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Abstract. The iwo major aspects of image data compression utiliz-
ing wavelet analysis and synthesis are the decomposition of an im-
age and the reconstruction of this image. It has been noticed in this
investigation that the pyramid structure of convolution and the down
sampling or the up sampling (adding zeros) and convolution have
equivalent operations in vector space analysis. That is, the decom-
position is equivalent to an outer product expansion. Therefore, ten-
sor products can easily accomplish the synthesis or reconstruction.
This is sometimes called the direct product. It is suggested that this
method of implementation saves operations and opens the way to
utilization of uniform filter banks. © 2000 SPIE and IS&T.
[S1017-9909(00)00401-3]

1 Introduction

It is well known that the fundamental building block of fast
implementations with orthogonal transforms is the ability
to decompose a matrix of basis vectors into submatrices
with fewer operations. Normally the matrix representing
the transformation matrix is never actually stored or de-
composed. Instead, the equivalent operation is accom-
plished by the direct product, or tensor product, of a num-
ber of lower-dimensional submatrices. The submatrices
used are usually lower-dimensional basis sets which, when
multiplied together in a direct product operation, would
form the orthogonal transform matrix to be used for a map-
ping operation. In this form, however, fewer operations,
typically two operations per row, are possible. In fact,
whenever a basis set can be generated by the direct product
of two or more lower-dimensional bases sets, then a fast
implementation exists. This has been the foundation of
work by Cooley and Tukey,! Ahmed and Rao,? Griswold
and Haralick.® and more recently, Hou,4 in the fast imple-
mentation of the discrete cosine transform. In this note we
apply these concepts to the wavelet decomposition and the
reconstruction of an image utilizing an orthogonal wavelet
basis.

Many authors® have discussed the use of discrete wave-
lets with fast pyramid-type implementations. In this paper
we investigate an alternative vector space approach to the
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decomposition and reconstruction, using outer products and
tensor products for the decomposition and the reconstruc-
tion of a data matrix and an image. In this particular note
we say nothing about the coding that may take place be-
tween the decomposition and reconstruction operation for
transmission, but concentrate on the decomposition and
perfect reconstruction methods only. It is further suggested
that if symmetry is considered, this method can reduce the
number of operations now being performed by pyramid
structures.

2 Decomposition

Decomposition of an image, we believe, is best understood
when viewed as a projection of the data in a higher-
dimensional space to a lower-dimensional space. Let us
consider one level of decomposition for the sake of clarity.
If we have an arbitrary vector, Xe L(T) (i.e., a finite en-
ergy time vector with a norm of [xl|=[S 7lx(0)|2de]), it
can be uniquely approximated in a subspace of L”. Call
this subspace §S,, with an approximation of X
=3"_,(x,q;)b; where g,,b; are reciprocal bases and {-,")
represents the inner product. This of course is stated in the
projection theorem.® For wavelets, if ¢, and i, are bases
(the scaling function and wavelets) and therefore by defini-
tion span the space of V" and W", respectively, and fur-
thermore V' 1=V"®@W" and V"L W" we have

Vn(x) = 21 Cn,igon,i(-x)’
1)
un(X)=2 dyy i ().

This simply states that v, and u,, are the projections of the
original data to the space of V" and W".

The coefficients of ¢, ; and d, ; are what we seek and
are usually derived from convolution and down sampling in
the pyramid structure (see Fig. 1).

In the wavelet decomposition of a sampled data string
we use the ¢, or averaging basis as a low pass filter opera-
tion and the wavelet basis #, as the high pass filter opera-
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Fig. 1 Typical wavelet decomposition.

tion. This enables the decomposition of the data structure
into two segments of a low frequency and high frequency
structure. This may be implemented by dyadic convolution,
which is known to be equivalent to linear convolution, fol-
lowed by down sampling by two. To operate on a two-
dimensional (2D) image, or data matrix, the two-
dimensional scaling function evokes three related two-
dimensional wavelets, namely

e(xy)=0(x)e(y), ¢'(x,y)=e(x)¥(y),

P(xy) =) e(y), P (x,y)=p(x)(y).

Typically in practice, two-dimensional operations are car-
ried out using the separability characteristic of the orthogo-
nal basis. That is, by convoluting each row with the basis
and then down sampling, or equivalently, by dyadic convo-
lution and then transposing the result and performing the
operations on the new rows (original columns).

