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Bipolar Spectral Associative Memories

Ronald G. SpenceMember, IEEE

Abstract—Nonlinear spectral associative memories are pro- [22]—-[24], which require only local connectivity, CAMs require

posed as quantized frequency d_Omarin rf1orm|ulr?1ltions of nkonlinear, nonlocal connectivity and therefore scale quadratically or poly-
recurrent associative memories in which volatile network attrac- nomially with pattern dimension.

tors are instantiated by attractor wavesln contrast to conventional . . .
associative memories, attractors encoded in the frequency domain In this paper, a new kind of hetwork called spectral associa-
by convolution may be viewed asvolatile on-line inputs rather tive memory (SAM) [25], [26] is proposed. Compared to the

than nonvolatile, off-line parameters Spectral memories hold conventional formulations, the most distinguishing feature lies

several advantages over conventional associative memories, N4, o representation of the attractors. Whereas the attractors of
cluding decoder/attractor separabilitgpnd linear scalability, which . -
make them especially well suited for digital communications. Bit SPatial CAMs are embedded into a neural network as an array of

patterns may be transmitted over a noisy channel in a spectral Synaptic weights, the attractors of spectral CAMs persist tran-
attractor and recovered at the receiver by recurrent, spectral siently as a superposition of waves. Exploiting the orthogonal
decoding. Massive nonlocal connectivity is realizedvirtually, property of sine and cosine waves and the richness of spectral

maintaining high symbol-to-bit ratios while scaling linearly with luti | | tivit b hieveduall
pattern dimension. For n-bit patterns, autoassociative memories convolution, nonlocal connectivity may be achievattually,

achieve the highest noise immunity, whereas heteroassociativereducing the spatial dimensions of the hardware and allowing
memories offer the added flexibility of achieving various code for useful applications in the field of communications. Unlike

rates, or degrees of extrinsic redundancy. Due to linear scalability, Hopfield networks, which scale quadratically with pattern di-
high noise immunity and use of conventional building blocks, - ' .
mension, SAMs scale linearly.

spectral associative memories hold much promise for achieving . o
robust communication systems. Simulations are provided showing ~ The fact that convolution may be used to form associations

bit error rates (BERs) for various degrees of decoding time, has been appreciated for several decades in the optical storage
computational oversampling, and signal-to-noise ratio (SNR).  fie|d [15]-[21]; however, the main thrust behind such work has
Index Terms—Associative memory, associative modulation, at- been innonvolatilememories where attractors were stored to
tractor waves, digital communications, extrinsic redundancy, noise some medium. The attractors described in this paper are not
immunity, virtual nonlocal neural connectivity. stored in a neural decoder or glass plate—they are erly
pandedby a neural decoder. Rather than embedding neural at-
|. INTRODUCTION tractors, or “memories,” directly into the spatial architecture of
a network, (Fig. 1) attractors may be created in the frequency
domain and transmitted to a spectral neural decoder for recall
INCE Hopfield's seminal papers in 1982 [1], recurrent aSg:ig. 2). Whereas spatial attractors are inseparable from the
ociative memories have been studied extensively [2]-[§L;ra| network in which they are embedded, spectral attractors

and new networks proposed [7]-[9] in which nonlinear feedq,y eyist separately. Upon activatidemporary basins of at-

back is used to recover S.tore.d. patterns in the presence of NARfction are created in the network’s virtual recall potential that
Because memory recall is initiated by partial or noisy pattena%use the neural decoder to unfold one of the memories; a clas-

and is completed without an address, these networks are calgal analog of Sarfatti-Bohm wave/particle interaction theory

gorized as content addressable memories (CAMs). A numberi YWwhich a pilot wave guides the material state of subneuronal
CAMs have been implemented in both electronic [10]-[14] anH P 9

. matter into a basin of attraction of the Q landscape [27]. More
optical [15], [16] forms. ;
S . than one memory pattern may be enfolded and superimposed
Associative memories bear some resemblance to holograms . . . . .
- . Into the attractor wave at a time, in which case the initial condi-
[17]-[21] due toextrinsic redundancef stored patterns in the . . . - .
. . - , tions are important, but for simple communication applications
matrices that specify neural connectivity. Every neuron’s loca

X ) A . only one spectral attractor is allowed to activate the neural de-
synaptic weight vector contains information about the globa ! :
. oder at a time for spurious-free recall.
pattern. Like a hologram, the parts make up the whole and the : .
. . L . Spectral attractors created from bit patterns may be superim-
whole makes up the parts; i.e., contained within the pieces of a : . .
broken holoaram is the image itself. Such hiah dearees of Iposed into the same attractor wave, radiated into the electro-
9 IS the image iseft. Su '9 9 r%agnetlc spectrum, and expanded by a remote decoder with no
dundancy lead to noise immunity, but usually at the expen

f ial di . Unlik il | ks (CNN ﬁysicalconnection.Suchadecoderis:amstantiated,attrac-
of spatial dimension. Unlike cellular neural networks ( Sorless decodewith no net motive until activated by a coherent

spectral attractor. Autoassociative spectral decoding is defined

A. Introduction

Manuscript received May 2, 2000; revised December 4, 2000. as

The author is with the Department of Electrical Engineering, Analog
and Mixed-Signal Center, Texas A&M University, College Station, TXy, = sgn </ W(t)v(t) COS((A}(M‘,t) dt) ; 1=0,1,...n-1
77843-3128 USA (e-mail: rspencer@tamu.edu).

