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Preview

« Objectives/Scope

« Content addressable memory

« Hopfield formalism

« Probabilistic formulation of Hopfield nets w/quantum
mechanical analogies

« Spectral associative memory (SAM)

« Bit error rates of Bipolar-SAM (SNR, decoding time, &
oversampling)

* CMOS Implementation of Bipolar-SAM
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Objectives/Scope
What are the objectives of this work?

+  Tounderstand ilarities and between i and quantum
computation.

+  Toexploreq i that exploit quantum ism (spurious-free
recall?)

« To pare spe i y with other

ication
(e.g TURBO & LDPC decoders) in terms of coding gain, noise immunity, feasi bility and
ease of i mplementati on.
*  Crossertilization of telecommunications <=> neural networks <=> quantum mechanics.
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Two types of addressibility:

« “Address-addressibility” - retrieval by address

e.g.: RAM, HDD, CDROM
« “Content-addressibility” - retrieval by content

- requires long-range connectivity
& “mass-action”

— L W is analogous to
e B L e e an observablein
L 4 quantum mechanics

v isanalogous to an
observed state
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« Long-range, off-diagonal (non-local) connectivity leads to
“ mass-action” .
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« Extrinsic redundancy leads to error correctionand
noise immunity, but for a price! Spatial dimension.

The network isinitialized with a noisy, unknown pattern which converges to
one of the store attractors that is “ nearest” in terms of Hamming distance.

L

Mini-Symposium on Quantum Computing, College Station, Texas, May 4-6, 2001

Pattern coding: For agiven bipolar pattern, s, we wish to store in the associative
memory network, a network attractor may be constructed in the form of a
“wei ght matrix”:

200 w,owow, w?

2 ?

o 0owow,ow,

W ? l'_; smgmT 2 W ? ’vW w, 0 w, w7
P owowo0ow?
w,owow, w07

where ssT is the autoassociative outer product of pattern vector s.
Example: Let 217 then 2172 1 211 21 1 212 Observation: Encoding

2313 92513 271 1 2 one pattern
213 P13 171 13 automatically
and 20 1 212 encodes the
W2ss 21251 0 71} complement
P1 21 09 by default.
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Pattern recall, or error correction from extrinsic redundancy:
1) asynchronous matrix-vector multiplications

2) thresholding .
Example: Consider the following initial pattern: vl
a3
20 1 21747 22
Iteration 1: wv 221 0 21213 2 v233 (ochang)
2121 0413 a3
. 20 1 ?1721? A2
Iteration 2: w221 0 2% 2 v2 2 (o
P1 21 0%H13 a3
. 20 1 21217 2172
Iteration 3: W, 231 0 21212 2 v221)
121 0B R13
Iteration 4: 20 1 2wy 2
Wy, 2351 0 212317 2 v?2317 (nochange steady - state, sameas encoded patterr)
2171 0B »B
Steady state has been reached after 3 iterations.
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Hopfield Storage & Recall Example

Two vectors to be encoded: Flattened trajectory map & energies :

s92%1 71 1 1t

s92%1 11 217
Superposed attractors:

20 0 ?2 02
2 2
W?,:,O 0 0 ”2,,
?)?2 0 0 02

2
50 22 0 0%
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Flip-Flop (2-D Hopfield)

Theflip-flop is the simplest autoassociative memory (n=2).

| % B Bistable energy landscape:

State Transition Diagrams
o~
e, ¥ ",
P - & e
g e
. et
Synchronous Asynchronous (Images from Zurada' s book)
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Noise Removal vs. Content-Addressibility

Single-pattern associative memory serves only to remove noise. When only
one pattern is stored, content-addressibility is not possible and the recalled
pattern does not depend on the initial conditions.

Content-addressability is only possible when more than one pattern is stored
in the weight matrix. When multiple patterns are stored, the recalled pattern
depends on the initial conditions.

Multiple patterns: may be stored in the same weight matrix by summation:

w22 W,

2
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Probabilistic Formulation

We can define several spaces for the sake of developing a probabilistic
formulation of associative memory:
1 Paternspace:  e.g. a2-D bipolar space:

.4 ?17?
Direct: 22 212

3 23 313 %3
2A? 20? 0? 0?
2 2 A
Orthonormal: P2 2o P> P
W A W
27? 27? 27? 27?

