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Bipolar Spectral Associative Memories
Ronald G. Spencer, Member, IEEE

Abstract—Nonlinear spectral associative memories are pro-
posed as quantized frequency domain formulations of nonlinear,
recurrent associative memories in which volatile network attrac-
tors are instantiated byattractor waves. In contrast to conventional
associative memories, attractors encoded in the frequency domain
by convolution may be viewed asvolatile on-line inputs, rather
than nonvolatile, off-line parameters. Spectral memories hold
several advantages over conventional associative memories, in-
cluding decoder/attractor separabilityand linear scalability, which
make them especially well suited for digital communications. Bit
patterns may be transmitted over a noisy channel in a spectral
attractor and recovered at the receiver by recurrent, spectral
decoding. Massive nonlocal connectivity is realizedvirtually,
maintaining high symbol-to-bit ratios while scaling linearly with
pattern dimension. For -bit patterns, autoassociative memories
achieve the highest noise immunity, whereas heteroassociative
memories offer the added flexibility of achieving various code
rates, or degrees of extrinsic redundancy. Due to linear scalability,
high noise immunity and use of conventional building blocks,
spectral associative memories hold much promise for achieving
robust communication systems. Simulations are provided showing
bit error rates (BERs) for various degrees of decoding time,
computational oversampling, and signal-to-noise ratio (SNR).

Index Terms—Associative memory, associative modulation, at-
tractor waves, digital communications, extrinsic redundancy, noise
immunity, virtual nonlocal neural connectivity.

I. INTRODUCTION

A. Introduction

SINCE Hopfield’s seminal papers in 1982 [1], recurrent as-
sociative memories have been studied extensively [2]–[6]

and new networks proposed [7]–[9] in which nonlinear feed-
back is used to recover stored patterns in the presence of noise.
Because memory recall is initiated by partial or noisy patterns
and is completed without an address, these networks are cate-
gorized as content addressable memories (CAMs). A number of
CAMs have been implemented in both electronic [10]–[14] and
optical [15], [16] forms.

Associative memories bear some resemblance to holograms
[17]–[21] due toextrinsic redundancyof stored patterns in the
matrices that specify neural connectivity. Every neuron’s local
synaptic weight vector contains information about the global
pattern. Like a hologram, the parts make up the whole and the
whole makes up the parts; i.e., contained within the pieces of a
broken hologram is the image itself. Such high degrees of re-
dundancy lead to noise immunity, but usually at the expense
of spatial dimension. Unlike cellular neural networks (CNNs)
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[22]–[24], which require only local connectivity, CAMs require
nonlocal connectivity and therefore scale quadratically or poly-
nomially with pattern dimension.

In this paper, a new kind of network called spectral associa-
tive memory (SAM) [25], [26] is proposed. Compared to the
conventional formulations, the most distinguishing feature lies
in the representation of the attractors. Whereas the attractors of
spatial CAMs are embedded into a neural network as an array of
synaptic weights, the attractors of spectral CAMs persist tran-
siently as a superposition of waves. Exploiting the orthogonal
property of sine and cosine waves and the richness of spectral
convolution, nonlocal connectivity may be achievedvirtually,
reducing the spatial dimensions of the hardware and allowing
for useful applications in the field of communications. Unlike
Hopfield networks, which scale quadratically with pattern di-
mension, SAMs scale linearly.

The fact that convolution may be used to form associations
has been appreciated for several decades in the optical storage
field [15]–[21]; however, the main thrust behind such work has
been innonvolatilememories where attractors were stored to
some medium. The attractors described in this paper are not
stored in a neural decoder or glass plate—they are onlyex-
pandedby a neural decoder. Rather than embedding neural at-
tractors, or “memories,” directly into the spatial architecture of
a network, (Fig. 1) attractors may be created in the frequency
domain and transmitted to a spectral neural decoder for recall
(Fig. 2). Whereas spatial attractors are inseparable from the
neural network in which they are embedded, spectral attractors
may exist separately. Upon activation,temporary basins of at-
tractionare created in the network’s virtual recall potential that
cause the neural decoder to unfold one of the memories; a clas-
sical analog of Sarfatti–Bohm wave/particle interaction theory
in which a pilot wave guides the material state of subneuronal
matter into a basin of attraction of the Q landscape [27]. More
than one memory pattern may be enfolded and superimposed
into the attractor wave at a time, in which case the initial condi-
tions are important, but for simple communication applications
only one spectral attractor is allowed to activate the neural de-
coder at a time for spurious-free recall.

