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Abstract—To care properly for critically ill patients in the intensive care unit (ICU),
clinicians must be aware of haemodynamic patterns. In a typical ICU, a variety of
physiological measurements are made continuously and intermittently in an attempt to
provide clinicians with the most accurate and precise data needed for recognising such
patterns. However, the data are disjointed, yielding little information beyond that provided
by instantaneous high/low limit checking. Although instantaneous limit checking is useful
for determining immediate dangers, it does not provide much information about temporal
patterns. As a result, the clinician is left to sift manually through an excess of data in the
interest of generating information. In the study, an arrangement of self-organising artificial
neural networks is used to automate the discovery, recognition and prediction of
haemodynamic patterns in real time. It is shown that the network is capable of recognising
the same haemodynamic patterns recognised by an expert system, DYNASCENE, without
being explicitly programmed to do so. Consequently, the system is also capable of
discovering new haemodynamic patterns. Results from real clinical data are presented.
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List of symbols X{(n) =laterally inhibited activation of ith haemodynamic
_ . pattern node (ART2) at time t=nT
4 = decay rate of.leaky Integrator nodes ) = excitatory learning constant of LTM traces between
Ciu(n) =variable resting potential of long-term memory
traces of (LTM) adaptive spectral timing (AST) AST .nodes .
. Y = inhibitory learning constant of LTM traces between
connections AST nodes
K = number of unidirectional delays between AST nodes i — binary Hebb condition variable

(predictive reach of the model)
=occurrence (digital) variable of pth physiological
event at time t=nT

1,(n)

M = maximum number of haemodynamic patterns

N = total number of synapses in the network

P =number of physiological events

sp(n) =recency of pth physiological event at time t=nT
T = sample period

y{n,n) =probability of occurrance of jth hamodynamic pat-
tern at time t=(n+n)T

= strength of pth physiological event component of ith
haemodynamic pattern vector

wix(n) =strength of kth delay synapse from ith to jth AST
node at time t=nT

=sensory activation level of ith haemodynamic pat-
tern node (ART2) at time t=nT
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1 Introduction

TO CARE properly for patients in the intensive care unit (ICU),
clinicians must be aware of haemodynamic patterns. Although
many of the processes involved in recognising these patterns
are perfunctory, they have not yet been automated on a large
scale. Instead, the information must be manually extracted by
clinicians. This burdensome and time-consuming work makes
the clinician’s job more difficult, distracts from critical tasks,
and reduces the chance of it being done correctly. Conse-
quently, there is a great need for automatic recognition of
haemodynamic patterns.

Several experimental expert systems have been created for
the purpose of integrating the data and automating the recog-
nition of several diagnoses (FAGAN, 1980; DAVIS et al., 1984),
but they have not become a permanent part of the ICU. Many
of these systems exist within the symbolic framework of
traditional rule-based paradigms and emulate the reasoning
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processes of clinical experts. However, problems exist with
such traditional expert systems owing to the heavy depen-
dence on rules. As traditional rule-based systems usually do
not have mechanisms for extracting rules from data, they
require much declarative information a priori. As a result,
rules must be manually extracted and explicitly programmed
into the system. There are several disadvantages with such a
system. First, the extraction of rules from experts is not always
consistent. Secondly, the task of programming a rule-based
system by itself is not very feasible, considering the patchy
nature of rules themselves. Finally, losses in translation can
occur between the expert and the computer, even if the experts
are able to articulate consistent rules in the first place.

Some rule-based systems, such as CN2 (CLARK and
NIBLETT, 1989), can learn the rules that drive them, thus
overcoming the tedious task of declaring them; however, they
often produce so many rules that they cannot be easily
interpreted. As the data are complex and rules are such
simple representations of knowledge, one rule tends not to
mean much by itself; therefore, the mass action of many rules
is required to represent the complexities of the data. Conse-
quently, the knowledge is distributed, and such a system has
lost much of the fundamental characteristic of rule-based
systems, i.e. the ability to express its function in succinct
common terms, yet it is still restricted to rule-based represen-
tations of knowledge.

