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Overview of the SAM Family

Application
* Bipolar-Valued Patterns
1. Single-Pattern - i Digital ling gain
- Heter i Digital i di
2. Multi-Pattern - Autoassociative Spectral CAMs
- Heteroassociative Spectral CAMs
* Real-Valued Patterns
1. Sinde-Pattern - Autoassociative Analog/Digital MODEMs w/coding gain
- Heteroassociative Analog/Digital MODEMs w/reconfigurable
coding gain
2. Multi-Pattern - Autoassociative Spectral CAMs
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Practical Features

* Coding Gain at the level of Modulation:
- Extrinsic redundancy of neural networks combined with the in-phase, quadrature, and
complex schemes of nication:
+ Applications:
- Digital patterns over anoisy channel
- Analog patterns over anoisy channel
+ Performance:
- BER of lessthan 10"-3 for 0dB SNR for code rates around 1/5.
*  Implementation:
- Conventional blocks - summers, mixers, & filters.
- No ad hoc exponential log-likelihood functions
«  Scalability:

- Linear with pattern dimension
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Background on Hopfield Networks
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The network is initialized with anoisy,
unknown pattern which converges to one of
the Store attractors that is“ nearest” in terms
of Hamming distance.
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Flip-Flop (2-D Hopfield)
Theflip-flop is the simplest autoassociative memory (n=2).
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Bistable energy landscape:

State Transition Diagrams
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Associative Memories - Spatial vs. Spectral

 Spatia
- Restores stored vectors from noisy
initial conditions
- Simple architecture - -
- Attractors stored spatially "
- Superposition of attractors, but not T
superposition of memories

» Spectral
- Attractors manifested as waves e u; -
- Attractor exists separately from neural
decoder Rrmin
- Bandwidth scales as n? o
- Areascaesasn
- Non-local neural connectivity is made in the
frequency domain by e
spectral convolution
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Autoassociative vs. Heteroassociative Memories

Spatial Spectral
Autoassociative
e i
B g -
Heteroassociative
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Spectral Associative Coding & Recall

Associative amplitude modulation may be used to achieve non-local “ neural” connectivity
in the frequency domain by spectral convolution.
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Spectral Coding

Associative amplitude modulation encodes data patterns into an attractor wave.
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Coding Coefficients for Normalized Signal Power

Table 1. Coding
Bipolar Patterns Real-Valued Patterns
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Spectral Recall

Recurrent associative amplitude modulation focuses extrinsic information distributed all
over the attractor band for subsequent spectral analysis, or down conversion.

1. Spectral Synthesis:
2072 Puers
2. Spectral Convolution:

2.0 27,0 w ()

3. Spectral Analysis (Down Conversion):
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i) oo peed e ?  (spectral gradient) ® o
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4. State Update: ® e

Vi ur

Analog & Mixed-Signal Center, Electrical Engineering Dept., Texas A&M University 12




Band Structure

« Channels are separated by integer multiples of a beat frequency, ??, and haverow-column form.

Spectral Coding (AAM
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Anti-Aliasing Constraints:

Typical spectrum:
L .
1 AL %
Side-band anti-aliasing constraint: B,
(Lowest sum must be higher than highest difference) = 2 ? 252

« Alias-free memory formation
* Alias-free recall
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T elecommunication Applications

Digital modulators w/coding gain (built-in noise immunity)
Analog modulators w/coding gain “
Analog modulators for digital codewords nested inside a
“Turbo wrapper”
Content addressable telecommunications?

- Intelligent Bluetooth?

- Collective communications?

- Merge computation and communication into one?
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Single-Pattern Telecommunications

« Encoding multiple attractors and transmitting the

codeword as initial conditions would not work.
Why not?

« Butsinglepatterns may be transmitted, one at atime,
across anoisy channel, to a spectral neural decoder with
spurious-freerecall dueto alack of interference
between patterns.

« Coderatedepends on virtual architecture (auto/hetero),
which allows dynamic reconfiguration.
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Transient response of a2-D @ rmo
autoassociative network for a sampled
sinewave input:

0 W 20 30 40 &0
(a) what the original signal would have Semple Nunber
been if sent directly over the noisy 2
channel with 10dB SNR, ®) ) 0 M N{W‘
(b) noisy attractor wave of the first
datasample, and 2
(c) recalled sine wave. oy L T

Comparing (c) with () illustrates the

1
built-in noise immunity. © vy 0 W
4

Performance: Noise Immunity (RV-SAMs)
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Performance: Multi-Pattern Recall

« Encoding and recall of multiple, simultaneous 8x8 binary patterns

« Interference and spurious attraction are still a problem for small networks

Encoded
patterns =>
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Performance: Real-Valued Recall
* Real-valued coding and recall of Marylin Monroe in time
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Performance: Settling Time & Accuracy of Recall