In reality, for orthogonal or bi-orthogonal wavelets, this
operation is equivalent to an outer product expansion of the
two-dimensional data structure. If we consider the two-
dimensional M X M matrix or image V to be a vector in a
M?-dimensional space it is possible to represent this image
in a p-dimensional subspace where p is the rank of the
matrix V. If we consider the image or data matrix to be
real, the matrices VV' and V'V are non-negative, symmet-
ric, and have the same identical eigenvectors {\,} and
there are at most p<<M nonzero eigenvectors. It is then
possible to find p orthogonal M X 1 eigenvectors {¢,,} of
V'V and p orthogonal M X 1 eigenvectors {y,,} of VV’,
that is

2

V'V =N, VYV =N\, (3)

The matrix V has the representation

14
V=¢A'w=m§1 N, @)

This is called the spectral representation or outer product
expansion of V.

Let us apply this to the decomposition of wavelets. By
substituting an outer product of the scaling basis and wave-
let basis for the eigenvectors, we can generate our typical
low-low, low-high, high—low and high—high projections
directly for one level of decomposition under consideration.
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First, we form the outer products necessary from the basis
to be used. These outer products can then be correlated
with the data matrix with dyadic shifts. For simplicity, the
Haar basis has been chosen for this first introductory ex-
ample. The Haar basis for dimension N=2 is

1 1
Hr1=1/\/§(1); Hr2=1/\/§(_1). (5)

The corresponding outer products, OP, that we need are the
combinations of these basis vectors, i.e.

OP1=Hr1-Hr’1=%(} 1)0P2
C1f1 -1
onenet]] 7).
)
11 1
0P3=Hr2-Hr’1=5(_1 _1)0134
11 -1
=Hr2-Hr2=5(_1 1).

The low—low projection then becomes the result of corre-
lating O P, with a data matrix A.
For our purposes let A be given as:

—_— e
NN
W W W w
BN N NS

The results of the correlation with dyadic shifts are

ol el

3 7 -1 -1

™)
{00 (o0
HL—(O o) HH—(O O).

As a second example, consider the decomposition (one
level) of a more complicated matrix derived from the La-
placian of Gaussian function. This matrix is a horizontal
slice of this two-dimensional function with ¢=0.2 and
scaled between 0 and 225 to simulate an 8 X8 image func-
tion. The Laplacian of Gaussian function is given by

2_ 2 2
rF—o -r
V2G=( g )exp( 2), where r?=x2+y2. (8)

20

The corresponding matrix is given in Fig. 2. The corre-
sponding projected values are in Fig. 3.

The same operation could be done with such wavelet
derivations as the Daubechies wavelet, as depicted in Fig.
4. In this case the dyadic shift will cause an overlap in the
correlation and this overlap will be taken into consideration
during the reconstruction.
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This same outer product operation is performed on the
256X256 image, ‘‘Ryan,”’ using the four-tap Daubechies
filter coefficients. Again the outer product is formed for
combinations of low pass and high pass coefficients. The
resulting LL, LH, HL, HH images for one level of decom-
position are in Fig. 3.

3 Reconstruction

The reconstruction of this data formed by an outer product
expansion can be easily accomplished by the direct product
or the Tensor product. Before demonstrating this fact, con-
sider the fundamentals established by the projection theo-
rem. We have a higher-dimensional space projected to a
subspace by selected basis functions. By definition, V" *!
=V'"®W" (the direct sum), and these two subspaces are
orthogonal. Let L be a multilinear functional on V" and let
M be a multilinear functional on V*, then we can define the
function L& M on V", This function is, of course, a Ten-
sor product. The outer product filter functions will be mul-
tilinear on their respective projected spaces. Therefore the
tensor product of the projected data, with its corresponding
basis set used in the decomposition, generates a new sub-
space of the original data matrix or image. If there are four
outer product formed basis sets, there will be four new
subspaces formed by the Tensor product of each projected
data with its corresponding basis. Because each of the
original projections was a subspace of the original, and
related to the whole by the direct sum, these new subspaces
will also be related to the original by the direct sum. There-
fore, we can simply take the tensor product of the projected
parts and its corresponding basis and add the results of each
of these products. Caution must be taken because the tensor
product is not commutative. So always take the product of
the projected data with the basis in that order. As an ex-
ample, consider the Haar once more. The projected data
were given by Eq. (7) above. Perform the direct product
operation with its corresponding basis to get

3 3 7 7
113 3 7 7
Rconsl=LL®0P1=5 303 7 7] ©)
33 7 7
-1 1 -1 1
1f—-1 1 =1 1
Rcons2=LH®0P2=5 -1 1 -1 1 (10)
-1 1 -1 1

Reconstruction of the remaining two components is zero,
so we can simply add these results to get the original matrix
back, i.e.