Spectral attractors created from bit patterns may be superim-
posed into the same attractor wave, radiated into the electro-
magnetic spectrum, and expanded by a remote decoder with no
physical connection. Such a decoder is anuninstantiated, attrac-
torless decoderwith no net motive until activated by a coherent
spectral attractor. Autoassociative spectral decoding is defined
as

(1)
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Fig. 1. Schematic of a conventional Hopfield network. Patterns are encoded into a synaptic weight matrix that isstoredin a neural decoder.

where
attractor wavewhich carries at least one enfolded
pattern;
th analysis frequency;

continuously updated state wave;

(2)

where is the th neural state or recalled bit, is the th syn-
thesis frequency defined according to antialiasing constraints.
The autoassociative attractor wave is defined as

(3)

where
attractor wave scaling factor;
pattern index;
identity or reference wave for canceling diag-
onal frequencies;
memory wavein which a single pattern is en-
folded.

Heteroassociative spectral coding does not need reference wave
subtraction and requires an additional virtual layer state band
and antialiasing constraint.

Conventional associative memories are reviewed in Sec-
tion II, followed by autoassociative spectral memories in
Section III. In-phase (I) and quadrature (I/Q) formulations are
presented, followed by antialiasing constraints and scaling
complexity. These formulations are distinguished by the
attractor wave; in-phase (nonquadrature) coding generates a
double-sideband (DSB) attractor, and quadrature coding gen-
erates a single-sideband (SSB) attractor. A two-pattern 88
example is given to illustrate content addressability. The band
structures and antialiasing constraints for heteroassociative
spectral memories are presented in Section IV. In Section V, a
single-pattern, five-bit autoassociative SAM is characterized in
terms of bit error rate (BER) for various decoding times, com-
putational oversampling, and signal-to-noise ratios (SNRs).
Conclusions are given in Section VI.

II. SPATIAL ASSOCIATIVE MEMORIES

A. Autoassociative Memories

The conventional Hopfield network [1], is a nonlinear, au-
toassociative recurrent network in which noiseless patterns are
restored from noisy initial conditions (Fig. 1). Noiseless exem-
plars are stored in a weight matrix that specifies thespatial con-
nectivityof the network; a superposition ofsynaptic weight
matrices formed from -dimensional bipolar bit patterns as
follows:

(4)

where is the identity matrix and is the memory matrix
formed by the outer product

(5)

and are bit patterns to be stored, where
and . Subtracting from eliminates self-
connectivity in the decoder by cancelling the diagonal elements
of .1

is storedin a neural decoder where it persists as anon-
volatile memoryin the synaptic weights of the network. Because
the decoder stores , the encoder is not needed during recall,
denoted by the dashed line in Fig. 1. Noisy patterns are pro-
vided as initial conditions, and the neural decoder converges to
the closest stored pattern. During recall,linear combinations
of and are computed, followed by quantization:

(6)

where is the iteration index and update is asynchronous.2

B. Heteroassociative Memories

Patternspairs are stored in heteroassociative networks

(7)

1Canceling the diagonals is necessary for low-dimensional patterns, but may
be neglected for largen.

2Asynchronous update is required to avoid limit cycles in the conventional
formulation.
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Fig. 2. Schematic of a spectral associative memory. Patterns are encoded into anattractor wavethat activates a spectral decoder to recall a memory only when
the spectral attractor is being transmitted.