Publisher Item Identifier S 1045-9227(01)03568-8. Q)

1045-9227/01$10.00 © 2001 IEEE



464 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001

(Stored) Synaptic

Weight Matrix
{Spatial Domamn})
\ —
Exn?mplar 3 Spatial W Ingc;r;iz’;ed S5 Restored or
Bipolar ---- Encoder [~ 7" " Decoder Recalled
Patterns W Bipolar Patterns

L3

Noisy, Eandom, or Incomplete
Bipolar Patterns
(Trutial Conditions)

Fig. 1. Schematic of a conventional Hopfield network. Patterns are encoded into a synaptic weight matristdhediis a neural decoder.

where [I. SPATIAL ASSOCIATIVE MEMORIES
W(t) zg:taecr':qo'r wavewhich carries at least one enfoldedy 5 10-ccociative Memories
Wi 4th anaiysis frequency; The conventional Hopfield network [1], is a nonlinear, au-
v(t)  continuously updated state wave; toassociative recurrent network in which noiseless patterns are

restored from noisy initial conditions (Fig. 1). Noiseless exem-
plars are stored in a weight matrix that specifiesspatial con-

n-l nectivity of the network; a superposition @fsynaptic weight
u(t) = Z v; cos(Wy;t) (2)  matrices formed fromp n-dimensional bipolar bit patterns as
i=0 follows:
whereuw; is theith neural state or recalled hit,,; is theith syn- 1 &
thesis frequency defined according to antialiasing constraints. W=- Z (M(m) - I) 4)
The autoassociative attractor wave is defined as Pz

wherel is the identity matrix andM is the memory matrix

pr
W(t) = ky Z (M(m)(t) _ I(t)) (3) formed by the outer product
mt MO — pmpm)T (5)
where

kw attractor wave scaling factor; andb(™) are bit patterns to be stored, Whé&@’) e{-1, +1}
m pattern index; andm = 1, 2, ..., p. Subtractingl from M eliminates self-
I(t) identity or reference wave for canceling diagconnectivity in the decoder by cancelling the diagonal elements

onal frequencies; of W.1
M (¢) memory wavén which a single pattern is en- W is storedin a neural decoder where it persists asom-

folded. volatile memoryn the synaptic weights of the network. Because

Heteroassociative spectral coding does not need reference wégedecoder store®, the encoder is not needed during recall,

subtraction and requires an additional virtual layer state bagéi@noted by the dashed line in Fig. 1. Noisy patterns are pro-

and antialiasing constraint. vided as initial conditions, and the neural decoder converges to
Conventional associative memories are reviewed in Sdbe closest stored pattern. During recallinear combinations

tion Il, followed by autoassociative spectral memories iif W andv are computed, followed by quantization:

Section lll. In-phase (1) and quadrature (I/Q) formulations are 1 . . .

presented, followed by antialiasing constraints and scaling v;  =sgh (az‘)? a=Wv (6)

complexity. These formulations are distinguished by the

attractor wave; in-phase (nonquadrature) coding generate¥’

double-sideband (DSB) attractor, and quadrature coding g?-Heteroassociative Memories

erates a single-sideband (SSB) attractor. A two-pattesn®

example is given to illustrate content addressability. The bandPatterngairs are stored in heteroassociative networks

structures and antialiasing constraints for heteroassociative

spectral memories are presented in Section IV. In Section V, a {(bgl), bél)) ) (b§2), b§2)) s (b§”>, bé”)} (7)

single-pattern, five-bit autoassociative SAM is characterized in

terms of bit error rate (BER) for various decoding times, com, ﬁ:;:i't'gg ]EQI,e Ig'rzgeonals Is necessary for low-dimensional patterns, but may

pUtat'on.al oversamplm_g, and. signal-to-noise ratios (SNRS)ZAsynchronous update is required to avoid limit cycles in the conventional
Conclusions are given in Section VI. formulation.

I'herel is the iteration index and update is asynchrorfous.
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Fig. 2. Schematic of a spectral associative memory. Patterns are encodedatti@etor wavethat activates a spectral decoder to recall a memory only when
the spectral attractor is being transmitted.
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Fig. 3. Block diagram of an autoassociative spectral associative memory with: (a) in-phase encoder and (b) in-phase decoder. Patterns ate greoded in
attractor waveby associative modulation. The attractor wave creates a temporary basin of attraction in the spectral decoder, which recalls the memory by recurrent
associative demodulation. Nonlocal neural connectivity is madeally in the frequency domain.

