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ABSTRACT

Nonlinear spectral associative memories (SAMs) are quantized frequency domain formulations of recurrent associative

memories in which data bits are encoded in attractor waves and processed by recurrent spectral convolution. Spectral

formulations hold several advantages over spatial formulations, including decoder/attractor separability, virtual non-

local connectivity, and linear scalability. Synaptic weights are represented in the frequency domain and may be

superposed in a single, on-line input to the neural decoder rather than a set of off-line parameters. As a result, SAMs

are well suited for robust digital communications with no preprocessing required. Bit vectors may be transmitted over a

noisy channel as superposed attractor waves and recovered by spectral neural decoding. Due to the inherent redundancy

in the encoding process, noise immunity is built-in and non-local connectivity is realized virtually, maintaining high

symbol-to-bit ratios while scaling linearly with the input vector. Simulations are provided showing how bit error rate

(BER) decreases with convergence time, spectrum spread, and signal-to-noise ratio (SNR).

INTRODUCTION

Since Hopfield’s seminal work (Hopfield, 1982), recurrent associative memories have been extensively studied and

new networks proposed (Kosko, 1987, 1988) in which non-linear feedback is used to recover stored patterns in the

presence of noise. Because memory recall is initiated by partial or noisy patterns and carried out without an address,

these networks are categorized as content addressable memories (CAMs).

Associative memories bear a strong resemblance to holograms (Gabor, 1969), (Psaltis, 1985, 1990), (Owechko,

1989), due to the redundancy of stored patterns in the matrices that specify neural connectivity. Every neuron‘s local

synaptic weight vector contains information about the global pattern. Like a hologram, the parts make up the whole and

the whole makes up the parts; contained within the pieces of a broken hologram is the entire image itself. Such high

degrees of redundancy lead to noise immunity, but usually at the expense of spatial dimension. Unlike cellular neural

networks (Chua, et al., 1993), which are locally connected, CAMs are non-locally connected and therefore scale

quadratically or polynomially.
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In this paper a new kind of network with spectral attractors is proposed, called spectral associative memories

(SAMs). Whereas the attractors of conventional CAMs are spatially embedded into a neural decoder as an array of

synaptic weights, the attractors of spectral CAMs persist transiently as a superposition of waves that activate a neural

decoder (see Figure 1). Exploiting the reversible property of the superposition of orthogonal waves and the richness of

spectral convolution, non-local connectivity may be achieved virtually, reducing network dimensions and allowing the

attractor to be separated from the neural decoder.

The fact that convolution may be used to form associations has been appreciated for several decades in the optical

storage field (Gabor, 1969), (Psaltis, 1985, 1990), (Owechko, 1989); however, the main thrust behind such work has

been in non-volatile memories where attractors are stored to some medium. The attractors proposed here are not stored

by the decoder; they are only expanded by the decoder. Whereas spatial attractors are inseparable from the neural

network in which they are embedded, spectral attractors may exist separately.

Due to decoder/attractor separability and encoding redundancy, attractor waves lend themselves to carrying

information. Attractor waves created from bit patterns may be transmitted into the electromagnetic spectrum and

expanded by a remote decoder with no physical connection. Until activated by one or more attractor waves, the neural

decoder is an uninstantiated, attractorless decoder with no net motive. Only when activated with colored motive, is one

of the memories expanded (recalled). When limited to transmitting and receiving one encoded memory wave at a time,

spectral neural encoders and decoders are suitable for realizing robust digital telecommunication systems in the

presence of noise.

Autoassociative spectral memories are defined in the next section, followed by bit error rate simulations of single-

attractor systems in the section after that. Following the fourth section on implementation and scaling complexity is a

discussion of the similarities between spectral memories and quantum field dynamics in the fifth section, and finally

conclusions.

AUTOASSOCIATIVE SPECTRAL MEMORIES

With quantized spectral processing, the Hopfield network may be reformulated in the frequency domain where

memories are manifested as attractor waves which instantiate a spectral neural decoder, instead of a synaptic weight

matrix. As such, attractors may exist separately from the neural decoder as a superposition of waves. This allows non-

local connectivity to be realized virtually, by spectral convolution. Recalled data bits are simultaneously represented in

the spatial domain as quantized neural states and in the frequency domain as quantized phase of oscillation. Local

changes in phase are driven by the tendency of the Hopfield formalism to reduce global network energy over time,

despite the presence of noise, as neural states settle in one of the virtual attractors that activate the decoder.
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Spectral Encoding

The composite attractor wave may be constructed by superposing p attractor waves, each generated by spectral

convolution from two encoder waves, s1
(m)(t) and s2

(m)(t), (see Figure 2a),
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where Pmax is the maximum signal power, which occurs when all patterns constructively reinforce1. The encoder waves

are weighted superpositions of cosine waves,
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where the ith bipolar bit of the mth pattern is denoted by b(m)
i∈ {-1,+1} and ω S1i and ω S2i are the ith frequencies of 1st

and 2nd encoder waves, respectively. Each pattern in (1) generates a spectral attractor in the lower side-band  (LSB) of

w(t).  The upper side-band (USB) contains no useful information for decoding and should be filtered out, but it is

possible to recover the original patterns without doing so. Encoding frequencies must be placed such that spectral

autocorrelation is enforced,
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for i=0,1,… N-1, where ∆ ω  is the radial frequency separation and ω S1.L and ω S2.L are the lowest frequencies in the

respective bands.

