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ABSTRACT

Dynamic linking networks are very effective in locating
human faces, as they are invariant to changes in position,
orientation, scale, deformation, and partial lighting.
Additionally, these networks are well suited for analog VLSI
using very simple CMOS circuits such as programmable ring
oscillators, strongly coupled diffusion lattices, and AC-
coupled Hebbian synapses. Dynamic linking networks are
orders of magnitude faster than digital computers, thus they
provide a fast, efficient, and robust means of tracking faces in
real-time. Transistor-level simulation results are presented for
the .5um TSMC CMOS technology with 3-volt supply.

1. INTRODUCTION

Recognizing faces in real-time is a challenging task, due in
part to the time required to extract features. This processing
time is often directly related to the size of the image.
Unfortunately, a large part of the image typically contains
irrelevant information that distracts recognition processes
from regions of interest (ROI). Significant improvements can
be made in processing time and error rates by finding and
focusing attention on these regions only. Hence, there is a
great need for fast and efficient ROI locating processes.

Some progress has been made in ROI tracking using
techniques such as morphological processing, sub-sampling,
spline-wavelet preprocessing, wavelet transforms, log-polar
mapping, and multilayer perceptron networks [1], [2].
Although these techniques can be made to work in well-
controlled environments, they are generally not robust in a
wide range of real-world variations such as changes in
orientation, scale, deformations, and lighting. Furthermore,
many of these techniques are relatively complex, making
them poor candidates for VLSI.

Fortunately, dynamic linking networks offer a straight-
" forward, robust approach that is simple enough to integrate
on-chip using ring oscillators, strongly coupled diffusion
lattices, and AC-coupled Hebbian synapses. Because
diffusion lattices can calculate many local summations of
oscillator activity simultaneously, they are orders of
magnitude faster than digital computers. As a whole,
dynamic linking networks constitute a very fast, efficient, and
robust means of real-time ROI tracking.

2. DYNAMIC LINKING NETWORKS

One of the most- general descriptions of a face is a list of its
features without any information as to how they are arranged
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spatially. Such a description is a simple combination of
features. On the other hand, permutation pertains to how
such features are arranged spatially and thus represents a
more specific description. Without compensation, a
permutation-based description is far too rigid to be invariant
to translation, rotation, scale, and deformation. Fortunately,
most faces have a rather distinct relative distribution
(combination) of pixel intensities, making them identifiable
against cluttered backgrounds and other objects while
maintaining invariance to real-world variations.

So the question is, how can such a high-dimensional
combinatorial description be represented in hardware? The
answer lies in temporal summation of sinusoids. At the
lowest descriptive level, a summation of DC pixel intensities
is roo general because the individual components do not
retain their identity after summation. But a sum of sine
waves of different frequencies does preserve the identity of
its constituents and thus constitutes a separable composite.
Hence, a system that constructs such composite signals from
sine waves that encode pixel intensity as frequency of
oscillation and correlates them with known temporal
exemplars such as those obtained from 2 normalized average
of all faces, is able to discriminate between faces and non-
faces while still maintaining invariance to real-world
variations of the faces themselves. A block diagram of such
a system is shown in Fig. 1.
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Fig. 1. Dynamic linking network with oscillatory

illuminance encoding for finding faces in uncontrolled
environments.

The linear combiner on the left side of Fig. 1 produces a
composite signal, Vi(¢), from a set of oscillatory signals
determined by relative reflectances of an unknown image.
The linear combiner on the right produces a similar
composite signal, V,(7), from a known (exemplar) image.
The linking mechanism in-between computes the correlation
between V,(r) and V,(¢). If the two relative pixel intensity
distributions are similar, then the two composite signals will
be correlated and the absolute value of the correlation voltage



will grow. On the other hand, if the two patterns are
different, the correlation voltage will decay to zero.

Finding regions of interest in real images requires that many
local summations and linking mechanisms be distributed
around the unknown image. Then the links that become
greater than a certain threshold can be used as a binary mask
to determine where feature extraction and classification
techniques should be applied. Although such a distributed
architecture can be implemented on a digital computer, the
shear size and number of summations that must be computed
requires large amounts of computational resources, making
the software implementation impractical. Hence, there is a
need for hardware implementation using analog VLSI.