Fig. 3. Block diagram of an autoassociative spectral associative memory with: (a) in-phase encoder and (b) in-phase decoder. Patterns are encoded into the
attractor waveby associative modulation. The attractor wave creates a temporary basin of attraction in the spectral decoder, which recalls the memory by recurrent
associative demodulation. Nonlocal neural connectivity is madevirtually in the frequency domain.

where and are - and -dimensional bipolar patterns,
respectively, and is the number of pairs to be superimposed
into the same weight matrix. Heteroassociative orbidirectional
associative memories(BAMs) [7], [8] have two neural layers,
but can be shown to be special cases of the Hopfield network
when the two patterns are made into one. The synaptic weight
matrix is

(8)

which contains weights and requires no diagonal cancel-
lation. Heteroassociative recall proceeds in the same manner
as autoassociative recall where the state updates are driven by

and . Although the amount of ex-
trinsic redundancy is less than autoassociative redundancy, the
hardware still scales polynomially and connectivity is still non-
local in a two-dimensional (2-D) plane.

III. A UTOASSOCIATIVE SPECTRAL MEMORIES

Conventional associative memories may be reformulated in
the frequency domain by associative modulation and demodu-

lation. Bit patterns may be encoded into anattractor wavethat
is transmitted to a spectral neural decoder and recalled by spec-
tral convolution, achieving nonlocal neural connectivity virtu-
ally with no direct physical connection. See Figs. 2 and 3. Fre-
quency-domain representations, also used in [28], are promising
from a very large scale integration (VLSI) standpoint because
data that would otherwise be distributed spatially, thus taking
up silicon area, may be redistributed in the frequency domain
to reduce spatial complexity. Whereas the attractors of conven-
tional decoders are embedded directly into the neural decoder,
spectral attractors may exist separately from the neural decoder.
As such, the neural decoder recalls nothing until an attractor
wave activates it. Furthermore, the memory is recalled only as
long as the attractor wave is sustained—a volatile memory.

A. Spectral Encoding

A number of -dimensional bipolar bit patterns formed by
spectral convolution may be superimposed into one composite
attractor wave as follows:

(9)
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Fig. 4. Example of 2-D associative modulation.

where
attractor wave scaling factor;

pattern index;

identity or reference wave for canceling virtual self-
connectivity;

memory wave in which the bit patterns are encoded.

See Fig. 3(a). The DSB version of the memory wave is formed
by in-phase coding, or associative modulation as follows:

(10)

where carry the encoded patterns as follows:

(11)
and . The two nonoverlapping band structures
used for autoassociative in-phase coding are given by

(12)

where . The first and highest band is written in
ascending “column form” starting from , and the second
band is written in ascending “row form” starting from .
Two band structures of this type are possible, but the one in
which the column band is higher than the row band appears to

give the simplest antialiasing constraints.3 The corresponding
DSB version of the identity wave is defined as

(13)
where and are identity frequency vectors that contain
“diagonal frequencies” of the lower- and upper-sidebands of
the attractor wave, respectively. These frequency bands are ob-
tained by subtracting and adding, respectively, thecodingbands
in vector form

(14)

The attractor wave, a spectral equivalent of (4), may be trans-
mitted to a spectral neural decoder over a noisy channel. En-
coded within the LSB of is a spectral attractor for
each of the encocded patterns. In-phase coding generates an
upper-sideband, diverting energy away from the LSB and com-
plicating antialiasing constraints.4 A 2-D illustration of autoas-
sociative modulation is given in Fig. 4.

When more than one encoded pattern is superimposed
in the same attractor wave, interference occurs and average
signal power is pattern-dependent. However, for single patterns
average signal power may be normalized by setting

(15)

where is the desired average signal power.
Although it is possible to recover the original patterns without

filtering or canceling the USB, only half the available energy
is used and satisfying the antialiasing constraints may require

3Interestingly, when the first band is higher than the second, generation of the
memory wave is analogous to electrons jumping from higher to lower energies,
emitting photons with “difference energy” into the electromagnetic field; i.e.,
into the LSB of the memory wave.