Rcons;+Rcons,=

(11)

e e T
[N 2 S B (S SR NS
w W W W
~ B~ & B

The 8X8 matrix example is no more complicated. The
reconstruction may be achieved by multiplying each basis
used to generate the projection by each data point in the
4X4 projected result and adding the four resulting matrices.
Caution must be used to scale everything properly. For the
Daubechies four-tap filter example in this paper, the outer
product was correlated with the image with dyadic shifts.
This allows parts of the data to be used in determining
several projections due to the overlap. This overlap is
caused by a shifting in steps of two when the basis set is of
dimension 4X4. However, this does not create a problem.
As we create the tensor products, we simply place the result
in an empty matrix in the same position from which the
projected data were derived. That means that we overlap
our results in an identical fashion. To convince the reader
that this works, we have included a reconstruction of our
8 X8 matrix as follows:

1. First, we demonstrate the reconstruction of the LL and
LH as example

sf the tensor product operation. Then the other decom-
positions, i.e., high—low and high—high, are handled in the
same way. The matrices in Figs. 6 and 7 depict these re-
sults.

2. The resulting four matrices are added together with
the proper scaling and indexing to get the reconstruction of
the 8 X8 matrix. Obviously, since we used a floating point
to generate the answers we must round off to the nearest
integer values for comparison. The data in the matrices of
Figs. 2, 8, and 9 confirm this.

Using this same approach, the image Ryan can be recon-
structed from its decompositions. These results are depicted
in Fig. 10. Note the black border was due to the size of the
empty matrix which was filled with zeros. This border can
be discarded by simply selecting the image data points
from the empty matrix. The decomposition was repeated
for bi-orthogonal case (Fig. 11).

4 Software Comparison Between Pyramidal
and Outer-Product Approaches to Multi-
Resolution Wavelet Analysis and Synthesis
of Images

This short paper explores the differences between the con-
ventional pyramidal and outer-product approaches to multi-
resolution analysis and synthesis of images from the stand-
point of storage requirements, number of operations, and
simplicity of application.

4.1 Storage Requirements and Point-Synthesis
Equations

On one level the pyramidal and outer-product approaches
can be compared in terms of their storage requirements.
Considering only a single level of analysis, it should be
obvious that both methods require intermediate storage of
four analysis images, LL, LH, HL, and HH. The question is
how much additional storage, if any, does the outer-product
method require. Although memory is cheap, we would not
want the requirement of storing the four images at each
reconstruction level. This perception might be generated
from the formulation offered by the arithmetic. The prob-
lem is not a problem that is inherent to the method itself. In
fact, the direct (Tensor) product method of synthesis should
be considered academic, seeking to produce understanding
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Fig. 2 LOG8Xx8I.

and not necessarily a procedure to be used for the actual
implementation. There is another way to reconstruct the
image, a way that defines each pixel in a stand-alone sense,
and does not require so much additional storage. This
method is referred to herein as the point-synthesis method.
Finding an expression of a single, reconstructed pixel is
synonymous with finding a solution to the storage problem.
The only reason that the four full-size reconstruction matri-
ces (images) must be stored is because a given pixel in the
final image is defined by information coming from all four
such matrices.

It is possible to express the final pixel value in terms of
its contributions from the activation of the appropriate ele-
ment in the four outer-product formed filters from a set of
separate correlations that occurred in the analysis. As a
result, in a four-tap wavelet/scaling function case such as
Daubechies, each pixel is defined by 4X4=16 different
correlations, i.e., a LL, LH, HL, and HH correlation in each
of four possible positions (translations) of the resulting
4% 4 filters. In the four-tap Daubechies case, the outer prod-
uct produces a set of 4X4 filters, which results in dyadic
block overlaps; therefore, four different translations of all
four filters incorporate information from the set of pixels
into their respective correlations (projections). See Figs. 12
and 13.

Figure 12 shows the overlap of four translations of a
4X4 filter which defines a 2X2 area of pixels (dyadic
block) which contribute to each correlation at each of the
four translations. Figure 13 shows these four translations
separated out for easier viewing and the positions labeled
with respect to the position within each translation. For a
given shaded pixel, say the upper left hand corner, it must
activate coefficients (3,3), (3,1), (1,3), and (1,1) of the up-

Low-Low
0 7.5000 7.5000 0
7.5000  293.0000 293.0000  7.5000
7.5000 293.000  293.0000  7.5000
0 7.5000 7.5000 0
High-Low
0 -7.5000 -7.5000 0
-5.5000  28.0000 28.0000  -5.5000
5.5000 -28.000 -28.0000  5.5000
0 7.5000 7.5000 4]

per left, upper right, lower left, and lower right translations,
respectively.