An alternative type of expert system, the connectionist
expert system, is the subject of much interest (GALLANT,
1988; EBERHART and DOBBINS, 1991; Fu, 1991; POLL et al.,
1991; RIALLE et al., 1991; PAPADOURAKIS et al., 1992).
Connectionist expert systems learn procedural-like knowl-
edge a posteriori. By nature, these systems are highly
adaptive and massively parallel. They are usually very
‘trainable’ and have a tendency to discover their own
internal representations of knowledge, much like learning
rule-based systems; however, they are not restricted to a
rule-based framework and are free to discover more complex
spatio-temporal patterns. These features make connectionist
expert systems very attractive in data-rich environments
(MILLER et al., 1992).

The system proposed in this work is a haemodynamic
pattern recognition system capable of discovering, recognising
and predicting the same haemodynamic patterns as DYNAS-
CENE (COHN et al, 1990) without being explicitly pro-
grammed to do so. No assumptions were made beforchand
about what the system should and should not see. The system
is able to learn from its environment, discovering its own
haemodynamic patterns. Such a system could advance medical
knowledge by discovering unknown haemodynamic patterns,
in addition to recognising well known ones.

2 Background

Recognition of haemodynamic patterns requires the recog-
nition of sequences of physiological events. Events such as
vasoconstriction, vasodilation, hypotension, hypertension,
intravascular volume overload/depletion and increased peri-
cardial pressure can occur in different orders, or permutations,
indicating quite different haemodynamic trends. The physio-
logical events themselves are recognised by observing raw
(low level) physiological variables such as heart rate (HR),
cardiac output (CO) and blood pressure (BP). Many of these
variables are continuously measured in the ICU by automatic
devices to ensure that they stay within normal limits. Although
instantaneous limit checking is useful for determining
immediate dangers, it does not provide much information
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about temporal patterns. These data could easily be processed
by more advanced algorithms.

2.1 Temporal pattern recognition

When describing or tracking a dynamic system, a simple
snapshot is not always adequate. As dynamic systems evolve
along complex trajectories that have location and direction, a
single snapshot does not usually contain enough information
to define the state of the system. As snapshots convey location
information only, two very different states of the system can
have the same snapshot. To distinguish between two such
states, directional information must be extracted by observing
two or more successive snapshots in the order of occurrence.

The task of recognising haemodynamic patterns is a tem-
poral pattern recognition problem. For example, to discrimi-
nate between congestive heart failure due to fluid overload and
congestive heart failure due to pump failure, different permu-
tations of the same combination of three physiological events
must be distinguished. In each case, the same three events
occur, but in different orders. Consequently, attention must be
paid to temporal order.

2.2 DYNASCENE

Cohn et al. reported on a practical expert system called
DYNASCENE, which exhibited a connectionistic-like macro-
structure (COHN et al., 1990). It was shown that DYNAS-
CENE could recognise temporal patterns of physiological
events and associate them with the corresponding haemody-
namic disorders:

(a) congestive heart failure with fluid overload: intravascular
volume overload — vasoconstriction — hypotension

(b) congestive heart failure due to pump failure: myocardial
ischaemia — vasoconstriction — hypotension — intravascular
volume overload

(¢) hypovolaemia: intravascular
tion — vasoconstriction — hypotension
(d) sepsis: vasodilation — hypotension — vasoconstriction
(e) cardiac tamponade: increased pericardial pressure
—» vasoconstriction — hypotension

Although DYNASCENE represents a leap in the direction of
connectionism, it still requires explicit programming by
experts. As a result, the system is not able to recognise any
haemodynamic patterns other than those programmed into it.

volume deple-

3 Methods

A self-organising haemodynamic pattern recognition and
prediction system was created and simulated. The complete
model is shown in Fig. 1. It consists of three layers: (i) a short-
term memory (STM) layer, (ii) a temporal pattern recognition
(categorisation) layer; (iii) a temporal pattern prediction layer.
Each layer is described below.

3.1 Short-term memory layer

A bank of seven leaky integrators was used as a front-end
STM. This type of STM was used for two reasons: its ability to
perform current time processing, and its bias towards recency
of events. Each leaky integrator corresponded to one of the
physiological conditions denoted by /,, as shown in Fig. 1.
Using the same STM as Gjerdingen, the activation of a leaky
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Fig. 1 Self-organising temporal pattern recognition and prediction
network: three distinct lavers are present: a STM laver
composed of leaky integrator neurons; d temporal pattern
recognition layer composed of laterally inhibited winner-
take-all neurons; a temporal pattern prediction layer com-
posed of AST neurons (CARPENTER and GROSSBERG, 1991);
1VO = intravascular volume overload; VD = intravascular
volume depletion; IPP =increased pericardial pressure;
VC = vasoconstriction, VD =vasodilation; HYPO = hypo-
tension; HYPER = hypertension