4In a complex formulation, the upper-sideband cancels out [29].
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too much bandwidth. A SSB memory wave may be formed by
quadrature codingas follows:

(16)

where the quadrature waves are defined as

(17)
and are the same as before. The SSB attractor wave
may now be formed, where the SSB identity wave is

(18)

For single patterns , signal power may be normalized by
setting

(19)

B. Spectral Recall

Spectral recall is realized byrecurrent associative demodu-
lation consisting of four parts: 1) initialization; 2) spectral syn-
thesis; 3) spectral convolution; and 4) spectral analysis and up-
date. Fig. 3(b) shows the decoder in block diagram form. The at-
tractor wave, , is spectrally convolved with thestate wave,

, of the decoder, to produce thevirtual activation wave, ,
in which linear activation information resides. This information
is directly converted to dc, integrated, and quantized to update
the neural states. Recalled data bits are simultaneously repre-
sented in the spatial domain as quantized neural states and in
the frequency domain asquantized phase of oscillation. Local
changes in phase are driven by the tendency of the Hopfield for-
malism to reduce global network energy over time, despite the
presence of noise, and the neural state settles intooneof the
basins of attraction set up by the attractor wave. Regardless of
formulation, i.e., in-phase or quadrature, autoassociative or het-
eroassociative, the physical architecture of the decoder is the
same; only the frequencies that establish virtual connectivity are
different.

1) Initialization: To minimize convergence time, linear ac-
tivations may be set to small values relative to the integration
rate at the beginning of each decoding period. See Fig. 3(b).
These values serve as initial conditions, the sign of which may
be determined by the state of the decoder in the previous period,
or may be the same each period. These values must not be set
too far in either direction, since the more deeply the channels
are driven into saturation, the longer it takes to pull them back
out if necessary.

2) Spectral Synthesis:Spectral synthesis is the construction
of the state wave, , which represents the state of the neural

decoder in the frequency domain. The state wave is a sum of
synchronized cosine waves5 given by

(20)

where , with state synthesis frequencies
defined in descending row form,6 starting one away from
the LSB of the attractor wave as follows:

(21)

is the highest state frequency defined as

(22)

where and are the
respective coding bandwidths.

3) Spectral Convolution:Local changes in neural state are
determined by linear combinations of extrinsic data from all
over the network and the attractor wave, which would ordinarily
require massive, nonlocal connectivity in spatial form. Fortu-
nately, nonlocal connectivity may be achieved virtually in the
frequency domain by spectral convolution, or temporal multi-
plication (mixing) as follows:

(23)

Spectral convolution, or associative demodulation, generates
linear combinations in the LSB of the activation wave

without having to directly connect every neuron to every other
neuron! The same 2-D example from Fig. 4 is continued in
Fig. 5 for the sake of illustrating associative demodulation.

4) Spectral Analysis and Update:Neural activation may be
extracted from the activation wave by direct, local conversion
followed by integration and the neural states are continuously
quantized as follows:

(24)

where
linear state of theth virtual neuron;
bipolar state of theth virtual neuron;
th analysis frequency;

learning rate, which must be sufficiently small com-
pared to the saturation limits on.

Interestingly, and contrary to conventional wisdom, syn-
chronous update can decrease BER when carried out at the
same rate as asynchronous update, due to an increase in the
number of state updates per iteration.

C. Antialiasing Constraints

Two antialiasing constraints must be satisfied to make autoas-
sociative SAMs work. First, lower bounds are placed on fre-
quency to prevent sideband aliasing and second, the “band gap”
between coding bands must be wide enough such that the at-
tractor wave is suitable for alias-free spectral convolution in

5Synchronized cosine waves are simultaneouslypeaked. Synchronized sine
waves, on the other hand, are simultaneouslynull.

6Or alternatively in ascending column form, but the antialiasing constraints
are stricter.
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Fig. 5. Example of 2-D associative demodulation, continued from Fig. 4.

the decoder. The following formulation is designed for DSB at-
tractor waves and therefore naturally works for SSB attractor
waves as well.

Given the descending row form of the state band, the lower
bound on the band gap, for preventing sideband
aliasing in the activation wave is given as follows:

(25)

where rounds up to the next integer. Next, a lower bound
is placed on to prevent aliasing of the LSB of the activa-
tion wave by the USB of the attractor

(26)

which also prevents aliasing in memory formation. This con-
straint is relaxed if the USB of the attractor is either filtered out
or canceled by quadrature (or complex [29]) coding. The anal-
ysis vector may then be calculated by

(27)

Consider a five-dimensional (5-D) example. The
second coding band starts at yielding

. The band gap is cal-
culated to be , leading to

. The identity frequency vec-
tors are then and

, where is needed
only for DSB attractors. Finally, the highest decoder state
frequency is ,
leading to and

.