Spectral Recall

Spectral recall requires recurrent spectral processing that consists of three processes: 1) synthesis, 2) convolution,

and 3) analysis. See Figure 2b. The attractor wave is spectrally convolved with the state wave, v(t), to produce the

neural activation wave, a(t), in which linear activation information exists. Linear activation information is then directly

modulated down to DC, integrated, and quantized to determine neural states.

Spectral Synthesis. Spectral synthesis is the construction of the state wave, v(t), which represents the state of the

system. The state wave is a linear superposition of N evenly synchronized (cosine) waves2, with frequencies descending

from lowest (ω V.L) to highest (ω V.H),

                                                       
1 Diagonal frequencies should be zeroed to comply with the Hopfield formalism, but it is not necessary in practice.
2 Even synchronization means that oscillations are simultaneously peaked (cosine waves).  Sine waves, on the other hand, are oddly
synchronized; i.e. simultaneously null.
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Spectral Convolution. Non-local connectivity may be achieved virtually by spectrally convolving the state wave with

the attractor wave, which generates N linear combinations in the LSB of a(t), where analysis frequencies are indexed

from highest (ω A.H) to lowest (ω A.L),
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Spectral Analysis. Activation information may be extracted from the activation wave by direct, local conversion

followed by integration, and quantization,
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where ui and vi are the linear activation and bipolar state of the ith neuron, respectively, ω Ai is the ith analysis frequency,

and c is the learning rate which should be sufficiently small compared to any natural saturation limits that might be

forced on ui. Initial linear activations, ui, should be set to small values on one side or the other of the quantizer, which

may be determined by the state of the decoder in the previous decoding period. Linear activations must not be too large,

since the more deeply the quantizers are driven into saturation, the longer it takes to pull them back out, if necessary.

Anti-Aliasing Constraints

Not all frequencies facilitate error-free encoding and recall. To avoid aliasing in memory formation, ω S1.L must be

greater than half the bandwidth of the 2nd encoding wave. This is the encoding constraint. To avoid aliasing in the

neural activation wave, the lowest LSB attractor frequency, ω W.LSB.L, must satisfy the 1st decoding constraint,

LLSBWLVLLSBWLV ...... ωωωω −>+ (7)

If the USB of the attractor wave is not filtered out, it must be high enough not to alias the lower side-band of the

activation wave. This leads to the 2nd decoding constraint, which places a lower bound on ω S1.L that is more restrictive

than the encoding constraint,

;...... LLSBWLVHVLUSBW ωωωω −>−
       

LSLSLUSBW .2.1.. ωωω += (8)

where ω W.USB.L is the lowest USB frequency.  From these constraints, arbitrary frequency sets may be derived in terms

of N. One such set (i=0,1,… N-1) is given in (9)-(11),
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SINGLE-ATTRACTOR NETWORKS FOR DIGITAL COMMUNICATIONS

Spectral associative memories with single attractors lend themselves to digital communications. Binary data vectors

may be transmitted as transient spectral attractors, one at a time, over a noisy channel to a spectral decoder. When

only one attractor activates the decoder at a time, the initial conditions (ICs) have no bearing on the steady state and the

encoded bit vector may be recovered with exceptional noise immunity. Very low bit error rates (BER) may be achieved

with relatively few neurons.

Noise Immunity

Spectral associative memories must tolerate two sources of noise: 1) initial condition noise and 2) attractor noise. In

the conventional formulation, attractor noise is not significant and is typically ignored, but it is primarily this noise that

spectral memories must tolerate. Four main factors influence noise immunity:  1) convergence time, 2) code rate, 3)

degree of spectrum spread, and 4) initial conditions.

Convergence Time. BER always decreases with increasing convergence time, Tc, in the presence of white noise.

Fortunately, white noise cannot move the state of the system anywhere over time because it provides no colored motive.

Only the systematic part of the attractor wave instantiates the energy landscape over time.

Code Rate. Code rate is determined by the length of the codeword. Compared to heteroassociative memories,

autoassociative memories achieve the highest noise immunity due to their full virtual interconnectivity. Autoassociative

attractor waves consist of N2 frequencies for N-bit codewords, representing symbol-to-bit ratios of N:1.

Spectrum Spread. The degree to which information is “spread out” over the frequency domain also influences noise

immunity. Spectrum spread is directly controled by radial frequency separation, ∆ ω , which increaces the level of

tolerable noise.

