
Multi-Pattern Real-Valued Spectral Associative Memories

R. G. Spencer

Texas A&M University
Electrical Engineering Department
College Station, Texas 77843-3128

ron.spencer@ieee.org

Abstract

A multi-pattern encoding and decoding scheme is presented
that extends the family of spectral associative memories
(SAMs) to include gray-level, or analog patterns. SAMs are
frequency-domain formulations of associative memory that
combine the extrinsic redundancy of neural networks with
the in-phase, quadrature, and complex modulation schemes
of communications. Considerable coding gain occurs at the
level of modulation and these networks may be regarded as
multi-channel, multi-carrier generalizations of amplitude
modulation. Unlike multi-pattern bipolar SAMs, which are
exclusively content-addressable, real-valued SAMs also
have an address-addressable mode in which the recall of a
particular memory may be forced. Band structures and
anti-aliasing constraints are presented along with a
probabilistic formulation in which virtual entanglement is a
natural feature. Simulations are presented that demonstrate
dual-memory recall for 6x6 gray-level patterns.

1 Introduction

Spectral associative memories (SAMs) were introduced
in [1]-[3] for transmitting digital data patterns over noisy
channels with built-in noise immunity. SAMs are
frequency-domain formulations of associative memory that
combine the extrinsic redundancy of neural networks with
the in-phase, quadrature, and complex modulation schemes
of telecommunications. Unlike conventional associative
memories in which data patterns are stored as long-term,
non-volatile attractors in a synaptic weight matrix, spectral
memories are manifested as memory waves. Spectral
attractors are not stored in a neural network or holographic
plate - they are only expanded by the neural decoder. Data
patterns, or codewords may be enfolded into an attractor
wave by associative amplitude modulation (AAM) (spectral
spread) and recalled with considerable noise immunity by
recurrent associative amplitude demodulation (AAD)
(spectral focus). AAM disperses the data pattern across the
frequency domain, creating extrinsic redundancy and AAD
re-focuses the pattern in the frequency domain for spatial
re-expansion. Temporary basins of attraction are set up in

the decoder that force the recall of one of the enfolded
patterns and disappear when transmission of the memory
wave ceases. The memory wave guides the state of the
decoder into one of the basins of attraction like deBroglie’s
pilot wave in Bohm’s wave/particle theory [4] and such a
decoder is an uninstantiated, attractorless decoder with no
net motive until activated by a coherent spectral attractor.
Long-range connectivity is made virtually by spectral
convolution and inner products are calculated in the
frequency domain [5], allowing both coding and decoding
networks to scale linearly with pattern dimension. The price
is bandwidth, which scales quadratically with pattern
dimension. Interestingly, memory formation and recall may
be expressed in Dirac notation, the language of quantum
mechanics [6] and a virtual analog of entanglement results
from factorable memory waves.

In this paper, real-valued SAMs are presented in which
gray-level patterns may be encoded by singular value
composition and transmitted to a decoding network for
recall. Unlike bipolar SAMs, the identity wave is subtracted
at the decoding network and every memory pattern must
have a unique weighting factor, or eigenvalue, λ, in the
spectral composition. As a result, analog associative
memory patterns may be recalled by either content
(content-addressability), in which the eigenvalue is allowed
to adapt in the decoding network, or by address in which
the eigenvalue is fixed (address-addressability). When λ in
the decoding network equals the eigenvalue of one of the
encoded eigenvectors (patterns), the kernel of the
corresponding linear transformation is biased in the
direction of the corresponding eigenvector, all other
attractor basins are enervated, and the corresponding pattern
is recalled.

The conventional matrix-vector formulation of analog
associative memory is given in section 2 followed by the
wave formulation in section 3. Band structures and anti-
aliasing constraints are given in section 4 and simulation
results of a 37-dimensional network with two 6 x 6 gray-
level patterns are given in section 5. A probabilistic
formulation is given in section 6 followed by conclusions in
section 7.
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2 Matrix-Vector Formulation

2.1 Memory Formation and Recall

For an N-dimensional network, P≤N orthonormal
patterns may be encoded into a single memory matrix M by
a weighted-sum of outer products:
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where u(p) is the pth real-valued, orthonormal pattern vector
to be encoded and λp are real weighting factors, which must
be different for each pattern. Real-valued coding is spectral
decomposition in reverse:

TUUM Σ= , (2)

where U is a unitary matrix (orthogonal in this context)
containing memory patterns u(p) and ΣΣ is a diagonal matrix
containing the corresponding eigenvalues λp. To recall one
of the encoded memories by gradient descent, a recall
potential may be defined as follows:
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where v is the continuously refined state vector, W is the
synaptic weight matrix, I is the identity matrix, and λ is a
continuously adapted variable which converges to the
eigenvalue of one of the stored pattern vectors. It is
straightforward to show that v and λ may be adapted along
the negative gradient of E by
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where cv and cλ are the corresponding adpatation rates.
In the special case when only one pattern is encoded i.e.

when M has only one non-zero eigenvalue, then (4a)
reduces to -cvWv since WW=λW, where λ may be
absorbed into the adaptation rate and (4b) would be
unnecessary.