integrator at time /= (n + 1)T (where T is the sample period) is
(GJERDINGEN, 1992)

syl + 1) = (1 = s, (n) +[1 = (1 = A)s, (M} (n) M

where 0 < 4 < 1. When physiological event p occurred, s,(1)
was driven to saturation in one iteration. The membrane
potential s,(r) remained saturated until physiological event p
ceased to exist, at which time it began to decay at a rate
determined by the forgetting term 4. Using the activations of
all STM nodes, a normalised STM vector was created. A
typical state of the STM is shown in Fig. 2.

Currently, there is no formal method for setting the forget-
ting term 4. However, it can be chosen according to some
common sense guidelines. 4 should be such that the ST™M
usually reflects the last few events. If A4 is too large, traces of
the events decay too quickly and there is not enough emphasis
on primacy. On the other hand, if 4 is too small, too much of
the past is stored and there is not enough emphasis on recency.
If A is either too large or too small, the STM vector tends to
look the same, regardless of what is happening. A good
starting range for A is between 0-1 and 0-5.

3.2 Haemodynamic pattern recognition layer

The temporal patterns in the STM were categorised accord-
ing to the degree of similarity with previously recognised
temporal patterns using a continuous-valued adaptive reso-
nance theory (ART2) network (CARPENTER and GROSSBERG,
1987). The state of the STM at any instant was represented by
one of M haemodynamic pattern categories (nodes) in the

'1
E

neural
activation

instantaneous event

Fig. 2 Tvpical snapshot of STM: as shown by the activation levels,
1, occurred first because it has had the most time to decay,
followed by [; and Is
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ART2 layer. The equations used were effectively the same as
the ART2 equations; i.e. the STM vector s was categorised by
calculating the degree to which it excited each node in the
ART?2 network and choosing the one with the maximum
activation. The ith activation was calculated by the dot product
between the ith haemodynamic vector v; and the STM vector s

x{n) = ;S,;(")Vp,‘(”) = s(n) - vi(n) (2)

]7
The winning node then laterally inhibited all other nodes such
that its own state was binary one and those of the others were
binary zero, as shown in eqn. 3, and it then adapted its own
haemodynamic pattern vector towards s using a winner-take-
all learning rule (HECHT-NIELSEN, 1987). As a result, the
ART2 nodes self-organised to recognise the STM patterns
conveyed by s over time.
1 if x,(n) = max(x;(n)), Vi

XM =10 otherwise ] , (3)
As a general rule, the capacity to remember haemodynamic
patterns, M, should be as high as possible to allow the system
to declare new categories to characterise new patterns ade-
quately; however, the vigilance parameter of the ART2 net-
work should be low enough not to start too many, otherwise,
performance can be compromised.

3.3 Temporal pattern prediction layer

For prediction purposes, a layer of neurons with adaptive
spectral timing (AST) connections (GROSSBERG and SCHMA-
JUK, 1989) was created on a one-to-one basis with each ART2
category node. In addition to being connected to a single
ART2 node, each AST node was connected to every other
node in the AST layer by 2K synapses (K synapses from i to /.,
and K synapses from j to i), each denoted by wy, for
i=12,...1, j=12,...., 1, and k=12,..., K, where [ was
the number of ART2 categories and K was the maximum
number of discrete time delays between two AST nodes. A set
of unidirectional pathways is shown in Fig. 3.

Discrete versions of the AST equations were used. They
functioned as follows: when the ith haemodynamic pattern
occurred at time ¢=nT, synapse w;; was activated at time
t=(n+k)T. The synaptic gain wy, was modified by an
adaptrode-based learning rule (MOBUS, 1990):

wi(n +1) = wi(n) + 0 pepp—iu (M — wi(n)]
— 7wy(n) — C(n)] 4)

where s ik Tepresents the Hebb condition (HEBB, 1949)
for synapse w;j, the variables ¢ and ; are excitatory and decay
rates, respectively, and C(n) 1s a variable resting potential

excitation from occurrence of
jth haemeodynamic pattern

excitation from occurrence of
ith haemodynamic pattern

Fig. 3 AST pathways from node i to node j
119



(0 < C(n) < 1) described by Mobus (MoBus, 1990). The
aptrode-based synapse was used to protect the synaptic gain
against transient associations. The Hebb condition was satis-
fied when any one of the delayed recognitions of the ith
haemodynamic pattern occurred at the same time as the jth
haemodynamic pattern, as given by eqn. 5. When this condi-
tion was satisfied, the synaptic gain between node i

O perp— () = Xi(n — k)X,(n) (5)

and j was increased for the kth pathway, in a classical
conditioning sense (PAVLOV, 1927).