whereb; andb, aren;- andns-dimensional bipolar patterns, lation. Bit patterns may be encoded intoattractor wavethat
respectively, ang is the number of pairs to be superimposed transmitted to a spectral neural decoder and recalled by spec-
into the same weight matrix. Heteroassociatividirectional tral convolution, achieving nonlocal neural connectivity virtu-
associative memorig8AMSs) [7], [8] have two neural layers, ally with no direct physical connection. See Figs. 2 and 3. Fre-
but can be shown to be special cases of the Hopfield netwarieency-domain representations, also used in [28], are promising
when the two patterns are made into one. The synaptic weidifttm a very large scale integration (VLSI) standpoint because

matrix is data that would otherwise be distributed spatially, thus taking
up silicon area, may be redistributed in the frequency domain
p . .
W — 1 Z b(m)b(m)T ®) to reduce spatial complexity. Whereas the attractors of conven-
P Loz tional decoders are embedded directly into the neural decoder,

m=1

spectral attractors may exist separately from the neural decoder.
which containsz;n, weights and requires no diagonal cancelAs such, the neural decoder recalls nothing until an attractor
lation. Heteroassociative recall proceeds in the same manwewe activates it. Furthermore, the memory is recalled only as
as autoassociative recall where the state updates are driveriomg as the attractor wave is sustained—a volatile memory.

a; = Wv, anda; = WTv,. Although the amount of ex- _

trinsic redundancy is less than autoassociative redundancy, fneSPectral Encoding

hardware still scales polynomially and connectivity is still non- A number ofn-dimensional bipolar bit patterns formed by
local in a two-dimensional (2-D) plane. spectral convolution may be superimposed into one composite
attractor wave as follows:

[ll. A UTOASSOCIATIVE SPECTRAL MEMORIES

p
Conventional assqciative mer_nqries may bg reformulated in W(t) = ky Z (M(m,)(t) _ I(t)) 9)
the frequency domain by associative modulation and demodu- o’
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Fig. 4. Example of 2-D associative modulation.

where give the simplest antialiasing constraifit3.he corresponding
k.,  attractor wave scaling factor; DSB version of the identity wave is defined as
n—1
m pattern index; IDSB(t) =k 72_% Ccos (wILZ.t) + cos (w[UZ. t) ; k, = %
I(t) identity or reference wave for canceling virtual self- o (13)

connectivity; wherewrr, andwyy are identity frequency vectors that contain

) ) . “diagonal frequencies” of the lower- and upper-sidebands of
M(t) memory wave in which the bit patterns are encoded tne attractor wave, respectively. These frequency bands are ob-
tained by subtracting and adding, respectivelyabd@ingbands

See Fig. 3(a). The DSB version of the memory wave is formegl, o «tor form

by in-phase codingor associative modulation as follows:
WIL = Ws1 — Ws2, Wiy = ws1 +wsa2.

(14)

The attractor wave, a spectral equivalent of (4), may be trans-
mitted to a spectral neural decoder over a noisy channel. En-
coded within the LSB ofi¥pgr(t) is a spectral attractor for
each of the encocded patterns. In-phase coding generates an
upper-sideband, diverting energy away from the LSB and com-
plicating antialiasing constraintsA 2-D illustration of autoas-
sociative modulation is given in Fig. 4.

1 When more than one encoded pattern is superimposed

MEEL(E) = ks (0s50(8); km=2v  (10)

wheresy(2)(t) carry the encoded patterns as follows:

n—1
P (®) = ko) 3 0™ cos (Wi )

s

ksic2) =

‘ Jn in the same attractor wave, interference occurs and average
=0 (11) signal power is pattern-dependent. prever, for _single patterns
andbgm) € {—1, +1}. The two nonoverlapping band structure&§Verage signal power may be normalized by setting
used for autoassociative in-phase coding are given by L P, 15)
Y V-1

wherePF; is the desired average signal power.

Although itis possible to recover the original patterns without
filtering or canceling the USB, only half the available energy
is used and satisfying the antialiasing constraints may require

ws1, = ws1.L + inAw, wga, = wgar +1Aw  (12)

wherei =0, 1, ...n—1. The firstand highest band is written in
ascending “column form” starting fromg, ;,, and the second SInterestingly, when the first band is higher than the second, generation of the
. memory wave is analogous to electrons jumping from higher to lower energies,

band is written in ascendn_wg row form sta_\rtlng fromss . emitting photons with “difference energy” into the electromagnetic field; i.e.,
Two band structures of this type are possible, but the oneiifb the LSB of the memory wave.

which the column band is higher than the row band appears téin a complex formulation, the upper-sideband cancels out [29].
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too much bandwidth. A SSB memory wave may be formed liecoder in the frequency domain. The state wave is a su of

quadrature codingas follows: synchronized cosine wavegiven by
M) =k (517005530 (8) + 557 (553 (1)) u(t) = 3 i cos(wyit) (20)
kn = /1 (16)

wherew; € {—1, +1}, with state synthesis frequencies;
defined in descending row forfnstarting oneAw away from

where the quadrature waves are defined as
the LSB of the attractor wave as follows:

(m) . 1 Wy, = Wyv.H — 1Aw (21)
Souz(t) = kae) Z b sin (wsiit) s B = NG _ _ _
(17) wy. g is the highest state frequency defined as
andsyy(2)(t) are the same as before. The SSB attractor wave wy. g = Bsagap + Bs1 +2Bsy + Aw (22)

may now be formed, where the SSB identity wave is where Bsy = n(n — 1)Aw and Bsy = (n — 1)Aw are the

respective coding bandwidths.
=k Z cos (wrr,t) ki = 1 (18) 3) Spectral Convolution:Local changes in neural state are
v determined by linear combinations of extrinsic data from all
over the network and the attractor wave, which would ordinarily