Dirac:  |1) |12 |?11)  |?1,22)
2 Biased decoder possibility state space:  e.g. for encoded patterns=[ 1 1]7:
1 1
2,) 2210 22212
I20) 2310232129
Observation: One might say that the decoder isbiased in a superposition of the encoded
pattern and its complement.
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In general, the probability p; of asingle pattern |2,) being recalled

a,
from decoder state [24)? P al?) is Pi? R
H ?a
ra,” | a

3 L, &
P ?a
2 2

Furthermore, r?,)? |?,4) since P2

3 Recall probability density matrix :

027 al2)f2.|

e.g. consider the single encoded pattern ? = [1 1]T. Then,

2 2
221 0 0 0? 7072)001?#000:,
1 1 122 1%2 % 00 02
D, 23] 22|2121)(?121] 2222 22772 27 2
2 31dad 23 2azoaz 2 2% 10 Foood
ﬂ, % Dol
’ i POO0®
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If we ask “ what is the probability of recallingmemory pattern ? = [-1-1]77",
we may obtain the answer by projecting the density matrix onto the projection
operator, E,

2070 001 0 0 0 0?
%2 7 ?
,p 000
00 0 0?
?
000 15
asfollows: - ) ,
2?5 00 050 0 0 072
i »
D 0 0 0
p, 2 TraceDE, 227 0005 72,1
: : 00 070 0 0 02 2
192 »
00 23000 17
23 ?
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Observation: Cross-pattern i nterference occurs when the pattern space is of
low dimensionality. This leads to “spuriousrecall”. The network still projects
to one of the basis states, but it might not be one of the encoded states. This
occurs for two or more memories when the bias space is a sub-space of the

pattern space.

Encoding all possible patterns cancels all the bias:

(Doesnot lead to spurious recall since the bias space equals pattern space.)

Observation: Interference only occurs between patterns in conventional AM
since the wei ghting factors arereal. Like patterns can only reinforce because
phase shifts are not allowed.

225 0 0 02

11 20 25 0 02
D?-D,?2D,?2 ? 2=[11, ?=[1-17
302 250.20 0 e 02 where 2 =[11]7, 2=[1-1]

? ?

50 0 0 25

Mini-Symposium on Quantum Computing, College Station, Texas, May 4-6, 2001 14

Attractor space:
- Formed from the pattern space by the outer product

- Contains redundant copies of the pattern space
- Scales geometrically with pattern dimension rather than exponentially
like the orthonormal pattern space ; i.e. n2 rather than 2

Associative “ entanglement”_between channels?

The decoder state that results from the encoding of asingle pattern cannot be
factored into aproduct of states:
1 1

?2 )25 ?2=|?21,2:

1742319 2370
but the a priori formulation of the state can be factored:

B 291 1
?

M ? o2
?ssT 72 ?
188

Why? Because distant cells in the memory are connected by wires.

Mini-Symposium on Quantum Computing, College Station, Texas, May 4-6, 2001 15

How can we achieve the following using
associative memory?

Communicate information over anoisy channel?

Have complex weighting factors in the probabilistic treatment?

Alleviate quadratic and polynomial physical scaling complexity in a2-D
plane; e.g. asilicon chip?

"....In both neural and silicon the i i apses
and transistors) occupy no more than one or two percent of the space -
- "wire" fills the entire remaining space. The limitation of connectivity
in has clearly forced the oa
particular form...."

- Carver Mead, Cal Tech professor and founder of Neuromorphic
Engineering, and student & cohort of Feynman

See dlso: C. Mead, C: Quantum MIT Press, Sept. 2000.
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Beginnings of the Spectral Formulation

* Mass-action and long-range connectivity are present in nearly all neural
network models; afocusing of spatially distributed information to single
points in the network. Same for EM.

* Analysis & Synthesis:

- Define analysis as the spatial concentration of information to a point.
- Define synthesis as the spatial distribution of information froma point.

Analysis Synthesis
“Instar’ “Out-star’
“Favin' “ Fan-out’
Focus Diffraction
Inner-product Outer or tensor products
2
(alo) or (alplb) [a)(b] - or pacfa)b|
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We can achieve long-range, off-diagonal connectivity by spectral convolution:
Analysis in the frequency domain: VW™

HO10? JF)%0)
vti? D ver Spectral decoder state
n

noon
w1227 9 w, e Attractor wave

120 k71

n n n n n n
A2 DD P e 2D D P uwer

L e e
wewant @, ’?? VW, whichleadsto ?,??, ??7?
2

=> |eads to the notion of a“ beat frequency” .