To predict future haemodynamic patterns, the incoming sig-
nals to each neuron in the AST network were summed #’ time
units in advance:

I n+n'
vi(n,n') = X;kz Xi(n+n" — k)w(n) 6)
i=lk=n’
The resulting quantity y/{n,n’) represents an aggregate condi-
tional probability that the jth haemodynamic pattern will occur
at time ¢ = (n + n")T, given that certain haemodynamic patterns
were recognised & time units in the past.

The parameter K defines the predictive reach of the net-
work, i.e. the length of the longest temporal pattern that can be
recognised and predicted. This parameter should be set
according to the period between samples and the longest
temporal pattern. The product K7 should be no smaller than
the time that it takes for the longest observed haemodynamic
pattern to unfold.

4 Results

The network was implemented in UNIX C on a Sparc 20
workstation and simulated using two sets of data: a fabricated
set for calibration and actual clinical data. For the purpose of
recognising instantaneous physiological conditions, four phy-
siological variables were measured (clinical data set) or
fabricated (calibration set): heart rate (HR); systolic arterial
pressure (SAP); diastolic arterial pressure (DAP); and diastolic
pulmonary artery pressure (PAD). The instantaneous values
and rates of change of these variables were used to recognise
seven physiological events: intravascular volume overload,
intravascular volume depletion; increased pericardial pressure;
vasoconstriction; vasodilation; hypotension; and hypertension.
Of these events, six were the same as those recognised by
DYNASCENE.

4.1 Calibration

For calibration purposes, the model was trained on the same
five haemodynamic sequences recognised by DYNASCENE.
Raw data were provided to produce the required sequence of
events. The main parameters of the simulation were A4 = 0-25,
K=32, and M=78. By setting 4=0-25, haemodynamic
events could not decay too quickly from the STM, so that
sequences of adequate length could be recognised while not
placing too much emphasis on primacy information. By
setting K to 32, the system was able to recognise and predict
events that occur within 32 time units of each other (also
referred to as predictive reach). Finally, by setting M equal to
78, the system had a capacity to recognise, remember and
refine 78 different haemodynamic pattern exemplars.

Some of the results of the calibration are illustrated in Figs.
4 and 5, which show how the system reacted to two haemo-
dynamic sequences: congestive heart failure with fluid over-
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load, and congestive heart failure due to pump failure. Of the
five sequences used for calibration, these two were chosen
because they represent two different permutations of the same
combination of physiological events.

Figs. 4a—c show the progressive states of the STM during
the unfolding of congestive heart failure with fluid overload.
Fig. 4a shows the occurrence of intravascular volume overload
after a long period of seeing no physiological events. Fig. 4b
shows the occurrence of vasoconstriction, and Fig. 4c shows
the occurrence of hypotension. Note that the memory traces of
intravascular volume overload and vasoconstriction have
decayed by amounts that correlate to the elapsed time since
their occurrence. As a result, the state of the STM conveyed
the order in which the events occurred. Fig. 4d shows the
prediction of haemodynamic pattern C after seeing only the
first two events. Haemodynamic pattern C was one of the
temporal patterns that represented congestive heart failure
with fluid overload. Fig. 4e shows the eventual recognition
of haemodynamic pattern C after seeing the third and final
event.

Fig. 5, which shows how the system reacted to congestive
heart failure due to pump failure, is structured in the same
manner as Fig. 4. Note that in Fig. 5d and e the predicted and
eventually recognised haemodynamic pattern was not pattern
C, although the same combination of physiological events
occurred.

activation
oo
o8 ®

WO IVD IPP vC vD HYPO HYPER
a physiological event
c
Sos
Soa
-
8 0
\'/e] IVD PP vC vD HYPO HYPER
b physiological event
§ o8 ——
g 04 ——
0

HYPO HYPER

VO IVD IPP vC vD
physiclogical event

%oa

804 .