For single pattern§ = 1), signal power may be normalized byrequire massive, nonlocal connectivity in spatial form. Fortu-

Issp(t

setting nately, nonlocal connectivity may be achieved virtually in the
frequency domain by spectral convolution, or temporal multi-
5P plication (mixing) as follows:
ko = . (29)
n—1 a(t) = W(H)(t). (23)

Spectral convolution, or associative demodulation, generates
N linear combinations in the LSB of the activation wayg)
without having to directly connect every neuron to every other
Spectral recall is realized ligcurrent associative demodu-neuron! The same 2-D example from Fig. 4 is continued in
lation consisting of four parts: 1) initialization; 2) spectral synfig. 5 for the sake of illustrating associative demodulation.
thesis; 3) spectral convolution; and 4) spectral analysis and up4) Spectral Analysis and UpdateNeural activation may be
date. Fig. 3(b) shows the decoder in block diagram form. The aitracted from the activation wave by direct, local conversion
tractor waveJV (t), is spectrally convolved with thetate wave  followed by integration and the neural states are continuously
v(t), of the decoder, to produce thigtual activation wavea(t), quantized as follows:
in which linear activation information resides. This information
is directly converted to dc, integrated, and quantized to update v; = sgn(w;); u; =c / a(t) cos(w ;t) dt (24)
the neural states. Recalled data bits are simultaneously repre-
sented in the spatial domain as quantized neural states anwirere
the frequency domain agiantized phase of oscillatiohocal u;  linear state of théth virtual neuron;
changes in phase are driven by the tendency of the Hopfield forv;  bipolar state of théth virtual neuron;
malism to reduce global network energy over time, despite thew.4; 4th analysis frequency
presence of noise, and the neural state settlesanénf the c learning rate, which must be sufficiently small com-
basins of attraction set up by the attractor wave. Regardless of pared to the saturation limits ap.
formulation, i.e., in-phase or quadrature, autoassociative or hgterestingly, and contrary to conventional wisdom, syn-
eroassociative, the physical architecture of the decoder is tiwonous update can decrease BER when carried out at the
same; only the frequencies that establish virtual connectivity sg@me rate as asynchronous update, due to an increase in the
different. number of state updates per iteration.
1) Initialization: To minimize convergence time, linear ac-
tivationsu; may be set to small values relative to the integratios- Antialiasing Constraints
rate at the beginning of each decoding period. See Fig. 3(b)Two antialiasing constraints must be satisfied to make autoas-
These values serve as initial conditions, the sign of which magygciative SAMs work. First, lower bounds are placed on fre-
be determined by the state of the decoder in the previous perigdency to prevent sideband aliasing and second, the “band gap”
or may be the same each period. These values must not bebgeiveen coding bands must be wide enough such that the at-
too far in either direction, since the more deeply the channetactor wave is suitable for alias-free spectral convolution in
are driven into saturation, the Ionger it takes to puII them baCk SSynchronized cosine waves are simultaneopsigked Synchronized sine
out if necessary. aveys on the other hand, are simultaneousily. 4 d
2) Spectral SynthesisSpectral synthesis is the construction 80r alternatively in ascending column form, but the antialiasing constraints
of the state wavey(¢), which represents the state of the neurale stricter.

B. Spectral Recall



468 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001

(a) | o1 woo Wit Wig Wog Wor Wio W
44 4 4
| W(w)| I P I : I T :
] 1 1 £ [ (]
1 I 1 i ) A7 ) i ' 1 w
1Aw dAm 12A®
®) vl v
[ V(@) I
[l L L ] [l 1 L L
1 ¥ t 1 ] ) 1 i I
SA® ©
(C) @y ay USB
Aol T
1 i I ] I ] 1 ) I : o)
2Am 14Aw 6A®
Fig. 5. Example of 2-D associative demodulation, continued from Fig. 4.
the decoder. The following formulation is designed for DSB at- -I
tractor waves and therefore naturally works for SSB attractor .-l
waves as well. ]

Given the descending row form of the state band, the lower
bound on the band gapls.cap for preventing sideband Patternn 1 Pattern 2
aliasing in the activation wave is given as follows: i ) ) i )
Fig. 6. Two 8x 8 bit patterns used in dual-attractor simulation.
Bsgap > 1BSQ = Bsgap = ceil (E) Aw (25)
2 2 require 4n oscillators and mixers, split evenly between the
whereceil( - ) rounds up to the next integer. Next, a lower boundncoder and decoder. These estimates assume lavgeere
is placed onusso. f, to prevent aliasing of the LSB of the activa-the identity wave shown in Fig. 3 has been omitted.
tion wave by the USB of the attractor Multiplexing further reduces spatial complexity of the de-
coder. A multiplexed decoder requires+ 1 oscillators, one
(26) summer, two mixersp quantizers and/or memory elements,
which also prevents aliasing in memory formation. This co@nd at least one filter. A multiplexed transconductance-mode
straint is relaxed if the USB of the attractor is either filtered odff -M0de) circuit is depicted in Fig. 8 in which summation is
or canceled by quadrature (or complex [29]) coding. The an&g@lized in the current-domain.
ysis vector may then be calculated by