2.2 Addressibility

To avoid spurious recall, every encoded memory must
have a unique eigenvalue, which may serve as an address.
Thus, depending on the relative adaptation rates, real-
valued associative memories may be address-addressable or
content-addressable. When cλ=0, the eigenvalue drives the
content and the network recalls the memory associated with
λ (address-addressibility). On the other hand, when cλ>cv

the content in v drives the eigenvalue and the initial
conditions determine the final state (content-addressibility).

3 Spectral Formulation

A wave formulation of real-valued associative memory
replaces the synaptic weight matrix with an attractor wave
and the neural state vector is replaced by a state wave. A
key feature of spectral associative memory is that long-
range connectivity may be achieved virtually in the
frequency domain by spectral convolution, which allows
linear scalability of the physical realization with pattern
dimension, per encoded pattern. A continuously
transmitting coding network is required for each pattern,
and a composite memory wave is formed from which any
one of the patterns may be recalled by recurrent associative
amplitude demodulation.

3.1 Memory Formation

Memory formation may be divided into three parts: 1)
pattern preparation, 2) synthesis, and 3) spectral
convolution. See Fig. 1.

Fig. 1. Block diagram of a single associative amplitude modulator,
or spectral coding network.

3.1.1 Pattern Preparation. A maximum of N patterns
may be stored in an N-dimensional associative memory, but
due to the orthogonality constraint only N-1 of them may be
arbitrarily determined to some degree. P-1 channels must
be reserved for orthonormalization, where P < N is the
number of patterns to be stored, and if pattern intensity is to
be preserved then one channel must be allocated as a fixed
reference. Thus, the total number of usable dimensions or
channels per pattern is n = N-P.

3.1.2 Synthesis. Coding waveforms s1(t) and s2(t) for a
single pattern p are defined as the sum of N waveforms,
each  carrying pattern information in the amplitude:
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where ωS1(2)i are the ith elements of the nonoverlapping
carrier frequency vectors ωωS1(2), defined in the next section.
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3.1.3 Spectral Convolution. The individual memory
waves, Mp(t) are formed by spectral convolution and added
together to form a collective spectral composition:
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Due to the complex coding in (5), the upper-sideband
(USB) naturally cancels out in (6) and all available power
goes into the lower-sideband (LSB) of the memory wave.
Contained within M(t) is extrinsic redundancy about the
encoded data patterns, which facilitates noise immunity.

3.2 Memory Recall

Recall is achieved by recurrent associative amplitude
demodulation in which spectral convolution generates inner
product information in the frequency domain [5]. An
attractor wave is continuously generated from the memory
wave and spectrally convolved with the state wave of the
decoding network. Contained within the result is a linear
transformation in which the kernel adapts toward one of the
encoded memories. Extrinsic information distributed over
the entire attractor band is re-focused and transferred to the
LSB of the gradient wave, which pilots the network into the
strongest basin of attraction, influenced by the current
eigenvalue address. White noise is filtered out over time as
the memory wave provides the only coherent motive.

Recall may be divided into five parts: state wave
synthesis, attractor wave generation, error wave synthesis,
state update and eigenvalue update. See Fig. 2.

Fig. 2. Block diagram of an associative amplitude demodulator, or
spectral decoding network.

3.2.1 State Wave Synthesis.  The state wave v(t), is a
weighted-sum of individual channel waves across the entire
state band:
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where ωVi is the decoder synthesis frequency for the ith

virtual neuron. State vector v, which may initially contain
random guesses or noisy or imcomplete content, converge
to scaled versions of the encoded data patterns over the
recall period and serve as the final system output.

3.2.2 Attractor Wave Generation. The attractor wave is
formed by subtracting the memory wave from a scaled
identity wave I(t) containing energy at diagonal
frequencies:
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where ωILi is the ith element of the LSB identity frequency
vector ωωIL, defined in the next section. Subtracting M(t)
from λI(t) generates a kernel wave space by adjusting the
strength of virtual self-connectivity in the decoder. This
step transforms the range space of the linear transformation
W(t)v(t)* into a kernel space and should not be confused
with the subtraction of an unscaled identity wave in the
bipolar SAM which modifies the range space. Although λ
may be complex, it is restricted to real values in the present
treatment.