The following set of four equations represents the values
of each pixel within one dyadic (2X2) block, where the
lower right hand corner is denoted by (v,x). Although tak-
ing the Trace of a matrix is not as efficient as just multi-
plying the vectors needed, it serves as a succinct way to
convey the idea. A more efficient notation (for actual
implementation) is presented later.

5y—1.—1= Trace(Q'A), =Trace(R'A),

Sy* ix
syx—1=Trace(S'A), s, = Trace(T'A),

Where the matrices Q, R, S, and T are given by

[DDy; OWs; Wy VW5
PP, PVY;, Yo, YV,
Voo, ow,; v, VY,
| DD, DYy, ve,, vv,,]
(DD, Wy, Wby, W]
PPy, PV;, Vvo;, VvV,
R oo, 0w, vo, vl
oP,, OV, TP, WV, ,]
Pd,, OV, Vb3 W4,
Oh, OV, VO, YV,
57 0w,y G,y Ty, V|
PP, PV, v, vV,
DD, DV, WD, VI
oD, OV, VI, ¥¥,,
|00, ov,, v, W,
PP,, PV,, vh,, vV¥,,

where the elements of Q, R, S, and T are elements of the
outer product matrices

Low-High
0 -5.5000 5.5000 0
-7.500  28.0000 -28.0000  7.5000
-7.5000  28.0000  -28.0000  7.5000
0 -5.5000 5.5000 0
High-High
0 5.5000 -5.5000 0
5.5000 -217.0000 217.0000 -5.5000
-5.5000  217.0000 -217.0000  5.5000
0 -5.5000 5.5000 0

Fig. 3 Projected values.

64/ Journal of Electronic Imaging / January 2000/ Vol. 9(1)



Wavelet decomposition/reconstruction of images

Low-Low Low-High

0 3.8394 6.9995 -0.5959 0 0 -1.0288 3.2530 -2.2242 0
3.8394  258.0901 297.6501 18.1153  -1.0288 -1.0288  -62.0214 25.8758  41.0146  -3.8402
6.9995 297.6501 210.7065 64.9250 -1.8756 -1.8756  -66.7490  -118.2149 193.8405 -7.0010
-0.5959 18.1153  64.9250  -13.3717 0.1597 0.1597 -5.9615 50.9881  -45.7823  0.5960

0 -1.0288  -1.8756  0.1597 0 0 0.2757 -0.8717 0.5960 0

High-Low High-High

0 -1.0288 -1.8756 0.1597 0 0 0.2757 -0.8717 0.5960 0
-1.0288 -62.0214  -66.7490 -5.9613 0.2757 0.2757 14.7071 -0.8882 -15.1235 1.0290
3.2530 258758 -118.2149 509881 -0.8717 -0.8717 -0.8882 -162.7647 167.7782  -3.2537
-2.2242 410146  193.8405 -457823  0.5960 0.5960 -15.1235 167.7782  -155.4754  2.2247

0 -3.8402 -7.0010 0.5960 0 0 1.0290 -3.2537 2,2247 0

Fig. 4 Daubechies four-tap coefficients of the 8 X8 matrix.

Fig. 5 Daubechies four-tap filter.