3. HARDWARE IMPLEMENTATION

Dynamic linking networks are well suited for analog VLSI.
Ring oscillators with programmable capacitor banks and
cascode current-output stages can be used to encode pixel
intensity. Summation, which typically takes a great deal of
computational resources on a digital computer, can be
implemented by strongly coupled diffusion lattices. And the
linking mechanisms can be implemented by AC-coupled,
transconductance multipliers.

3.1. Diffusion Lattices

Diffusion lattices like that shown in Fig. 2 can be used to

calculate many local summations of oscillator activity that .

drive the adaptation in a dynamic linking network. As a
result, there is no need to include a linear combiner for every
pixel location; a substantial savings in processing time and
area! As long as the lattice nodes are strongly coupled; i.e.
lateral resistances, Ry, are small compared to the vertical
resistances, R,,,, and the oscillators inject currents into their
respective nodes, then the voltage that develops at each node
is an approximate local average of neighboring frequencies.
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Fig. 2. A strongly coupled diffusive averaging lattice.

Because the lateral resistors must be small, they can be
implemented with serpentine segments of polysilicon, but
the vertical resistors must be implemented with active
components to conserve area. A simple, yet fairly linear
approach is to use a complementary shunted transistor pair as
shown in Fig. 3. The linearity of this scheme is good in the
voltage range of interest (0 to.8V) when (1) is satisfied
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approximately [3]. The parameters (i, and (i, are the electron
and "hole" mobilities, respectively, and W and L are the
width and length of the transistors. For gate voltages of V,,
= 2.5V and V,, = 5V and aspect ratios of .25 and .93,
equivalent resistances of approximately 31kQ are realized.
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Fig. 3. Linearity of a complementary shunted transistor pair

for implementing passive resistors. The control voltages Vj,
and Vj, were swept from (1.4,1.6) to (3,0) in steps of .2V.

3.2. Programmable Ring Oscillators

In order to encode pixel intensity as frequency of oscillation,
an oscillator must be allocated for every pixel in the image
whose frequency is programmable over a range of at least
four bits. A single-ended ring oscillator with programmable
capacitor bank and cascode current-output stage is well suited
for this purpose (see Fig. 4).
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Fig. 4. Programmable ring oscillator with current-output
stage. The layout without capacitors is 980 sq. um.

The cascode output stage provides a current output with a
high output resistance. The output resistance must be high in
order to minimize intermodulation between oscillators. Each
oscillator must inject a current into its respective node in the
lattice that is independent of the time-varying voltage that
develops at that node. The well-known cascode structure
achieves this objective by exploiting one of the many benefits
of negative feedback; increased output resistance.

The four-bit capacitor bank, denoted by C,., in Fig. 4, allows
the frequency of oscillation to be programmed over a small
range as shown in Fig. 5. In order to minimize area,
capacitors must be on the order of tenths of picofarads,
making the on-capacitance of programming switches non-
negligible. As a result, a binary-weighted sizing strategy
must be employed to maintain good linearity between the



code and frequency of oscillation. The binary-weighted
sizing strategy is contrasted with the uniform sizing strategy
in Fig. 5.
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Fig. 5. Linearity of the programmable oscillator with
respect to uniform vs. binary-weighted sizing strategies.

3.3. Linking Mechanisms

Two correlation mechanisms that can be used for dynamic
linking are the Widrow-Hoff (4] and Hebbian learning rules
-[5]. Both rules have certain advantages and disadvantages.
The one-dimensional form of the Widrow-Hoff learning rule
is given by (2):
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where V() is the output voltage, ¢ is the learning rate, and
Vi(t) and V,(¢) are the signals to be correlated. The advantage
of this rule is the fact that V,(z) converges to a high absolute
value when V;(z) and V() are temporally correlated without
being sensitive 1o DC offsets. The disadvantages, however,
are the area, power consumption, common-mode rejection,
and linearity of the blocks required to implement it.