&80 !
13579 :=2ACEG I KMOQSUWY[ ]_acegikmogsuwy {}
d haemodynamic pattern

508

8 o4

8 o
13579 . =?ACEGIKMOQSUWY[ ]_acegikmoqsuwy{}
e haemodynamic pattern

Fig. 4 Prediction and recognition of congestive heart failure with
fluid overload: (a—c) state of STM is shown as the condition
unfolds: (a) onset of intravascular volume overload. (b)
onset of vasoconstriction; (c) onset of hypotension; (d)
prediction of congestive heart failure with fluid overload
before hypotension after the system has seen only the first
two events; (e) recognition of congestive heart failure with
fluid overload after hypotension after the system has seen the
third and final event: (d,e) x axis represents all haemody-
namic patterns; VO =intravascular volume overload;
IVD = intravascular volume depletion; IPP =increased
pericardial pressure; VC = vasoconstriction; VD = vasodila-
tion; HYPO = hvpotension; HYPER = hypertension
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Fig. 5 Prediction and recognition of congestive heart failure due to

pump failure: (a—c) state of STM is shown as the condition
unfolds: (a) onset of vasoconstriction; (b) onset of hypoten-
sion; (c) onset of intravascular volume overload; (d) predic-
tion of congestive heart failure due to pump failure before
intravascular volume overload after the system has seen only
the first two events; (e) recognition of congestive heart
failure due to pump failure after the system has seen the
third and final event: (d.e) x axis represents all haemody-
namic patterns; VO = intravascular volume overload;
1VD = intravascular volume  depletion; PP = increased
pericardial pressure; VC = vasoconstriction; VD = vasodila-
tion; HYPO = hypotension; HYPER = hypertension

4.2 Application

The system was also tested on actual clinical data measured
at 5 min intervals using the same parameters: 4 =025,
K =32, and M=78. A full 24 h of data (288 5 min samples)
from a cardiac patient were analysed. As expected with 5 min
interval samples, a large amount of variability was observed
from one sample to the next. Three events occurred repeat-
edly: intravascular volume overload, vasodilation and hyper-
tension. From this sequence, several interesting
haemodynamic patterns were discovered:

1 vasodilation and hypotension — hypertension — intravas-
cular volume overload

2 hypotension — hypertension — intravascular volume over-
load and vasodilation

3 hypotension — hypertension — vasodilation — intravascu-
lar volume overload

4 hypotension — vasodilation — intravascular volume over-
load and hypertension

5 hypotension — vasodilation —> hypertension — intravascu-
lar volume overload

6 hypotension — hypertension — intravascular volume over-
load — vasodilation

Although the physiological events occurred in the orders
indicated, many did not occur in a contiguous fashion. Instead,
they were mixed in with other events. As a result, more than

T T D T - A S - T o Y |
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one ART2 node could represent the same haemodynamic
pattern. Variations of the same permutation were represented
by sets of ART2 nodes. Although not shown in the list, the
time-between-event information was retained by each haemo-
dynamic pattern category, such that two haemodynamic pat-
terns with identical permutations but different interstimulus
intervals (ISIs) would still be distinguished. For example,
haemodynamic pattern 6 shows four distinct physiological
events occurring in serial order. As it turned out, the occur-
rence of hypotension and hypertension were separated from
intravascular volume overload and vasodilation by several
time units. This can be seen by the actual synaptic vector of
haemodynamic pattern 6, as shown in Fig. 6. Note the
difference in height between intravascular volume overload
and hypertension. The difference between activations indi-
cates that these two sets of events were separated by more than
a single time unit. If the contiguous version of the same
sequence had occurred, the STM vector would have been
different enough from this vector to justify a new category,
thus distinguishing between the two variations of the same
sequence.

5 Limitations

In addition to the need for much more clinical testing and
calibration, there are three limitations to this design. First, the
number of connections needed to connect the nodes that
represent haemodynamic patterns grows faster than linearly
with the number of remembered patterns:

M=1
NM,P.k)y=MP+2k) x (7N
x=I
For example, to increase the number of nodes from M= 78 to
M =79, with seven events (P=7) and a predictive reach of
k=232, would increase the number of synapses from 195170
to 200 169 (an increase of 4999 synapses). Alternatively, to
increase k to 33 from the same initial capacity would increase
the number of synapses to 201252 (an increase of 6082
synapses).