Furthermore, long-range connectivity is made virtually in the frequency domain.
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Synthesisin the frequency domain:
- Memory synthesiss. W ?M ?1; M ?ss"
515?77 se
g'ﬁ':?? se’t
51%,1? ’7'7 se’ "7 s ? '7 '7 sse'" 7’

71 o

Letting band 1 bein a* spectral column form”_and band 2 in * spectral row forn’
a“ spectral tensor product" is formed.

- Decoder state synthesis:
viti? D ver

2
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Band Structures

» Channels are separated by integer multiples of a beat frequency, 2?2, and haverow-column form

Multi-Pattern Recall

* Encoding and recall of multiple, simultaneous 8x8 binary patterns
« Interference and spurious attraction are still a problem for small networks

Encoded
patterns =>

Patiem | Pattern 2

Recalled

patterns => i’ﬂﬂﬁ%jﬂ@jj

s

T

i
EEEHEEHEE
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Spectral Coding (AAM) Spectral Decoding (Recurrent AAD)
w
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Observations:

+  Notion of an attractor wave which replaces synaptic weight matrix

+  Bandwidth now scales geometrically or polynomially with pattern dimension rather than physical
dimension of the network

*  Longrange connectivity is madevirtually in the frequency domain
*  Weighting factors may now be complex
«  Aliasing may occur in memory formation and recall for non-complex formulations

Implications:
*  Attractor is now separable from the decoder => telecommunication applications

*  Spectral memory is now volatile memory v -

+  Physical realizations now scale linearly with pattern dimension

*  Like patterns may cancel each other if out of phase by ?

*  Anti-aliasing constraints must be obeyed for non-complex (in-phase and quadrature formulations)
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Overview of Spectral Formulations

Type of Pattern Remarks
Bipolar
(Digital modulators w/coding gain) * Attractor wave caries range space
* System point is“ pushed” into basin
1 Single-Pattern - Autoassociative * Quantization of recalled channels
- Hetercassociative * No* Bremsstrahlung’ to prevent
2 Multi-Pattern - Autoassociative * Content addressibility is possible
- Hetercassociative * Address addressibility isnot possible
Real-Valued
(Analog & digital MODEM s withcoding gain) * Attractor wave caries kernel space
* System point is* pulled" into basin
1 Single-Pattern: - Autoassociative * No quantization of recalled channels
- Hetercassociative * “Bremsstrahlung” must be prevented
2 Multi-Pattern - Autoassociative * Content addressibility is possible

* Addressaddressibility is possible
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Real-valued associative memory - Spatial formulation:

(“ Real-valued” refersto the pattern space, not the weighting coefficients)
Define asquared error function, E, and derive state update via gradient descent:

1 2
E?=
2
where error vector, €, is defined as the residue of
e?Wy; W2%21?2M"%

where | is the identity matrix, v isthe state of the decoder, and M isthe
composite memory matrix from n orthonormal patterns, s;:

M ? ’7 ?2M, ? ’7 ?ss’  (apriori spectral composition)

m m
%, 0 0 02

20 2 0 02

or M2U2UT where 222> 2 2

el 07?

%0 0 0 23
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The state vector may be adapted along the negative gradient of the global error
function:

dv ??C?E? ?cEe? ?2cWe ? 2cWWv
dt dv

And the eigenvalue may be adapted along the negative derivative of the global
error function:
97 59 4E 5 900 8€ 9 9 T2 ZM N2 5o 2 2cwivy
dt d? d? d?

Observation: Error calculation requires focusing of information from all over
the network (requires long-range connectivity and quadratic scaling), but
not the eigenvector and eigenvalue updates.

Observation: For single encoded memories, there is no need to adapt the
eigenvalue, which acts as an address. Also WW=W in this case, thus the
error vector isthe gradient.
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Probabilistic formulation of real-valued spectral associative memory:
- Pattern space is infinite, but the bias space is not => talk in terms of bias space.
- Intensity invariance:  1?4)? [?4)
- Biased possibility space: eg. |?4) ?? ©|?,); ¢ may becomplex
=> shows associatively mtanged”mchanneis result from simple encodings
- Recall density matrix:

aposteriori spectral
decomposition

D??D 2?72 p|?2)?] Rr?