3.4904 -7.0044  -21.0236  -21.8957  -26.9529  -16.4089  -2.3950  -1.3428
-7.0044  13.7925  40.8636  44.5310  S8.1367  34.6886  3.1850  1.7698
-21.0236 408636  119.6850 1353423 184.5941 108.5812 57281  3.1221
-21.8957 445310 1353423 1351886 1567188  97.4329  19.6071 11.0449
269529 58.1367  184.5941 156.7188 133.1589  93.6156  47.0832  26.7055
-16.4089  34.6886  108.5812  97.4329  93.6156  62.5157  23.8321 13.4980
-2.3950 3.1850 5.7281 19.6071 47.0832 23.8321 -9.3912 -5.3815
-1.3428 1.7698 3.1221 11.0449 267055  13.4980  -5.3815  -3.0836
Fig. 6 Reconstruction of low-low.
-3.4905 5.9763 -1.3027 -1.4518 3.6026 -5.9148 13663  1.3432
7.0048 -12.0122  -0.3334 8.0275 -5.5722 5.8365 -1.4034  -1.7703
21.0251  -36.0933  -8.1522 364978  -12.7348 29371 -0.9535  -3.1231
21.8964  -37.4474 168243  -5.8969  -27.4110  54.7161  -12.5199 -11.0476
26.9522 -45.8554  63.2889 -81.1126  -57.5396 1542418 -34.7990 -26.7118
16.4088 -27.9679  29.5764 -33.8504  -30.0237 75.6271  -17.1094 -13.5012
2.3959 -4.2185  -19.5296 36.4222 8.9512 -37.6336 8.3588 5.3827
1.3433 -2.3664  -11.1668 20.7975 5.1397 -21.5427 4.7855 3.0843
Fig. 7 Reconstruction of Low-High.

0.0000 0.0002 0.0029 -0.0017 -0.0017 0.0029 0.0002  0.0000
0.0002 -0.0007 1.9922 12.9967 12.9980 1.9917 -0.0004 0.0001
0.0029 1.9922 65.9558 2549636  254.9898 65.9437 1.9981 0.0015
-0.0017 12.9967  254.9636 9.9416 9.9486 2549388 12.9981 -0.0074
-0.0017 12.9980  254.9898 9.9486 9.9556 2549649 12,9994  -0.0074
0.0029 1.9917 65.9437 2549388  254.9649 65.9317 1.9976 0.0015
0.0002 -0.0004 1.9981 12.9981 12.9994 1.9976 -0.0001 0.0001
0.0000 0.0001 0.0015 -0.0074 -0.0074 0.0015 0.0001 0.0000

Fig. 8 Sum of reconstruction of four-subspaces (no round off).
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0 0 0 0 0 0 0o 0
0 0 2 13 13 2 0 0
0 2 66 255 255 66 2 0
0 13 255 10 10 255 13 0
0 13 255 10 10 255 13 0
0 2 66 255 255 66 2 0
0 0 2 13 13 2 0 0
0 0 0 0 0 0 0 0

Fig. 9 Nearest integer round—it matches original matrix.

Pb=¢¢’, PV=gy,

Vd=yo', Y¥=¢p¢

and where each vector is a column vector. The matrix A is
given by

LLy/Z*],x/Z*I LHy/Z*],x/Z‘l HLy/Z*l,x/Z—l HHy/Z* 1x/2—1
A= LLy/Z—l,r/2 LHy/Z— 1x/2 HLy/Z—l.x/Z HHy/Z—l.x/Z

LLy/Z,x/2~ 1 LHy/Z,x/Z‘ 1 HLy/Z,l/Z— 1 HHy/Z,x/Z— 1 ’

LLy/Z,x/Z LHy/Z,x/Z HL)*/Z,)C/Z HHy/Z,x/Z

where the elements of the matrix are the results of analysis
in 2X2 blocks (each column represents a dyadic block from
one of the four analysis images).

Although taking the Trace of a matrix is not as efficient
as just multiplying the vectors needed, it serves as a suc-
cinct way to convey the idea. A more efficient notation for
implementation is as follows:

Sy—1-1= QAL+ QLuALst Qi Ap+ QuuAun »
Sy—1.= R AL+ R A g+ Ry Ay + RyggApn
Syx-1=SLLALLT StuALn+ Sip ApL+ ShnAun -

sy =TL AL+ TLpAL+ T Ap+ TupAnn

where the column vectors are given by

Iyptxn-1 1733 1Jsy

| yn-1n | 13, 1J3,
An= 1 ynan-1 Q= 13 Ry= 14
Lypxn 17y 17y,

Fig. 10 Reconstructed Ryan by Tensor Products.
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(a) The oigmal \me;ge

DL=[-03535 10607 10607 -0.3536);
DH=[-01768 §.5303 05303 01768 ];
RI=[ 01765 05303 (5303 01763

0.2536 10607 -1.0607 -0.3535];

(b) Decomposition (¢) Reconstruction

Fig. 11 Using bi-orthogonal wavelet 3.1.

145 14
RRUN | a2
SIJ‘ IJ2,3 TIJ— IJ2’4
17y, 175,

These equations, when demonstrated in MatLab on the
four-tap Daubechies scaling functions and wavelets, re-
quired roughly the same number of floating point opera-
tions as did the program which reconstructed LL, LH, HL,
and HH and then summed them up at the end.