3.2.3 Error Wave Synthesis. Error information is
extracted from the attractor and state waves by direct
conversion:
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where ei is the ith element of the spatial error vector e, ωAi is
the ith element of analysis frequency vector ωωA and LPF
refers to low-pass filtering [7] with at least 40dB of
attenuation at the carrier separation frequency (defined in
the next section). An error wave is then synthesized by
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where ωEi is the error synthesis frequency for the ith virtual
neuron, which may be made equal to ωVi. Together, these
equations perform the function of a comb filter – a function
commonly used to separate luminance and color
information in TV signals.
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3.2.4 State Update. Real-valued recall follows a
continuous trajectory along the negative gradient of the
recall potential, which is extracted by direct conversion:
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where cv is the eigenvector adaptation rate and g(t) is the
gradient wave formed by the spectral convolution.

3.2.5 Eigenvalue Update. The eigenvalue may be
updated by low-pass filtering the spectral convolution of the
error and state waves as follows:

))()(LPF(/dd *tvtect λλ −= (12)

since e(t) and v(t) are coherent and phase-locked, where cλ

is the eigenvalue adaptation rate.

4 Band Structure and Anti-Aliasing Constraints

Not all frequencies facilitate associative coding and
recall. Carrier frequencies must be separated by integer
multiples of ∆ω, the beat frequency. ∆ω determines
bandwidth, noise immunity, and speed of recall. The higher
the value of ∆ω, the higher the noise immunity and
allowable speed of recall, but at the expense of increased
bandwidth.

4.1 Band Structures

The fine structure of one set of coding bands is
illustrated in Fig. 3a and given by the following equations:

      ωωω ∆+= iNLSiS .11 ,     ωωω ∆+= iLSiS .22 (13)

for i=0,1,…N-1. The diagonal vector is given by

S2S1IL ùùù −= . (14)

Fig. 3. Fine structure of 3-D AAM spectrums at the coding
network: (a) coding bands and (b) transmitted memory wave.

The state and error bands may be placed one ∆ω higher
than the attractor wave,

 ωωωω ∆−== iHViViE . , (15)

where ωV.H = BS.GAP+BS1+2BS2+∆ω is the lowest frequency
of the state band and BS.GAP is the coding band gap between
the end of the second band and the beginning of the first.

( ) ω∆−= 11 NNBS  and ω∆−= )1(2 NBS  are the widths of
the respective coding bands. The analysis vector is given by

ILVA ùùù −= . (16)

The fine structure of these decoding bands, as well as the
matrix-bands are shown in Fig. 4.

Fig. 4. Fine structure of 3-D AAD spectrums at the decoding
network: (a) received memory wave, (b) identity wave, (c)
attractor wave, (d) state wave, (e) activation wave, (f) error wave
and (g) gradient wave.
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4.2 Anti-Aliasing Constraints

In complex (C) and quadrature (I/Q) formulations of
spectral associative memory, upper-sidebands of mixing
operations cancel out and all energy is focused into lower-
sidebands. As a result, there are no anti-aliasing constraints
to be satisfied other than the well-known Nyquist rate for
sampled-data implementations.  On the other hand, for in-
phase (I) formulations in which the complex exponentials
are replaced by cosines, upper-sidebands do not cancel out
and aliasing must be avoided. Thus, the anti-aliasing
constraints provided in this section give the worst case.
Thus, they also work for C and I/Q formulations.

Two anti-aliasing constraints must be satisfied for in-
phase coding. First, lower bounds must be placed on the
lowest coding frequency to prevent sideband aliasing by the
USB of the attractor wave. Second, the width of the coding
band gap must be wide enough to allow for alias-free
mixing in the decoder. The coding band gap and lowest
coding frequency may be expressed as BS.GAP = ceil(N/2)∆ω
and ωS2.L = (N2+1)∆ω, respectively, which allow the
calculation of all other frequency vectors.

Consider a 7-D example. The second coding band
would start at ωS2.L = 50∆ω and the band gap would be
4∆ω. Coding vectors would be ωωS1=[60 67 74 81 88 95
102]T∆ω, ωωS2=[50 51 52 53 54 55 56]T∆ω, and ωωIL=[10 16
22 28 34 40 46]T∆ω. The highest state frequency would be
ωV.H =BS.GAP+BS1+2BS1+∆ω =59∆ω, leading to ωωV =ωωE= [59
58 57 56 55 54 53]T∆ω and ωωA=[49 42 35 28 21 14 7]T∆ω.