2

where ‘? ‘> isthe a posteriori orthonormal representation (not the pattern itself).

Observation: |f observable D is“ measured” by detecting one of its eigenvalues, one

would say in quantum mechanics that a single measurement of D in state | ?
roduces avalue of ?; with probabilit .

P iwithp Y p ?Trace}?,)(2 D, "

And the expectation of ? relative to the it pattern: Trace} ? ‘><? ; ‘D’
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Real-valued associative memory in the frequency domain: Associative amplitude modulation

- “ Real-valued” refersto the pattern channel values, not the wei ghting coeffi cients
- Multi-channel, multi-carrier AM radio with content-addressi bility

M0 M®

M
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Real-valued associative amplitude modulation

- “ Real-valued” refersto the pattern channel values, not the wei ghting coefficients
- Multi-channel, multi-carrier AM radio

Recalled
data pattern

Datapattern,
or “ codeword” \?1'::;
to be encoded v
@
| '
& > S
Mini-Symposium on Quantum Computing, College Station, Texas, May 4-6, 2001 28

Spectral Coding

Associ ati ve ampli tude modulati on encodes data patternsinto an attractor wave.

In-Phase (1): Quadrature (1/Q):
L 173
1. Synthesis: Sm(mé? X2 €S2 syl Sy (®) aE’ixmsn(a aut)
2. Convolution: M(0) 2 Mos(t) ? Kny (052 1) M) 2 M (1) 7k, 5, s, 102 5,8, 10
3. Kernel Generation: W) 2k, () ?MO? W(H 2k, 40?2 MEOT
1?2 Inu(l)’cns'b';_;cnsc w2 cos@ 1) 1?2 Ig(l)?cns'i';_;cns(? wh) ws’b%‘ T
70 2 Pz
1,0 Attractor
5 Wave
e W
1 Synthesis: Kan 1 =
2. Convolution: 200 2K 2P 220 7Ky P XX, 007 75n?
4 20
3. Kernel Generation: 2u07k,2,022, 0" E
2007K7 & K oot
o %2,n-1

1,520
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Coding Coefficients for Normalized Signal Power

Table 1. Coding
Bipolar Patterns Real-Valued Patterns
Association | Coding ke ko | ke | K b ke | | e | o
Auto Complex L w| L F L ! A
& & = K| K T
“ In-Phase (O L 2h [ L P Lol L? ! A
& & T | K| T
“ Quadrature MQ) | L | I I T O A
& & i | M| M Vn-1
Hetero Complex 1 1l I ol [ eda A
I Rl | Rl - Z)cos (A1
“ In-Phase () 1 2|0 I RN EN T 7
= Rl | R e Teos @t
“ Quadrature MQ) | L 1l s ol [ eoda P
= Rl | Rl e Teos @t
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Spectral Recall

Recurrent associative amplitude modulation focuses extrinsic information distributed all
over the attractor band for subsequent spectral analysis, or down conversion.
1. Spectral Synthesis:
2,077 D vers
2. Spectral Convolution:
2.0 270w

3. Spectral Analysis (Down Conversion):

Q—{Er Hp>
[omio

4. State Update: ® D

WTT 22LpFReD (er®  (spectral gradient)

Vi ur
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Performance: Noise Immunity (RV-SAMs)

1
Transient response of a2-D @ rmo
autoassociative network for a sampled 4
sinewave input:
0 W 20 30 40 &0
(a) what the original signal would have Semple Nunber
been if sent directly over the noisy 2
channel with 10dB SNR, ® @ 0 |
(b) noisy attractor wave of the first
datasample, and 2
(c) recalled sine wave. Oy 100 2 30 a0 50ps
Tine
Comparing (c) with (a) illustrates the !
built-in noise immunity. © wmo
4
0 W 20 o 40 sw
Sample Number
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Performance: Real-Valued Recall

* Real-valued coding and recall of Marylin Monroe

E

ke i o e
bbeladabals
ol ladalale
BEREER

bkl
W
bkl
b o o

mERRan
rhelebelabal
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Performance: Settling Time & Accuracy of Recall