The Hebbian learning rule, which is the simplest learning rule
in neural learning theory, is given by (3):

v (1)

4 ch (t)V2 )
where all variables are the same as in (2). The overwhelming
advantage of this rule is simplicity; the only block required to
implement it is a transconductance multiplier.  The
disadvantage, however, is that it is unbounded in the presence
of constant correlation [6]. As a result, it is very sensitive to
DC offsets which lead to saturation in voltage levels,
regardless of the AC components. Fortunately, DC offsets
can be removed with bypass capacitors, making the Hebbian
learning rule extremely practical for VLSI.

3

The Hebbian synapse can be implemented at the transistor
level by the transconductance multiplier shown in Fig. 6.
This circuit is essentially a Gilbert cell [7], [8] with active
load and current output. The simple addition of a capacitor at
the output makes the overall block an integrator. The gain-
bandwidth product is approximately 80MHz and its power
consumption is 143 microwatts. The layout area without the
capacitor is approximately 1280 sq. pum.
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Fig. 6. Transconductance multiplier/integrator used to
implement a Hebbian synapse.

4. SIMULATION RESULTS

Several simulations were conducted to characterize the
dynamic linking mechanism at the transistor level. The
circuit shown in Fig. 7 was used to test the transient behavior
of the Hebbian synapse in response to a range of similar
frequency distributions. The circuit consisted of two 3 x 3
strongly coupled diffusion lattices and one AC-coupled
Hebbian synapse. (Oscillatory current sources and vertical
resistors in the diffusion lattices are not shown for the sake of
simplicity.)
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Fig. 7. A small test network for characterizing the AC-
coupled Hebbian synapse.

The number of frequency components common to both
lattices was swept from zero to nine and the resulting
correlation voltages were graphed in Fig. 8. For the case in
which the composite signals had no common frequencies, the
correlation voltage decayed to 'zero' (approximately equal to
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Fig. 8. Correlation voltage versus time for increasing

number of common frequency components. (.5um TSMC)



1.7V). For the case in which all nine frequency components
matched, the correlation voltage rose to just over 2.4V in §
us. For combinations in between, the correlation voltage rose
to a level that was nearly proportional to the number of
common frequencies (see Fig. 9).
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Fig. 9. Correlation voltage versus number of common
frequency components between diffusion lattices.

Simulation results with real images were performed and are
shown in Fig. 10. These resuits strongly suggest that the
network performed well in discriminating between faces and
non-faces and was invariant to rotation, scale, translation, and
small degrees of deformation and lighting fluctuations. In
every trial, a correlation voltage was obtained at each pixel in
the test image by correlating the local composite signal with
the composite signal at a node directly over the center of the
face in the exemplar lattice (not shown). The two images in
Fig. 10a show how the network performed in the presence of
simultaneous illumination, scale, and translation variance.
The left and right images of Fig. 10a are the unmasked and
masked test images, respectively. The masked image was
obtained by masking out any pixel whose correlation voltage
converged to 2.3 volts or greater (1.7 being the baseline). Fig.
10b shows how the network performed in the presence of
simultaneous rotation, scale, and translation variance. Fig.
10c shows how the network performed in the presence of
deformation and translation. Fig. 10d, e, and f show how the
network performed in the presence of background clutter and
different and multiple subjects, respectively.

5. SUMMARY

Dynamic linking circuits were presented that are capable of
focusing attention on facial regions of an image regardless of
a wide variety of real-world variations such as position,
orientation, scale, deformation, and partial lighting changes.
These networks were shown to be well suited for VLSI using
programmable ring oscillators, diffusion lattices, and AC-
coupled Hebbian synapses. Strongly coupled diffusion
lattices were shown to be able to calculate many local
summations of oscillator activity in parallel, which
constitutes a significant improvement in processing speed
over digital computers. Correlation voltages in areas where
the relative intensity distribution is similar to that of an
exemplar image were shown to grow at a rate that is
proportional to the number of common frequencies there. It
was shown that the links that grow larger than a certain
threshold can be used as a binary mask to determine where
feature extraction and classification techniques should be
applied. In summary, dynamic linking networks are very
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powerful, robust, and well suited for analog hardware
implementation using very simple CMOS circuits.

tdy

[£3]

()

Fig. 10. Simulation results of dynamic linking networks
using oscillatory-illuminance encoding for finding faces in
uncontrotled environments.
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