5 Simulations

5.1 Dual-Pattern Example

Simulations were performed for 6 x 6 = 36-dimensional
gray-level images, with an additional channel for preserving
pattern intensity. Two gray-level patterns were
continuously encoded and transmitted in parallel, shown in
Fig. 5. The results of two simulations demonstrating
different modes of addressability are shown in Fig. 6 and
Fig. 7. In Fig. 6, the decoding network was provided with
noisy initial conditions biased toward pattern A and the
network converged to pattern A, demonstrating content-
addressability. In Fig. 7, the network was provided with
noisy initial conditions biased toward pattern A, but fixed
eigenvalue address of pattern B, and the network converged
to pattern B, demonstrating address-addressability.

Fig. 5. Encoded 6 x 6 gray-level memory patterns A and B.

First order filters were employed and the bilinear
transform [7] was used to map to discrete time. The beat
frequency was ∆f = 1kHz, the computational step time was
50 ns, and snapshots of the state vector were taken 40ms
apart. Adaptation rates cv and cλ were adjusted empirically
until the transient response was slightly underdamped.

Fig. 6. Transient response of 37-D network showing content-
addressibility. Provided with noisy initial conditions biased in
favor of pattern A, the network converged to pattern A.

Fig. 7. Transient response of a 37-D network demonstrating
address-addressibility. Provided with noisy initial conditions
biased in favor of pattern A, but fixed eigenvalue address of
pattern B, the network converged to pattern B.

6 Probabilistic Formulation

From an empirical perspective one may describe the
encoding process as a biasing of recall in favor of one or
more memory patterns for random initial conditions. This



6

forms a biased probability space, where the basis states are
the encoded patterns. Using Dirac notation, in which “kets”
are used to represent states, the biased probability state |Ψ〉
may be expressed as a weighted sum of encoded states:

∑
=

Ψ=Ψ
P

i

ppc
1

;    pj
pp erc ϕ= (17)

where cp are complex weighting factors in which the phase
ϕp has been assumed to be zero until now, but may be non-
zero due to the wave formulation.1 The probability pj of
recalling a particular pattern j is calculated from the
complex coefficients as follows:
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Thus, due to the orthonormal coding and conservation of
probability, multiplying the decoder possibility state by a
real scalar r, does not change the probability of recall,
assuming stability is maintained in the decoder:

Ψ⇔Ψr (19)

Interestingly, the encoding of patterns leads to a biased
recall probability state in which the observed value of one
channel is not independent of the other channels and cannot
be factored. For example, coding a single 3-D pattern in
which the pattern is x = [x1 x2 x3]

T leads to the state:

 321321 2
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because the negative of an eigenvector is still an
eigenvector and the two patterns are equally likely. More
importantly, this expression cannot be factored into a
product of other ket vectors and implies a kind of “virtual
entanglement”; however, the memory wave which
facilitates this state in the a priori formulation is factorable,
and is actually formed by a tensor product as given in (6).
This result is carried over from the conventional matrix-
vector formulation; there is nothing unique about the
spectral formulation other than the fact that computational
entanglement is achieved in the frequency domain.

7 Conclusions

Multi-pattern, real-valued spectral associative memories
were presented that allow the coding and recall of multiple
analog data patterns over noisy channels. A complex-
exponential formulation was presented in which upper-
sidebands naturally cancel out and all available energy is
spread over the lower-sideband of the memory waves. Due
to the spectral representation of attractors, connectivity is

                                                       
1 Unlike the conventional formulation, like-patterns can destructively
interfere if the corresponding memory waves are out of phase.

made virtually in the frequency domain and real-valued
SAMs scale linearly like bipolar SAMs. A notion of
“entanglement” is implied by the a posteriori formulation -
a degree of interconnectedness to which coding gain and
noise immunity may be attributed.

Real-valued SAMs may be thought of as multi-channel
coder/decoders (CODECs) and modulator/demodulators
(MODEMs) due to the built-in extrinsic redundancy
provided at the level of modulation. For single patterns, the
decoding network may be simplified by eliminating
eigenvalue adaptation, error analysis, and error synthesis,
and the activation wave may serve as the gradient wave.
Because spectral attractors disappear when transmission of
the memory waves ceases, a stream of single patterns may
be transmitted over a noisy channel with increased SNR.
For multiple patterns, multiple “video” streams may be
transmitted simultaneously over the same noisy channel,
and multiple decoding networks tuned to the same decoding
frequencies may recall different video streams based on
address or content.
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