D. Scaling Complexity

Due to virtual nonlocal connectivity, spectral associa-
tive memories scale linearly with pattern dimension while
maintaining high symbol-to-bit ratios. In addition to the two
modulation mixers, gain blocks, and summers that are always
present regardless of pattern dimension, autoassociative SAMs

Fig. 6. Two 8� 8 bit patterns used in dual-attractor simulation.

require oscillators and mixers, split evenly between the
encoder and decoder. These estimates assume largewhere
the identity wave shown in Fig. 3 has been omitted.

Multiplexing further reduces spatial complexity of the de-
coder. A multiplexed decoder requires oscillators, one
summer, two mixers, quantizers and/or memory elements,
and at least one filter. A multiplexed transconductance-mode
(T-mode) circuit is depicted in Fig. 8 in which summation is
realized in the current-domain.

E. Dual-Attractor Example

A 64-bit (8 8) spectral network was simulated for the two
binary images in Fig. 6. This size was chosen such that two
memories could be reliably superposed and recalled without too
much cross pattern interference. Two attractor waves were gen-
erated, one for each pattern, and simultaneously transmitted to
the spectral neural decoder, each competing for attention. De-
pending partly on the initial conditions,7 one of the two mem-
ories was recalled in every case, as shown in Fig. 7. In the first
two trials, initial conditions were random and the network con-
verged on one pattern or the other. In the third trial, initial condi-
tions were biased toward pattern 2 and the network converged to
pattern 2. In the last trial, initial conditions were biased toward
the complement of pattern 1, and the network converged to the
complement of pattern 1, as expected. The sample period (one
iteration) was one microsecond and the bilinear transform8 was

7Varying instantaneous power of attraction is a new characteristic of SAMs
not present in the conventional formulation; i.e., a new way in which memory
content may influence recall.

8The bilinear transform is one of several standard methods for mapping con-
tinuous time networks to discrete time.



SPENCER: BIPOLAR SPECTRAL ASSOCIATIVE MEMORIES 469

Fig. 7. Recall in the presence of dual attractors (two patterns; two spectral attractors).

Fig. 8. Schematic of a current-mode multiplexed spectral decoder.

used to map the lossy integrators into the-domain for updating
the neural states. Low-pass poles were placed one decade below
the carrier separation frequency of kHz.

IV. HETEROASSOCIATIVESPECTRAL MEMORIES

Multiple bit patternpairsmay be encoded and superimposed
into heteroassociative attractor waves to form associations
between two different patterns. Bit pattern pairs may be two
images or alternatively, apartitioning of one larger image,
as the case would be for simple communication applications.
Although the autoassociative spectral memory may be shown to
generalize the heteroassociative spectral memory when pattern
pairs are made into one, subtle differences in band structure
and antialiasing constraints exist when bandwidth must be
conserved. The attractor wave is a direct linear superposition of
the memory waves without diagonal cancellation

(28)

and recall follows in a similar manner to that of the autoassocia-
tive formulation where . The scaling factors
for in-phase heteroassociative coding are

(29)

and the scaling factors for quadrature heteroassociative coding
are

(30)

A. Band Structures

Although they are typically at higher frequencies, heteroas-
sociative coding bands may bestructuredthe same as autoas-
sociative coding bands. And the lowest frequency state band,
corresponding to the second encoded bit pattern, may be struc-
tured in descending row form

(31)

The higher frequency state band, corresponding to the first en-
coded bit pattern, is given in ascending column form

(32)

where and and , are the highest
and lowest frequencies of the nonoverlapping first and second
decoding state bands, respectively. Let the lowest band be one

higher than the LSB of the attractor wave

(33)
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and let the higher state band be separated from the lower by a
decodingband gap

(34)

Once the band structures have been defined, absolute frequen-
cies may be calculated from antialiasing constraints.