Initial Conditions. If successive codewords are samples of a continuous quantity, linear activations may be initialized

by the previous state. Otherwise, the ICs may be fixed.
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BER is shown in Figure 3 for a 5-bit autoassociative code for increasing SNR and various degrees of spectrum

spread and convergence times with fixed initial conditions. The decoder was assumed to be perfectly synchronized with

the encoder and all blocks were assumed to be ideal. One bit of overhead was used to distinguish between

complementary attractor states and the USB of the attractor wave was not filtered out. From the outset, it appears that

SAMs outperform turbo decoders for low signal-to-noise ratios (SNR) and short codewords, especially at low data rates

(1/Tc). In high noise conditions SAMs may achieve lower BER with 5-bit codewords than turbo decoders with block

lengths of over 1024 due to the fact that BER always decreases with increasing Tc.

IMPLEMENTATION AND SCALING COMPLEXITY

Linear scalability is realized while maintaining symbol-to-bit ratios of N:1.  By contrast, the conventional Hopfield

network scales quadratically.

Non-Multiplexed Decoding

A spectral associative encoder for N-dimensional bipolar vectors requires 2N oscillators (O), two summers (S), and

one mixer (M),

MSNONplexityEncoderCom ativeAutoassoci ++= 22)( (12)

The general non-multiplexed spectral Hopfield decoder requires 2N oscillators, one summer, N+1 mixers, N integrators

(I), and N bipolar comparators (C),

( )CIMONSMNplexityDecoderCom dmultiplexeNon +++++=− 2)( (13)

Multiplexed Decoding

The spectral decoder may be multiplexed, reducing the complexity even further. Each neuron should be updated

asynchronously anyway to avoid limit cycles. Such a decoder would require  N+1 oscillators, one summer, two mixers,

one integrator, and N memory elements (Q),

( )QONIMSONplexityDecoderCom dMultiplexe +++++= 2)( (14)

In mixed-mode circuit implementations, summation is often performed in the current domain. In such

implementations, capacitors (CAP) may simultaneously act as integrators and memory elements, and inverters (INV)

may be used to quantize the activations, as shown in Figure 4,

( )INVCAPONMONplexityDecoderCom dCktMultiplexe ++++= 2)( (15)
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DISCUSSION

Several similarities to quantum dynamics are apparent in spectral recall dynamics. In terms of oscillation phase, the

state of each local oscillator may change only by discrete amounts, or phase quanta. Like photons in an

electromagnetic field, electrons in a matter field, phonons in a vibrating silicon lattice, or corticons in a biomolecular

vibration field (Jibu and Yasue, 1993, 1995), such discrete changes may be regarded as something like an associaton in

a vibrating association field. In the same way that electrons minimize the energy state of an atom by jumping from one

quantum eigenstate to another, releasing electromagnetic quanta (photons) in the process, local changes in phase of

oscillation occur in spectral associative memories during recall, driven by the tendency of the Hopfield formalism to

reduce the global network energy. Seemingly spontaneous local “jumps” in neural state lead to discrete reductions in

global error, hence, these jumps are analogous to quantum releases in energy where the energy landscape is

instantiated by the attractor waves that activate the network. In fact, quantum computation itself may prove to be an

efficient means of realizing spectral memories, taking advantage of the linearity of Schrödinger’s wave equation

(Schrödinger, 1926), (Ventura and Martinez, 1998).

CONCLUSIONS

Autoassociative spectral memory networks were proposed where attractors are represented in the frequency domain

as a superposition of waves. Rather than being embedded in the neural decoder, spectral attractors may exist separately

from the decoder and thus lend themselves to carrying information over a noisy channel. Linear scalability is achieved

by realizing non-local connectivity in the frequency domain, without compromising high symbol-to-bit ratios, which

provide noise immunity. Simulations were presented that show BER vs. SNR for various convergence times and

spectrum spreads in the presence of white noise.  BERs of 10^-4 may be achieved for signals no stronger than the noise

itself, making spectral associative encoders and decoders strong candidates for achieving robust digital

telecommunications in the presence of noise.

NOMENCLATURE

N: Number of neurons; length of bit pattern
∆ ω : Frequency separation and spread spectrum control
s(t): Encoder wave
w(t): Noiseless attractor wave
r(t): Noisy attractor wave
v(t): State wave
a(t): Activation wave
ui: Linear activation of ith decoding neuron
vi: Bipolar state of ith decoding neuron
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FIGURES

Fig.  1. Two realizations of the Hopfield decoder:  (a) spatial realization and (b) spectral realization. Blocks labeled “->F”/“F->” mean
“to/from frequency domain”.

Fig.  2. Schematic of single-pattern, autoassociative spectral encoder/decoder pair.

Fig.  3. Bit error rates for a 5-bit autoassociative spectral code with increasing SNR and various degrees of spectrum spread and
convergence times. (1µ s = 1000 iterations, ∆ ω  = 2π∆ f)
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Fig.  4. Schematic of one possible current-mode multiplexed spectral decoder.