wea L >n*Aw = weop = (n2 +1)Aw

E. Dual-Attractor Example

WA =WV — WIL. (27) A 64-bit (8 x 8) spectral network was simulated for the two

. ) . . binary images in Fig. 6. This size was chosen such that two
seggr?jldc%r dina bg\r/% dlsr:;?tnssgzsal (S_D) 5 GeAij?(la?din h memories could be reliably superposed and recalled without too
w - [26 927 28, 29, 30]7 Aw”The_ band ay i c%l- much cross pattern interference. Two attractor waves were gen-
c5I2ated_ o b’eB’ T 3&” leadin t(?wp ~ erated, one for each pattern, and simultaneously transmitted to
33, 38, 43, 48 535];TGAAZ The  identit fr% uensl vec. the spectral neural decoder, each competing for attention. De-
toré a{re ’the’n w t 7, 11 15y 19 2§]TAwy and pending partly on the initial conditiorispne of the two mem-
w [59, 65 I?l 77_83]TA7w 7Whére ;} is needed ories was recalled in every case, as shown in Fig. 7. In the first

I = ) ) ’ ’ ’ U

; . {wo trials, initial conditions were random and the network con-
only for DSB attractors. Finally, the highest decoder Staveer ed on one pattern or the other. In the third trial, initial condi-
frequency isvy g = Bs.gap + (n? +n — 1)Aw = 32Aw, 9 P : ’

leading towy = [32, 31,30, 29, 28T Aw and wa = tions were biased towgrd pattern 2ar!q the network converged to
[25, 20, 15, 10, 5|7 Aw T T pattern 2. In the last trial, initial conditions were biased toward

e T ey ' the complement of pattern 1, and the network converged to the
D. Scaling Complexity complement of pattern 1, as expected. The sample period (one

) o _iteration) was one microsecond and the bilinear transfawas
Due to virtual nonlocal connectivity, spectral associa-

tive memories scale linearly with pattern dimension while "Varying instantaneous power of attraction is a new characteristic of SAMs

maintaining high symbol-to-bit ratios. In addition to the twcggagftsﬁg;?nthfeﬁﬂgvﬁe"éﬁlnal formulation; i.e., a new way in which memory

modulation mixers, gain bIOCij and _Summers that _arg alwaysThe bilinear transform is one of several standard methods for mapping con-
present regardless of pattern dimension, autoassociative SAMsus time networks to discrete time.
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Fig. 7. Recall in the presence of dual attractors (two patterns; two spectral attractors).
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Fig. 8. Schematic of a current-mode multiplexed spectral decoder.

used to map the lossy integrators into thdomain for updating and the scaling factors for quadrature heteroassociative coding
the neural states. Low-pass poles were placed one decade belmv
the carrier separation frequencyAff = 1 kHz. 1
ksl = ks? = —F krn = 17 kz = 07 kw = 2PS

7
IV. HETEROASSOCIATIVESPECTRAL MEMORIES \/7_1 (30)

Multiple bit patternpairs may be encoded and superimposed
into heteroassociative attractor waves to form associatiois Band Structures

between two different patterns. Bit pattern pairs may be two ajthough they are typically at higher frequencies, heteroas-
images or alternatively, gartitioning of one larger image, sociative coding bands may s&ructuredthe same as autoas-
as the case would be for simple communication applicationg,ciative coding bands. And the lowest frequency state band,

Although the autoassociative spectral memory may be showrtigresponding to the second encoded bit pattern, may be struc-
generalize the heteroassociative spectral memory when patigh in descending row form

pairs are made into one, subtle differences in band structure

and antialiasing constraints e_X|st \.Nhen. bandwidth must be wye, = wyapg — iAw. (31)
conserved. The attractor wave is a direct linear superposition of

the memory waves without diagonal cancellation The higher frequency state band, corresponding to the first en-
p coded bit pattern, is given in ascending column form

t)=ko > MO(t) (28)

m=1

wyl; = wyir +ntdw (32)

and recall follows in a similar manner to that of the autoassoc%hera —0.1
tive formulation where: = max(ny, n2). The scaling factors
for in-phase heteroassociative coding are

n — 1 andwy1 g andwy2. 1, are the highest
and lowest frequencies of the nonoverlapping first and second
decoding state bands, respectively. Let the lowest band be one

1 Aw higher than the LSB of the attractor wave
kw =V -Ps “ Ig wav

ksl = ks? = %a krn, = 25 k7 = Oa

(29) wyo i = Bsgap + Bs1 +2Bss + Aw (33)
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and let the higher state band be separated from the lower bfpanulation, ishalf that of the autoassociative encoder, but the

decodingband gapBy.gapr decoder is the same. In addition to the two modulation mixers
and summers that are always present regardless of pattern
wvir =wven + Br.gar (34) dimension, heteroassociative SAMs requirescillators and
Once the band structures have been defined, absolute frequBpers in the encoder arizh oscillators and mixers in the de-
cies may be calculated from antialiasing constraints. coder. The price for this reduction in complexity is lower noise
immunity, and one additional decoding band and antialiasing
B. Antialiasing Constraints constraint, which pushes the decoder bands higher.