B. Antialiasing Constraints

Although the band structures are similar to the autoassocia-
tive formulation, heteroassociative band structures must satisfy
an additional antialiasing constraint to avoidinterlayer aliasing,
which causes the frequencies to be higher. Assuming the pres-
ence of an USB in the attractor wave, must be greater
than either of the coding bandwidths

(35)

When the first state band in descending row form is placed be-
fore the second band in ascending column form, is
bounded by

(36)

which is not as strict as that of the other permutation; i.e., if the
second state band in ascending column form would have been
placed before the first state band in descending row form. The
second constraint, which prevents the USB of the attractor wave
from aliasing the activation band is

(37)

which is also not as strict as that of the other permutation. Ab-
solute values may now be calculated for the analysis bands

(38)

Consider a 5-D example. Calculate the decoding band gap to
be . The second coding band
starts at , thus .
The coding band gap is calculated to be ,
leading to . The identity
frequency vectors are then
and , where is
needed only for in-phase coding. Finally, the highest fre-
quency in the lowest state band, corresponding to the first
recalled bit of the second pattern, is . The
lowest frequency in the highest state band, corresponding to
the first recalled bit of the first pattern, is ,
leading to ,

, ,
and , where all elements are
indexed in ascending order of recalled bits.

C. Scaling Complexity

The complexity of the heteroassociative encoder that parti-
tions the same -dimensional pattern as in the autoassociative

formulation, ishalf that of the autoassociative encoder, but the
decoder is the same. In addition to the two modulation mixers
and summers that are always present regardless of pattern
dimension, heteroassociative SAMs requireoscillators and
mixers in the encoder and oscillators and mixers in the de-
coder. The price for this reduction in complexity is lower noise
immunity, and one additional decoding band and antialiasing
constraint, which pushes the decoder bands higher.

V. SINGLE-ATTRACTOR NETWORKS FORDIGITAL

COMMUNICATIONS

Spectral associative memories lend themselves nicely to dig-
ital communications. Bit patterns, orcodewords, may be trans-
mitted astransient spectral attractors, one at a time, over a noisy
channel to a spectral decoder. When only one attractor activates
the decoder at a time, the initial conditions have no bearing on
the steady state and one encoded bit pattern may be recovered
with considerable noise immunity.

A. Complementary Attractor States

When only one codeword attractor is transmitted at a time,
the virtual energy landscape containstwo versions of the same
systematic attractor: the codeword and its complement. As a
result, one bit of overhead is required to distinguish between the
two. Either the set of all possible codewords must be cut in half
for a given codeword length, or the codeword must be increased
by onereference bit. If the reference bit is always high and the
corresponding bit in the decoder converges low, then all recalled
data bits are inverted. One bit of overhead is sufficient for lower
dimensional patterns, but asincreases, more than one ancillary
bit may be needed.

B. Bit Error Rate

Spectral associative memories must toleratetwo sources of
noise: 1) initial condition noise and 2) attractor noise. In the
conventional formulation, attractor noise is not significant and
is typically ignored, but it is primarily this noise that SAMs must
tolerate. In general, the received attractor wave, , may
be a noisy version of the transmitted attractor wave as given by

noise (39)

where noise may be modeled as white Gaussian noise. This
noise is equivalent to “noisy weights” in the conventional for-
mulation. Seven main factors influence BER:

1) carrier separation, or beat frequency;
2) recall period and pattern rate ;
3) computational sampling rate ;
4) signal-to-noise ratio (SNR);
5) code rate ;
6) update method (synchronous or asynchronous);
7) initial conditions.

These factors are covered individually below.
1) Carrier Separation: The degree to which information is

distributed over the frequency domain influences noise immu-
nity. For a given , spectrum spread is controlled by the carrier
separation parameter, (in Hz) or (in rad/s). The higher
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Fig. 9. BER versus decoding time for a five-bit (four data and one ancillary) autoassociative quadrature SAM for various SNRs with fixed carrier separation and
computational sampling rate.

Fig. 10. BER versus computational sampling rate for a five-bit (four data bits and one overhead) autoassociative quadrature SAM for various SNRs withfixed
carrier separation and decoding time.

, the higher the noise immunity. The bandwidth of the LSB
of the attractor wave is given by

(40)

for both autoassociative and heteroassociative cases, where
and are the respective coding bands defined earlier.