Using the above equations for synthesis, the program
actually ran slightly faster than the implementation by the
previous method, but it was mostly due to the fact that
circular shifts were used. By using circular shifts, the
analysis matrices were slightly smaller than in the previous
implementation (e.g., 128%X128 vs 129X129 for a 256
X256 image) due to using the entire capacity of every cor-
relation. In the previous implementation, ‘‘partly empty”’
correlations at the boundaries occurred. Partly empty cor-
relations result when the length of the filter, N, is larger
than 2 (larger than one dyadic shift) and circular shifts are
not used. Using circular shifts, on the other hand, essen-
tially completes the circle, making maximum use of all
correlations and allowing all analysis matrices to be exactly
one quarter the size of the original image, while losing no
information, as originally intended. [This problem does not
appear in the Harr case because the filter length is not
longer than one dyadic shift and the two-dimensional outer
product formed filters are the same size as the fundamental
matrix unit, i.e., a 2X2 matrix. (No overlap.).]
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Fig. 12 Overlap of four dyadic shifts of the same 4X4 filter. The
intersection of all four translations is a dyadic block also.

It should be noted that a slight storage requirement re-
mains (4 matrices of 16 elements each), but it is not image
dependent, and it is much smaller than most images. Fur-
thermore, it is static, i.e., it is not accumulating any values
like the four intermediate, full-size working construction
matrices would be using the sum of direct product method
of synthesis.

4.2 Operation Requirements of the Outer-Product
Approach (Intrinsically 2D)

It was found that the outer-product method requires 4
X K? multiplications for setting up the outer product filters,
where K is the number of filter coefficients. In the
Daubechies case, K=4. For an M XN image, where M is
the number of rows and N is the number of columns, the
number of multiply and accumulate operations for the
Daubechies case is given by

Fig. 13 The four translations of a 4 x4 filter that draw from the same
dyadic block of pixels separated out for easier viewing. The pixels
under consideration are labeled with their position respect to the
current translation.

M N ) )
7—1 vert. dyadic shifts 5horiz. dyadic shifts

image analysis 1 vert. dyadic shift

4 filters 4 rows\ {4 cols
*\ T Thoriz. dyadic shift) |\ filter || row

X(l mult. & add) _16(M —1)N mult. & adds

col image analysis

The number of operations required for direct product
synthesis was found to be identical to that of the outer-
product analysis. This conclusion was based on the point-
decoupled equations for calculating each synthesized pixel
value. This gives a total slightly lower than 32XM XN
multiply and accumulates for a complete, single-level
analysis followed by synthesis. For a 256X256 image, this
results in 2 097 152 multiply and accumulate operations.

4.3 Operation Requirements of the Pyramidal
Approach (Extrinsically 2D)

For a sequence of length L being convolved with a filter of
length L, the resulting convolution is L+M —1 elements
long. Not considering circular convolution, the number of
rows in one horizontal analysis is therefore L+ M — 1, but
L—1 of them are all zeros if the horizontal sweep is the
first. Each row then requires a sweep of L+ N —1 elements,
where N is the width of the image. For each of these, there
are 2L multiply and accumulates. (There are actually fewer
than 2L at the boundaries but, assuming a large image,
these effects are negligible for a rough estimate.) Addition-
ally, for each row there are (N+L)/2 down-sample assign-
ments. This tally is given by

N+L
Ty =M|(N+L-1)(2L)MAA+ — —STORE

where MAA stands for multiply and accumulate and
STORE stands for a storage assignment.

Unlike the first (horizontal) sweep, the second sweep
(taken here to be vertical) requires that all L+N—1 col-
umns be analyzed by the one-dimensional (1D) pyramidal
structure, due to the results having come from a noncircular
shifted horizontal analysis. Like the horizontal sweep, each
column requires a sweep of M+ L—1 elements. For each
of these, there are 2L multiply and accumulates. Addition-
ally, for each column there are (M + L.)/2 down-sample as-
signments. This tally is given by

+L

M
T,=(N+L—1)|(M+L—1)(2L)MAA+ —

STORE|.

For a 256X256 image being processed with a four-tap
Daubechies filter, the total number of operations for one
(extrinsic) 2D analysis comes to 1067080 multiply and
accumulates plus 66 560 storage assignments.

