1}{x^{5}+1} \mathbf{d} x
\end{array}
$$

(b) Evaluate the following integrals.

$$
\int \frac{1}{x^{4}+x^{3}+x^{2}+1} \mathbf{d} x \quad \int_{0}^{10} \frac{1}{x^{4}+x^{3}+x^{2}+1} \mathbf{d} x \quad \int_{0}^{a} \frac{1}{x^{4}+x^{3}+x^{2}+1} \mathbf{d} x
$$

(c) The center of gravity of the half circle with radius R shown in figure 1-(a) is at point $\left(x_{0}, 0\right)$ where

$$
x_{0}=\frac{\int_{x=0}^{R} x \sqrt{R^{2}-x^{2}} \mathbf{d} x}{\int_{x=0}^{R} \sqrt{R^{2}-x^{2}} \mathbf{d} x}
$$

find x_{0}.
(d) The center of gravity of the area under the half sine cycle shown in figure 1-(b) is at point $\left(x_{0}, y_{0}\right)$ where

$$
x_{0}=\frac{1}{A} \int_{x=0}^{\pi} x \sin (x) \mathbf{d} x \quad y_{0}=\frac{1}{A} \int_{y=0}^{1} y[\pi-\arcsin (y)] \mathbf{d} y
$$

where

$$
A=\int_{x=0}^{\pi} \sin (x) \mathbf{d} x
$$

find x_{0} and y_{0}.

4 plotting

To plot an expression E for variable x in range $a \leq x \leq b$, you may use the Maple function plot:

$$
\operatorname{plot}(E, x=a . . b)
$$

Use this function to plot the following functions for $0 \leq x \leq \pi$

$$
\sin (x) \quad \sin \left(x^{2}\right) \quad \frac{\sin (x)}{x+1} \quad x \sin (x)
$$

Look at the help section for plot command. Can you find a way of plotting all the given functions on a single plot?

(a) Half circle on (x, y) plane
(b) Area under $\sin (x)$

Figure 1: Areas for center of gravity calculations.