Although the band structures are similar to the autoassocia-
tive formulation, heteroassociative band structures must satisfy
an additional antialiasing constraint to avaiterlayer aliasing
which causes the frequencies to be higher. Assuming the presSpectral associative memories lend themselves nicely to dig-
ence of an USB in the attractor wavy. .4 p must be greater jtal communications. Bit patterns, oodewordsmay be trans-
than either of the coding bandwidths mitted adransient spectral attractoy®ne at a time, over a noisy
channel to a spectral decoder. When only one attractor activates
) the decoder at a time, the initial conditions have no bearing on
= Byvgap=(n"—n+1)Aw. (35) the steady state and one encoded bit pattern may be recovered

When the first state band in descending row form is placed puith considerable noise immunity.

fore the second band in ascending column folg,c.4p IS
bounded by A. Complementary Attractor States

V. SINGLE-ATTRACTOR NETWORKS FORDIGITAL
COMMUNICATIONS

By.gap > max(Bg1, Bg2)

L When only one codeword attractor is transmitted at a time,
Bs.gar > 3(Bs2 + Bv.gar) the virtual energy landscape contatn versions of the same
2 . .
L fnc+1 systematic attractor: the codeword and its complement. As a
= B = ceil A 36 . : . R
S.GAP = A < ) “ (36) result, one bit of overhead is required to distinguish between the

which is not as strict as that of the other permutation; i.e., if t wo. Either the set of all possible codewords must be cut in half

second state band in ascending column form would have b 8h2 given codeword length, or the codeword must be increased

placed before the first state band in descending row form. TRY Onereference bitlf the reference bit is always high and the
rresponding bit in the decoder converges low, then all recalled

second constraint, which prevents the USB of the attractor way% ! . . ; -
from aliasing the activation band is ata bits are inverted. One bit of overhead is sufficient for lower
dimensional patterns, but asncreases, more than one ancillary

wsa2., > 2 (Bs1 + Bs2) + Bv.gap + Aw bit may be needed.
=  wsap=ceil (3n° —n+1)Aw (37)

B. Bit Error Rate
which is also not as strict as that of the other permutation. Ab-

. Spectral associative memories must toletate sources of
solute values may now be calculated for the analysis bands

noise: 1) initial condition noise and 2) attractor noise. In the
conventional formulation, attractor noise is not significant and
is typically ignored, but itis primarily this noise that SAMs must
Consider a 5-D example. Calculate the decoding band gapdferate. In general, the received attractor walg,i., (t), may

be By gap = Bs1 + Aw = 21Aw. The second coding bandpe a noisy version of the transmitted attractor wave as given by
starts atvss. 1, = 59Aw, thuswsz = [59, 60, 61, 62, 63]7 Aw.

WA1(2) = Wvz(1) — WIL. (38)

The coding band gap is calculated to Be g4p = 13Aw, Wioisy (t) = W(¢) + noisét) (39)
leading tows: = [76, 81, 86, 91, 96]" Aw. The identity

frequency vectors are thamy, = [17, 21, 25, 29, 33]7Aw  Where noisé) may be modeled as white Gaussian noise. This
andwry = [135, 141, 147, 153, 159]7 Aw, where wry is noise is equivalent to “noisy weights” in the conventional for-

needed only for in-phase coding. Finally, the highest frénulation. Seven main factors influence BER:
guency in the lowest state band, corresponding to the first1) carrier separation, or beat frequenty;
recalled bit of the second pattern, ds-» g = 42Aw. The 2) recall periodl; and pattern rat¢; pattern;
lowest frequency in the highest state band, corresponding to3) computational sampling rag_comp;

the first recalled bit of the first pattern, isy; 1. = 63Aw, 4) signal-to-noise ratio (SNR);
leading to wv2 = [42, 41, 40, 39, 38]TAw, wvi = 5) code rateR,;
[63, 68, 73, 78, 83|17 Aw, wa1 = [25, 20, 15, 10, 5]* Aw, 6) update method (synchronous or asynchronous);
andwaz = [46, 47, 48, 49, 507 Aw, where all elements are  7) initial conditions.
indexed in ascending order of recalled bits. These factors are covered individually below.

, . 1) Carrier Separation: The degree to which information is
C. Scaling Complexity distributed over the frequency domain influences noise immu-

The complexity of the heteroassociative encoder that pantiity. For a givenn, spectrum spread is controlled by the carrier
tions the same.-dimensional pattern as in the autoassociativeeparation parameted f (in Hz) or Aw (in rad/s). The higher
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Fig. 9. BER versus decoding time for a five-bit (four data and one ancillary) autoassociative quadrature SAM for various SNRs with fixed caatien sepbhr
computational sampling rate.
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Fig. 10. BER versus computational sampling rate for a five-bit (four data bits and one overhead) autoassociative quadrature SAM for variousf&BidRs with
carrier separation and decoding time.