For vertical synthesis, the one-dimensional pyramidal
structure must be run in reverse. This procedure requires
four up-sample storage assignments for half of M + L rows
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plus 2L multiply and accumulate operations and one addi-
tion for each of the M+L—1 rows in each of the N+L
—1 columns. This tally is given by

Ty=(N+L—1)| (M+L—-1)[(2L)MAA+ADD]

+

+L
) STORE}.

The corresponding tally for the subsequent horizontal syn-
thesis is given by the following:

T,=(M~+L—1)|(N+L—1)[(2L)MAA+ADD]
N+L
+ T) STORE}.

For a 256X256 image being processed with a four-tap
Daubechies filter, the total number of operations for one
(extrinsic) 2D synthesis comes to 1073296 multiply and
accumulates, 4144 additions, and 66560 storage assign-
ments. For one complete, single-level, pyramidal analysis
and synthesis, 2 140376 multiply and accumulate opera-
tions, 134 680 storage assignments, and 4144 additions are
required. These figures are to be contrasted with the total
number of multiply and accumulate operations of 2 097 152
in the outer-product approach. Although the number of
multiply and accumulates is roughly the same, a substantial
savings in the number of additions and up/down-sample
storage assignments is realized.

The formulas and numbers given above are theoretical.
In practice, there are always additional delays such as ad-
ditional setup times and multiplexing in an integrated cir-
cuit. In software there are additional delays with *‘for-
next’”” loops and memory addressing. In fact, memory
addressing constitutes a considerable deviation from the
theoretical limits. The pyramidal structure is much worse
than the outer-product structure in terms of memory ad-
dressing because the outer-product method performs its
analysis in a single step whereas the pyramidal structure
must go through a horizontal and vertical sweep, reindex-
ing the values many times. Refer to the code for one dyadic
block in the outer-product method below

{Pixel=(float)(BYTE)*(I/poDIBBits + X
+(Y*WidthBytes))),

LLSum+=Pixel*LL[dy+2][dx+2],
LHSum+ =Pixel*LH[dy + 2][dx+2],
HLSum+ =Pixel*HL[dy +2][dx+2],
HHSum+=Pixel*HH[dy +2 |[dx+2]},

and contrast it with the ‘‘core’’ code for implementing the
horizontal and vertical phases of the pyramidal method

lo[x]+ =lods[x—1]*a[0],
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hi[x]+ =lods[x—1]*b[0],

lo[x}+ =lods[x—1]*a[ 1],

hijx]+=lods[x—1]*p[1],

lofx]+ =lods[x—1]*a[2],

hi[ x]+ =lods[x—1]*b[2],

lo[x]+ =lods[x—1]*a[3],

hi[ x|+ =lods[x—1]*b[3],

lods[x]=1o[2%x],

hids[x]=hi[ 2%x],

lo[x]+ =lods[x—1]*a[0],

hi[x]+ =lods[x—1]*5[ 0],

lo[x]+ =lods[x—1]*a[ 1],

hi[ x|+ =lods[x—1]*b[ 1],

lo[x]+ =lods[x—1]*a[2],

hi[x]+=lods{x—1]*b[2],

lo[x]+ =lods[x—1]*a[ 3],

hi[x]+ =lods[x—1]*b[3],

lods[x]=10[2*x],

hids[x]=hi[2*x].

Synthesis is essentially the same story, i.e., there is much
more indexing and shuffling around of data in the pyrami-
dal structure, which leads to delays (in software and hard-
ware) and greater complexity in hardware. (The pyramidal
structure is inherently well-suited for 1D processing. Over-

whelming complexity comes when applying it to 2D im-
ages in a ‘‘brute-force’’ manner.)

4.4 Timing Results

Both methods were implemented in a Windows 98 image
processing application to become familiar with the methods
and to test the timing in software. For the same 256256
image, the outer-product tested out at about 600 us per
analysis and about the same for synthesis on a 333 MHz
Pentium II Deschutes processor with 224 MB random ac-
cess memory (RAM) and 512k pipelined cache (about 1200
ps for a full analysis/synthesis). On the other hand, the
pyramidal method tested out at about 27 ms for analysis
and 20 ms for synthesis of the same image (about 47 ms for
a full analysis/synthesis). (Measured processing times were
subject to interrupts; therefore, multiple runs were con-
ducted and minimum time recorded.) While everything that
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could possibly be done to reduce the time for both was
done, there is still a substantial amount of shuffling of data
in the pyramidal approach. Scaled timing results are shown
in Fig. 14.