Butterworth recall (B) of various Chebyshev recall (C) of various order, with and

order, with and without notch filter (N without notch filter (N). ? in=40dB
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« Inserting anotch filter at ?? in cascade with the LPF allows the beginning of the stopband to be doubled,
which increases the width of the passband and incr eases the speed of recall
« Butterworth recall filters appear to give the fastest response for higher accuracy of recall.
« Data rates: ~ 30kHz/ch (Nyquist) or 60kHz/ch. (baud) for 1 or 2 bits accuracy
~ 11kHz/ch (Nyquist) or 22kHz/ch. (baud) for 5 or 6 bits accuracy

<All results were obtained with abeat frequency of ?? =2? 50k rad/sec.
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Performance: Signal-To-Noise Ratio

¢ Double Sideband
Attractor Wave
(In-phase coding)

¢ Single Sideband

Attractor Wave .
3
(Quadrature coding) e
....improved BER for 5 ren
additional decoding time 1800 =
'
Tt e 208, o0 st -0
DAL A T A (AT
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Performance: Bit Error Rate (BER)
¢ BER isaffected by:
(1) Redundancy: Codeword or pattern dimension (n)
(2) Decoding Time, T,, or equivalently, datarate, .,
(3 SNR
(4) Spectrum Spread, or equivalently, beat frequency, ?f
(5) Computational Oversampling (fogy/fa)
» Decoding time isthe most effective variable in reducing
BER.
* Computational Oversampling is significant in
extremely noi sy conditions.
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Performance: Decoding Time/ Data Rate
«  Thelargest improvement is from-20dB ? -10dB and -10dB ? 0dB SNR.
« Not nearly as much improvement from 0dB ? +10dB SNR.
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1EM C
B
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Decoding Time (Beat Periods)
------- -20d8 SNR -10d8 SR 0GB SR e 0lB) SHR
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Performance: Spectrum Spread / Beat Frequency

* Themore “spread-out” the spectrum is, the higher the noise immunity.
*  The higher the beat frequency (color separation), the more spread-out the

spectrumiis.
1400
Increasing
PR beat
E frequency
5 em Decreasing
BER
1E03
wemow
(where signal is carrying 4 data bits and 1 overhead bity
Too1Ous, e 200z, fS=100MHZ  —+— Te=10us, df= SOHHE, fo=100MHz
o Tom s, =100k, f5=100MH
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Implementation: Bipolar SAM System Level

. Addition may beimplemented y oscillators Encoder 3 oscillators
in current d?)ymajn P b 4!“ (1] 4!""

*  Mixersmay beimplemented ®
with Gilbert cells @

* Integratorsmay be
implemented by OTA-C stages

*  Ogillators may be generated
off-chip or implemented by ring
oscillators (must be phase-
locked)

n oscillators.
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CMOS Implementation: Decoder
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CMOS Mixer

*  P-typemixer in an-well process ensures no body effect, or modulation of the threshold
voltage
«  Disadvantage: lower mobility for PFETs => larger devices => more area

CMOS Hebbian Filter: Mixer + LPF

« An additional transconductance stage followed by a capacitor and two
inverters
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CMOS Decoder Channel
Technology: .35? TSMC double-poly, quadruple metal n-well, 500u x 400u
Synthesis
Output Buffer Mixer
Single
Channel
Quantizer
w/Hysteresis
Analysis
Mixer &
LPF
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3D CMOS Decoder

Technology: .35? TSMC double-poly, quadruple metal n-well, 1.6mm x Imm

Package: 192 pins connected to 208 PGA Bypaﬁ caps Ol.ﬂpLIT Buffers

3D Decoder:
‘ L L ]

Single
Channel

Global
Connectivity
Mixer —l
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CMOS Implementation: Transient Response

Bit 0 encoded low, Bit 1 encoded high, Bit 2 encoded high

Bits1& 2

T2/etirccty p

EX

Attractor

State Wave

~ Bit0

Conclusions

* SAMs combine the extrinsic redundancy of neural networks with
thein-phase quadrature, and complex modulation schemes of
telecommunications

« Data patterns may be encoded into an attractor wave, which exists
separately from the neural decoder, by associative amplitude
modulation (AAM) and recalled by recurrent associative
amplitude demodulation (AAD)

* SAMsare multi-channe multi-carrier MODEM-CODECs

* SAMshave built-in noiseimmunity - BER < 103 may be
obtained for 0dB SNR for block lengths of only 5 bits

« SAMsrequire only conventional building blocks: mixers,
summers, integrators, & comparators.

« Dynamic reconfiguration of channel coding gain is possible.
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Analogies
*  Solid-state
- Band structures
- Band gaps

- Collective energy states
«  Electromagnetic
- Photon emission & absorption => difference energy into LSB
- Attractor wave
- Focus & defocus
- Mass-action & spectral convolution
¢ Quantum mechanical
- Classical analog of pure Bell states and “ entanglement”
- Attractor space scales geometrically, but QPS scales exponentially
- Interferenceof attractors
- Classical analog of “ non-local connectivity”
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