The second limitation is the learning time for a given
patient. To achieve a truly customised network for each
patient, the network needs to observe the temporal patterns
of that patient for some time. A reasonable amount of time
would be that needed to fully observe each temporal pattern
five or six times. Of course, a network that has been previously
trained on other patient(s) could be used as a starting point,
and then the network would slowly adapt itself to the new
patient. Having an experienced system monitor the patient
during the initial adaptation period of a new system would
certainly be more useful, however, such a system would have
to have a much higher capacity than an unexperienced system.

haemodynamic pattern vector

.

VO VD PP vC vD
physiological event

activation
=)
o &

HYPO  HYPER

Fig. 6 Synaptic weight vector of haemodynamic pattern 6, this
pattern category shows the sequence hypotension —> hyper-
tension — intravascular volume overload — vasodilation
with a lag of more than one time between the first
and last two events; VO = intravascular volume overload,
1VD = intravascular volume depletion; PP =increased
pericardial pressure,; VC = vasoconstriction; VD = vasodila-
tion: HYPO = hypotension; HYPER = hypertension
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The third limitation of this approach is that it has no
mechanism for categorising two temporal patterns played
out at different speeds (time-scales) as the same pattern.
Currently, these two patterns are stored as two different
patterns, which causes two potential problems: the capacity
of the network must be higher to store multiple scales of the
same pattern; and the network cannot recognise a time-scaled
version of a previously stored pattern without seeing it first.
There are several ways to accomplish time-scale invariance
that were not employed in this study: employing multiple
delay sets that are scaled versions of each other, with a lateral
inhibition to choose the best representation, employing adap-
tive delays; and using expectation and fulfilment models to set
the tempo of recognition and recall.

6 Discussion

In addition to the ability to recognise haemodynamic
patterns, the model is able to predict several haemodynamic
patterns before they completely unfold in time. A haemody-
namic pattern that is defined by a permutation of several
physiological events, for example, can be predicted after the
first couple of events. Other haemodynamic patterns that occur
regularly, or even semi-regularly, can be predicted if they fall
within the predictive reach of the network.

A very interesting property of the interconnected adaptive
spectral timing network has emerged: the ability to predict
temporal patterns based on rhythm. At first, this property was
alarming, but on further reflection it seemed natural for such a
network, which is so deeply rooted in discovering interstimu-
lus intervals, to become caught up in rhythm. For example, if
haemodynamic pattern B was frequently made to occur & time
units after haemodynamic pattern A4, the AST network learned
to predict pattern B based on seeing pattern 4. If haemody-
namic pattern 8 was suddenly removed from the input stream
altogether, pattern B was still predicted by the recognition of
pattern 4. Even though the first couple of events of pattern B
did not occur, the network still predicted the last physiological
events of pattern B. This result is interesting because the
system predicted pattern B without seeing any of the events in
pattern B. If pattern B represented congestive heart failure, for
example, then the system would have predicted congestive
heart failure without seeing the events associated with con-
gestive heart failure, even if the state of the STM had
completely decayed since the onset of pattern 4. Essentially,
the AST network detached itself from external cues, confident
in its own internal momentum. Of course, the system never
recognised pattern B because it never actually occurred; it just
predicted it. This feature could prove very useful in discover-
ing haemodynamic patterns that are longer than those simu-
lated in this study.

Another interesting property of the predictive network was
its ability to predict haemodynamic patterns that occurred at
varying frequencies. For varying 1Sls between two patterns,
the first derivative of the predictive potentials; v/(n, n'), with
respect to time, sometimes correlated more closely to the
probability of occurrence than absolute magnitude. For exam-
ple. if pattern B usually followed sequence 4 20-30 time units
later, then the predictive potentials of the nodes that recog-
nised variations of pattern B tended to grow more (high first
derivative) than other potentials during the 20-30 time-unit
window. It is expected that this feature would be extremely
useful for discovering real-world haemodynamic patterns in
the ICU.
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7 Conclusions

The collection of artificial neural networks presented in this
study is able to recognise haemodynamic patterns without
being explicitly programmed to do so. As the system learns
self-organised representations of input data, it requires no
declarative knowledge a priori, other than the preprocessing
required to recognise fundamental physiological events. As a
result, it is able to discover unknown haemodynamic patterns,
in addition to those that are well known. It is expected that
such a system, combined with robust methods for preproces-
sing and cross-verifying raw data, could be used in the clinical
environment in real time, to assist clinicians in caring for
critically ill patients.