2) Recall Period: Recall or convergence time, , is also
equal to the transmission period. The greater, the lower the
BER will be in the presence of white noise. Fortunately, white
noise cannot move the decoder state anywhere over time be-
cause it provides nocolored motive. Only the coherent part
of the waveform instantiates the recall potential over time.
is generally limited by the beat period and the pattern
sample period as follows:

(41)

where is the pattern rate (number of-bit patterns
per second), which should be lower than the beat frequency.
Ideally, should be set equal to , which should be an
integer multiple of beats. Although the correct pattern may be
recalled earlier, one beat period is the minimum time to achieve

the desired average power. Unlike conventional associative
memories, instantaneous power of the attractor varies.

To demonstrate the effect of decoding time on SNR, a five-bit
(four data bits and one ancillary bit) was simulated for random
patterns, one at time, in the presence of additive white Gaussian
noise. BER versus decoding time is shown in Fig. 9 for very
noisy conditions in which four simulation sets were run for20
dB, 10 dB, 0 dB, and 10 dB SNR; i.e., average signal power
was 1/100, 1/10, 1, and 10 times the average noise power, re-
spectively. As expected, BER always decreases with time, on
the average. For example, for each additional beat in10 dB
SNR, BER decreased by approximately one decade. However,
increasing SNR from 0 dB to 10 dB did not improve the BER
as much as from 10 dB to 0 dB. The conditions of the simu-
lations were as follows: one iteration was taken to be the equiv-
alent of ten nanoseconds, the carrier separation parameter was

kHz, all blocks were ideal, and all oscillators were
perfectly synchronized. Each point in the graph was obtained
from enough simulations to observe at least 50 bit errors.

3) Computational Sampling Rate:When the encoder and
decoder are implemented in discrete time, thecomputational
sample rate, , must be much higher than thedata pat-
tern rate, , to satisfy the Nyquist rate for coding and
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Fig. 11. BER versus SNR for different five-bit (four data and one ancillary) autoassociative SAMs for various decoding times and carrier separation,with fixed
computational sampling rate: (a) in-phase (DSB) and (b) quadrature (SSB).

recall. Together, and determine the number
of iterations, or state updates,per decoding period. For

, the number of iterations is determined by the ratio of
sampling rates

(42)

should be much higher than one to avoid aliasing and de-
crease BER. The higher , the greater the number of state
updates and the lower the error of recall will be, to a point.

Simulations were performed in which decoding time, carrier
separation, and SNR were fixed and was varied. The
results of these simulations are included in Fig. 10. These sim-
ulations show that the attractor wave carries a limited amount
of information per unit time, as the Shannon limit would sug-
gest. Since the decoding time was fixed, the transmitted energy
from the decoder was also fixed, for a given SNR; thus the BER
eventually flattened out as was increased. The bilinear
transform was used to keep the effective learning rate constant
regardless of . For instance, if the number of iterations

per unit time was doubled, the integration gain was halved to
keep the product constant. Thus, any change in the BER could be
attributed to a change in and not to the effective learning
rate.

4) Signal-to-Noise Ratio:To see the effect of noise, simula-
tions were conducted on five-bit in-phase and quadrature SAMs
for various degrees of SNR, carrier separation, and decoding
time. The conditions of the simulations were as follows: one
microsecond was taken to be the equivalent of 100 state up-
dates, the decoder was perfectly synchronized with the encoder,
and all computation was linear and high precision. The previous
state was not retained from period to period and one ancillary bit
was used to distinguish between complementary attractor states.
Linear SNR was calculated and confirmed to be

SNR

noise

(43)
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where
set to 10 ns;
noise power to be varied;
decoding period, also to be varied.

Since the out-of-band noise was not filtered before recall, the de-
coder bandlimited the noise and signal at the same rate, making
the power and energy ratios equal when taken over an integer
multiple of beats. Wherever SNR was expressed in dB, it was
calculated as 10 log(SNR ) since power is calculated from
the signal squared.