Butterworth recall (B) of various Chebyshev recall (C) of various order, with and
order, with and without notch filter (N). without notch filter (N). ? ,in=40dB
?,,,=40dB
EOD E) B B D = =
Aowwy  Tps  Tes  wes  nos Aowwy  Tps  Tes  nw  nes
PR 7 7 2 1 2 2
F} 5 = E 2 oz P o F]
FR- = ™ ® FR] 2w
i om 0 & i m i m
s b ™ W 5w i -
5 i w - m i m
B3N BAYN  BSIN  BOIN Bis OGN N GSEN GseN
Acway  Tes  Tee e Tee Ay Ts e T8 TEe
T E 7 17 T 2 17 I
2 » 1 w i PR 3 e %
3@ 2 El ER a & s
i s r a a2 a & @ @
s ow & @ s om = 7 14
o uw o i 2 o u " i "

« Inserting anotch filter at ?? in cascade with the LPF allows the beginning of the stopband to be doubled,
which increases the width of the passband and increasesthe speed of recall
« Butterworth recall filters appear to give the fastest response for higher accuracy of recall.
« Data rates: ~ 30kHz/ch (Nyquist) or 60kHz/ch. (baud) for 1 or 2 bits accuracy
~ 11kHz/ch (Nyquist) or 22kHz/ch. (baud) for 5 or 6 bits accuracy

<All results were obtained with abeat frequency of 2? =2? 50k rad/sec.
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Single-Pattern Telecommunications

« Butsingle patterns may be transmitted, one at atime,
across anoisy channel, to a spectral neural decoder with
spurious-freerecall dueto alack of interference
between patterns.

« Dueto volatility, basins of attraction disappear when
transmission of the attractor wave ceases.

« Coderatedepends on virtual architecture (auto/hetero),
which allows dynamic reconfiguration.

« Digital modulators with coding gain! MODEM-CODECs
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Bit error rate (BER) for various degrees of SNR, decoding period, & spectrum
spread for single-sideband attractor waves formed by quadrature coding

Decoding Time/ Data Rate
Increasing
{ beat
| frequency
The more“ spread-out” the |
spectrum is, the higher the o1 04 07 10 13 16 13 22 25 28 a1 4 a7 40
noise immunity (controlled [Ee———"
by the beat frequency) 1ew0
oo

1602

Decoding Time/ DataRate

Bit Eror Rate

1603

1604

SHR (Linear scale)
(Signal carried 4 data bits and 1 overhead bit)
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Bit error rate (BER) vs. oversampling

1.£400

e
£
Oversampling 4 [10E|
T2 |
E B
1E03
TE08
S 15 20 0 4 S0 60 70 @ 9
1= Mtz
Conclusion:

Limited energy/information is carried per unit time by the attractor wave and
Shannon's limit is obeyed
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CMOS Implementation of a Bipolar Decoder

+  Addition may beimplemented in
current domain - P

*  Mixersmay beimplemented with + J= -
Gilbert cells -

+  Integrators may beimplemented by 1
OTA-C stages -

+  Oscillators may be generated off- g
chip or implemented by ring ]
oscillators (must be phase-locked)

CMOS Hebbian Filter: Mixer + LPF

An additional transconductance stage followed by a capacitor and two
inverters

-
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CMOS Decoder Channel
Technology: .35? TSMC double-poly, quadruple metal n-well, 500u x 400u
Synthesis
Output Buffer Mixer
Single
Channel
Quantizer
w/Hysteresis
Analysis
Mixer &
LPF
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3D CMOS Decoder

Technology: .35? TSMC double-poly, quadruple metal n-well, 1.6mm x 1mm

Package: 192 pins connected to 208 PGA Bypass caps Output Buffers
3D Decoder:

Single
Channel

Global s j o ==
Connectivity
Mixer —l
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CMOS Implementation: Transient Response
Bit 0 encoded low, Bit 1 encoded high, Bit 2 encoded high

SAV_BV_4METAL decocerSdanct ache

Transient Res

\ ettt troctu
w it fBiOut X ot /EitOut2 o5 O

... Bits1&?2

N . . . . // BitOx

Attractor W
y State Wave

[} N \ N
Bit0
—1e . . . .
I 0 200 EN 0 50
time (5
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