A f, the higher the noise immunity. The bandwidth of the LSEhe desired average powgt. Unlike conventional associative

of the attractor wave is given by memories, instantaneous power of the attractor varies.
To demonstrate the effect of decoding time on SNR, a five-bit
Bw = Bs1 + Bs2 (40)  (four data bits and one ancillary bit) was simulated for random

. . patterns, one at time, in the presence of additive white Gaussian
for both autoassociative and heteroassociative cases, Wwhere noise. BER versus decoding time is shown in Fig. 9 for very
andBs» are the respective coding bands defined earlier. i\ conditions in which four simulation sets were run£@0

2) Recall Period: Recall or convergence timd,,, is also dB, —10 dB, 0 dB, and 10 dB SNR: i.e., average signal power
equal to the transmission period. The gredgrthe lower the 25 1/100, 1/10, 1, and 10 times the average noise power, re-
BER will be in the presence of white noise. Fortunately, Wh'@pectively. As expected, BER always decreases with time, on
noise cannot move the decoder state anywhere over time ﬁfe average. For example, for each additional beat10 dB
cause it provides naolored motive Only the coherent part SNR, BER decreased by approximately one decade. However,
of the waveform instantiates the recall potential over tiffie. increasing SNR from 0 dB to 10 dB did not improve the BER
is generally limited by the beat periaf A/ and the pattern ,q i ch as from-10 dB to 0 dB. The conditions of the simu-

sample period’;_patern = 1/fs_pattern as follows: lations were as follows: one iteration was taken to be the equiv-
1 1 alent of ten nanoseconds, the carrier separation parameter was
AF <T. < A (41) Af = 100 kHz, all blocks were ideal, and all oscillators were
S_pattern

perfectly synchronized. Each point in the graph was obtained
where f; patrern IS the pattern rate (number efbit patterns from enough simulations to observe at least 50 bit errors.

per second), which should be lower than the beat frequency3) Computational Sampling RatéVhen the encoder and
Ideally, 7% should be set equal fi_pattern, Which should be an decoder are implemented in discrete time, toenputational
integer multiple of beats. Although the correct pattern may Isample rate fs_comp, Must be much higher than tliata pat-
recalled earlier, one beat period is the minimum time to achiet@rn rate f; pattern, t0 Satisfy the Nyquist rate for coding and
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Fig. 11. BER versus SNR for different five-bit (four data and one ancillary) autoassociative SAMs for various decoding times and carrier sefihrtatiesh,
computational sampling rate: (a) in-phase (DSB) and (b) quadrature (SSB).

recall. Togetherf; comp and fs_pastern determine the number per unit time was doubled, the integration gain was halved to
of iterations, or state updatei, per decoding period. Fa. = keep the product constant. Thus, any change inthe BER could be
T _pattern, the number of iterations is determined by the ratio aittributed to a change ify .., and notto the effective learning

sampling rates rate.
4) Signal-to-Noise Ratio:To see the effect of noise, simula-
TC _ fS_COHlp

= . (42) tions were conducted on five-bitin-phase and quadrature SAMs
Lscomp  faopattern for various degrees of SNR, carrier separation, and decoding
K should be much higher than one to avoid aliasing and déne. The conditions of the simulations were as follows: one
crease BER. The high@t_comp, the greater the number of statenicrosecond was taken to be the equivalent of 100 state up-
updates and the lower the error of recall will be, to a point.  dates, the decoder was perfectly synchronized with the encoder,
Simulations were performed in which decoding time, carriggnd all computation was linear and high precision. The previous
separation, and SNR were fixed affil..m;, Was varied. The state was notretained from period to period and one ancillary bit
results of these simulations are included in Fig. 10. These simas used to distinguish between complementary attractor states.
ulations show that the attractor wave carries a limited amousinear SNR was calculated and confirmed to be
of information per unit time, as the Shannon limit would sug-

K=

K—-1
gest. Since the decoding time was fixed, the transmitted energy 1 Z W (KT, )]2
from the decoder was also fixed, for a given SNR; thus the BER K~ s-comp P,
eventually flattened out a& .o, Was increased. The bilinear SNRiinear = — =3 (43)

transform was used to keep the effective learning rate constant 1

. . . . T |:nOise(kirs_comp)]2
regardless of';_.omp. FOr instance, if the number of iterations K =0
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where coder may be initialized with the previous state to reduce the
Ty comp S€tto 10 ns; hamming distance between initial and final states. However, the
o? noise power to be varied; linear states must not be too large, since the more deeply the
T, decoding period, also to be varied. quantizers are driven into saturation, the longer it takes to pull

Since the out-of-band noise was not filtered before recall, the deem back out, if necessary.

coder bandlimited the noise and signal at the same rate, making

the power and energy ratios equal when taken over an integer VI. CONCLUSION

multiple of beats. Wherever SNR was expressed in dB, it wasS ral iati . d and ch

calculated as 10 log(SNR..:) since power is calculated from_ = pectral associalive memories were proposed and charac-

the signal squared. terized in the presence of noise for application in thg field
The results are shown in Fig. 11. In Fig. 11(a) the USB of th%I communlcatlons. Due to thg spectral representation .Of

attractor wave was present, due to in-phase decoding, where ories, network attractors exist in the frequency dom:_;u_n,