The results are shown in Fig. 11. In Fig. 11(a) the USB of the
attractor wave was present, due to in-phase decoding, whereas in
Fig. 11(b) it was not, due to quadrature coding. For ,
there was not much difference between the in-phase and quadra-
ture formulations other than the inefficient use of the channel
bandwidth in the former. However, whenwas longer than one
beat, there was a noticeable improvement in BER with quadra-
ture coding.

5) Code Rate:Due to the nature of associative modulation,
the code rate is determined by codewordlengthfor both auto-
and heteroassociative cases, and codewordpartitioning, for the
heteroassociative case only. Unlike other recursive schemes
like turbo and low-density parity check coding, the amount
of extrinsic redundancy is tightly coupled with the length of
the codeword. Due to full virtual interconnectivity, autoasso-
ciative memories realize the highest noise immunity for-bit
codewords; i.e., a symbol-to-bit ratio of

(44)

For the same bits, heteroassociative partitioning achieves
more compact physical architectures at the expense of noise im-
munity. For an ( , ) partitioning of bits, a ratio of : 1
is realized for first layer bits and a ratio of : 1 is realized for
second layer bits

(45)

(46)

Thus, the most significant bits of a digital word may be encoded
with more redundancy than less significant bits.

An interesting feature of the heteroassociative decoder is that
it is physically the same as the autoassociative decoder; i.e., only
the frequencies differ. Thus, the virtual architecture, and there-
fore codeword partitioning and extrinsic redundancy, may be re-
programmed on the fly as noise conditions change.

6) Synchronous versus Asynchronous Update:The state of
the spectral decoder may be updated either synchronously or
asynchronously. Whereas conventional associative memories
should be updated asynchronously to avoid limit cycles, SAMs
appear to benefit from synchronous update and limit cycles do
not seem to occur. Certainly BER is reduced by synchronous
update for low computational sample rates.

7) Initial Conditions: In general, initial conditions may be
fixed from decoding period to decoding period, but if succes-
sive codewords are samples of a continuous quantity, the de-

coder may be initialized with the previous state to reduce the
hamming distance between initial and final states. However, the
linear states must not be too large, since the more deeply the
quantizers are driven into saturation, the longer it takes to pull
them back out, if necessary.

VI. CONCLUSION

Spectral associative memories were proposed and charac-
terized in the presence of noise for application in the field
of communications. Due to the spectral representation of
memories, network attractors exist in the frequency domain,
separate from the neural decoder. Nonlocal neural connectivity
is realizedvirtually in the frequency domain, allowing SAM
networks to scale linearly with pattern dimension. Bit patterns
may be enfolded into attractor waves creating extrinsic infor-
mation and thus coding gain and noise immunity.

As in the conventional formulations, the possibility exists
for content addressability; i.e.,multiple patterns may be
encoded and superposed into the same attractor wave, where
each memory pattern competes for attention in the spectral
decoder; however, cross-pattern interference and spurious
attraction cause problems when patterns are small. For simple
communication applications where the objective is to reliably
send data over a noisy channel, one pattern may be transmitted
at a time, each setting up a temporary basin of attraction in
the decoder. The initial conditions are then irrelevant in terms
of the steady state, and the content addressable feature is not
exploited. Thus, rather than actually storing a set of exemplar
waveforms in the decoder and computing the similarity of the
received waveform with each exemplar by correlation, nothing
is stored in the decoder and only one spectral attractor exists at
a time. In this way, spurious attraction is eliminated.

Furthermore, extrinsic redundancy is a natural consequence
of associative modulation, hence, SAMs have built-in noise im-
munity. While the autoassociative SAM achieves the highest
noise immunity, the heteroassociative SAM offers the additional
flexibility of achieving various code rates, or degrees of redun-
dancy. The virtual architectures are nearly the same, with slight
differences in band structure and antialiasing constraints.

In-phase and quadrature formulations were given for both as-
sociative forms, along with antialiasing constraints and exam-
ples. The performance of a five-bit autoassociative SAM was
characterized in the presence of white Gaussian noise for var-
ious degrees of SNR, beat frequency, decoding time, and sam-
pling rate. BER was shown to decrease with decoding time and
in principle can be arbitrarily small in very noisy conditions
given sufficient decoder sensitivity and synchronization, but is
limited by the Shannon theorem as the sampling rate goes to in-
finity.
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