References

CARPENTER, G.A., and GROSSBERG, S. (1991): ‘Pattern recognition
by self-organizing neural Networks,” (MIT Press, Cambridge,
Massachusetts)

CARPENTER. G.A.. and GROSSBERG, (1987): ‘ART 2: Self-organiza-
tion of stable category recognition codes for analog input patterns,’
Appl. Opt., 26, pp. 49194930

CLARK, P., and NIBLETT, T. (1989): ‘The CN2 induction algorithm,’
Machine learning, 3(4), pp. 261-283

COlN, A.L, ROSENBAUM, S., FACTOR, M., and MILLER, P.L. (1990):
‘DYNASCENE: An approach to computer-based intelligent cardi-
ovascular monitoring using sequential clinical *scenes’ # Meth. Inf.
Med., 29, pp. 122-131

DAVIs, R., BUCHANAN, B., and SHORTLIFFE, E. (1984): ‘Production
rules as a representation for knowledge-based consultation pro-
gram,” in: ‘Readings in medical artificial intelligence: the first
decade,” (CLANCEY, W., and SHORTLIFFE, E. (Eds.) (Addison-
Wesley, Reading, Massachusetts)

EBERHART, R.C., and DOBBINS, R.W. (1991): ‘Using neural networks
in hybrid medical diagnostic systems’, Proc. 13th Ann. Int. Conf.
of IEEE Engineering in Medicine & Biology Socicty, Section 4,
pp. 14701471

FAGAN, L (1980): ‘“VM: Representing time dependent relations in a
medical setting.” PhD. Thesis, Stanford, California

Fu. L. (1991): *A hybrid medical expert system.” Proc. 13th Ann. Int.
Conf. of IEEE Engincering in Medicine & Biology Society.
Section 4, pp. 12901291

GALLANT. S.I. (1988): ‘Connectionist expert systems,” Commun.
ACM, 2, (31), pp. 152169

GIERDINGEN, R.O. (1992): ‘Learning syntactically significant tem-
poral patterns of chords: a masking field embedded in an ART3
architecture,” Neural Netw., S, pp. 551-564

HERR, D.O. (1949). ‘The organization of behavior,” (Wiley, New
York)

HECHT-NIELSEN, R. (1987): ‘Counterpropagation networks,” Appl.
Opt. 26, (23), pp. 49794984

MILLER, A.S., BLOTT. B.H., and HAMES, T.K. (1992): ‘Review of
neural nctwork applications in medical imaging and signal
processing.” Med. Biol. Eng. Comput., 30, pp. 449464

MoBUS, G.E. (1990): ‘The adaptrode learning model: applications in
neural network computing.’ Technical Report CRPDC-90-5,
Center for Parallel and Distributed Computing, University of
North Texas, Denton

PAPADOURAKIS, G.M., GAGA, E., VARELTZIS, G., and BEBIS, G.
(1992): ‘Use of artificial neural networks for clinical decision-
making (maldescensus testis).” Proc. Int. Joint Conference on
Neural Networks (IJCNN’92), Baltimore, Maryland, USA, June
1992

pavLov, LP. (1927); ‘Conditioned reflexes,” (Oxford University
Press)

PoLl, R., CAGNONI, S., Livl, R., CopPINI, G., and VALLI, G. (1991):
‘A neural network expert system for diagnosing and treating
hypertension,” /[EEE Comput., March, pp. 64-71

RIALLE, V., OHAYON, M., AMY, B., and BESSIERE, P. (1991): Medical
knowledge modeling in a symbolic-connectionist perspective,’
Proc. 13th Ann. Int. Conf. of IEEE Engineering in Medicine &
Biology Societv, Section 4, pp. 1109-1110

March 1957



Author’s biography

Ronald G. Spencer gained his BSc in Electrical
Engineering from GMI Engineering and Manage-
ment Institute in Flint, Michigan, in 1991. After
graduation, he worked for General Motors, as a
Programmer/Associate Engineer. After obtaining
his MSc in Bio-engineering from Texas A&M
University in 1994, he joined Dr. Edgar Sanchez-
Sinencio at Texas A&M and is now pursuing a
PhD in Electrical Engineering, with emphasis on
VLSI design for neural networks and image processing. His current
research interests include monolithic implementation of multiresolu-
tion analysis wavelet filter banks for face recognition.

o o . PR - e ey N P RAnmwunie 10077 123