Fig. 11(b) it was not, due to quadrature coding. FoK 1/Af separate frqm the neural decoder. Nonloca_\l neural connectivity

there was not much difference between the in-phase and quaﬁ.e{_eal|ie(iV|rtuallly|.|n th? fre_g}uen&y do drT‘a'”' gllowlgr_\tg SQM

ture formulations other than the inefficient use of the channief WOr«s 0 scale linearly with pattern dimension. Bit patterns

bandwidth in the former. However, wh@was longer than one may be enfolded into attractor waves creating extrinsic infor-

beat, there was a noticeable improvement in BER with quadrtggt'or_] and thus codl_ng gain and noise immunity. - .
ture coding. As in the conventional formulations, the possibility exists

5) Code Rate:Due to the nature of associative modulationf,Or content addressability; i.einultiple patterns may be

the code rate is determined by codewtsdgthfor both auto- encoded and superposed into the same at.tract.or wave, where
and heteroassociative cases, and codewartitioning, for the each memory pattern competes for attention in the spectral

heteroassociative case only. Unlike other recursive scherﬁjﬁgoc{fr; however, b(fross-pittern ;tnterference al?dF Spu.nmfs
like turbo and low-density parity check coding, the amou/ft raction cause probiems when patlerns aré smail. For simple

of extrinsic redundancy is tightly coupled with the length oﬁ;ommunica\tion applications where the objective is to reliably

the codeword. Due to full virtual interconnectivity, autoassc?iend data over a noisy channel, one pattern may be transmitted

ciative memories realize the highest noise immunityfeit at a time, each setting up a temporary basin of attraction in
codewords; i.e., a symbol-to-bit ratio of— 1 the decoder. The initial conditions are then irrelevant in terms

of the steady state, and the content addressable feature is not
£, _n(n—1) n—1l (44) exploited. Thus, rather than actually storing a set of exemplar
E, n ) waveforms in the decoder and computing the similarity of the
received waveform with each exemplar by correlation, nothing
& stored in the decoder and only one spectral attractor exists at
Mime. In this way, spurious attraction is eliminated.
Furthermore, extrinsic redundancy is a natural consequence
of associative modulation, hence, SAMs have built-in noise im-
munity. While the autoassociative SAM achieves the highest

Autoassociative

For the samen bits, heteroassociative partitioning achieve.
more compact physical architectures at the expense of noise
munity. For an 41, no) partitioning ofn bits, a ratio ofns: 1
is realized for first layer bits and a ratio of : 1 is realized for
second layer bits

E, NN noise immunity, the heteroassociative SAM offers the additional

E, st HeteroLayer = n1 =72 (45) flexibility of aphieving \{arious code rates, or degrees of redgn—
dancy. The virtual architectures are nearly the same, with slight

Es e (46) differences in band structure and antialiasing constraints.

By Ind—Heterol ayer N2 In-phase and quadrature formulations were given for both as-

N . - sociative forms, along with antialiasing constraints and exam-

Thus, the most significant bits of a .d'g.'t.al worq may be encodeb es. The performance of a five-bit autoassociative SAM was
with more redundancy than less S|gn|f|cant.b '.ts' . characterized in the presence of white Gaussian noise for var-
An interesting feature of the heteroassociative decoder is th s degrees of SNR, beat frequency, decoding time, and sam-

itis physically the same as the autoassociative decoder; i.e., 0 Ili)ﬁg rate. BER was shown to decrease with decoding time and
the frequencies differ. Thus, the virtual architecture, and thet.

f q d vartitioni d extrinsic redund b |ﬁ'principle can be arbitrarily small in very noisy conditions
ore codeword partitioning and extrinsic redundancy, may be r&R/en sufficient decoder sensitivity and synchronization, but is
programmed on the fly as noise conditions change.

limited by the Shannon theorem as the sampling rate goes to in-

6) Synchronous versus Asynchronous Upddatbe state of inity y ping g

the spectral decoder may be updated either synchronously or”

asynchronously. Whereas conventional associative memories

should be updated asynchronously to avoid limit cycles, SAMs

appear to benefit from synchronous update and limit cycles ddtl J.- Hopfield, “Neural networks and physical systems with emergent col-
. . lective computational abilities,” ifProc. Nat. Academy Sgivol. 79,

not seem to occur. Certainly BER is reduced by synchronous 1985 ' 2554 2558,

update for low computational sample rates. [2] Y.Abu-Mostafaand J. St. Jacques, “Information capacity of the Hopfield

7) Initial Conditions: In general, initial conditions may be model,”IEEE Trans. Inform. Theoryol. IT-7, pp. 1-11, 1985.
fixed f d di iod d di iod. but if [3] J.D.Keeler, “Basins of attraction of neural network models Niural
Ixed from decoding period to decoding period, but If succes- Networks for Computing). S. Denker, Ed. College Park, MD: AIP,

sive codewords are samples of a continuous quantity, the de- 1986, vol. 151.
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