As a note, all for-next control loops were excluded from
the timing analysis of each method. But due to the exis-
tence of many more control loops in the pyramidal ap-
proach than the outer-product approach, many more were
excluded from the pyramidal approach. Therefore, in prac-
tice, these additional loops will contribute more processing
time in the pyramidal case than the outer-product case.

4.5 Additional Comments

It is believed that the outer-product method is advantageous
to the conventional pyramidal approach when processing
two-dimensional images in several ways. The first advan-
tage is simplicity of application. The outer-product method
is intrinsically two-dimensional whereas the pyramidal ap-
proach is a piecemeal, brute-force application of an inher-
ently 1D method to a 2D problem. The pyramidal approach
is inefficient in its complexity whereas the outer-product
method is elegant in its simplicity.

Essentially, the outer products encapsulate a certain
“‘’kernel’” of information that is in a natural form for pro-
cessing 2D images, i.e., a 2D structure. In one way or an-
other, the same information or ‘‘kernel of knowledge’’
manifests itself also in the pyramidal approach, but in the
repeated application of a 1D form. Therefore, the notion
that there is somehow a duplication of processing in the
pyramidal approach, which is calculated one time in the
beginning of the outer-product approach, is implied.

A somewhat trivial but practical discovery was made
that deals with calculating the range of values of the result-
ing analysis matrices. Since these images must be normal-
ized before displaying them (values above and below cer-
tain display parameters are not allowed), a quick, simple
and direct method of determining the minimum and maxi-
mum possible values of such matrices is very valuable.
When implementing the cross-product/tensor product
method of analysis, it was quite clear that the extreme val-
ues could be calculated from the outer products. When
implementing the conventional pyramidal approach, it was
not so clear how to obtain such values. Luckily, the same
approach yielded acceptable results, so it was concluded
that cross products are useful for determining the min and
max values for display normalization no matter which
method is used. Therefore, calculating min and max values
using cross-product arrays is a new way for programmers
to normalize the analysis matrices such that they are suit-
able for display when using the pyramidal approach.

5 Real Time Implementation Using the C6X DSP
Chip

On a real time chip like the C6X DSP it is not possible to

have the same implementation as the software approach at

this time. So for the comparison of the pyramidal approach

and the outer/tensor product approach a brute-force ap-

proach was used to investigate what could be accom-
plished. The outer product decomposition and the tensor
product reconstruction were tested on the C6X DSP chip
directly as the original algorithm indicated and compared to
a modified pyramidal approach which consisted of a one-
dimensional pyramid for decomposition and a 1D tensor
product for reconstruction with different memory arrange-
ments.

5.1 Storage for 2D Implementation on C6X Quter
Product/Tensor Product

The storage requirements for this implementation were as
follows:
Given an NXN image there are NXN locations for the
original image:
(N/2) X (N/2) memory locations for the LL image.
(N/2) X (N/2) memory locations for the LH image.
(N/2) X (N/2) memory locations for the HL image.
(N/2) X (N/2) memory locations for the HH image.
The total amount of required memory locations is given by
2XNXN.

5.2 Storage for 1D Pyramid for Decomposition and
1D Direct Product for Reconstruction

Again given an NXN image the amount of storage is given
by:
NXN memory locations for the original image.
NX(N/2) memory locations for the L image.
NX(N/2) memory locations for the H image.
(N/2) X (N/2) memory locations for the LL image.
(N/2) X (N/2) memory locations for the LH image.
(N/2)X(N/2) memory locations for the HL image.
(N/2) X (N/2) memory locations for the HH image.
Since there is no need to keep storing the original NXN
image, after the L and H images have been obtained, the
total amount of required memory locations is given by 2
X NXN. It should be noted that this is the same as the new
approach. However, because the storage has to be ‘‘off
chip”” when using the C6X the new algorithm runs slower,
thus the modification to a hybrid pyramid/tensor product
for this comparison.

5.3 The Number of Operations

The number of operations and clock cycles was determined
for this comparison and is tabulated below.

Again, the Daubechies four-coefficient wavelet is being
used. The wrapping-around technique is used at the end of
each row or column to slightly reduce the amount of re-
quired storage at the expense of a little increase in compu-
tational complexity.
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Comparison Between Pyramidal and Quter-Product MRA

8000000
8000000

7000000

—e— Pyramidal MAA

6000000

—a— Pyramidal STORES

5000000

—a— Outer-Product MAA (Also
total)

—— Pyramidal Total

4000000

# operations

3000000
2000000

1000000

0

<~ QO ¥ O ¥ O ¥ O 9
T o0 O © N KN T ©
- - N N o ™

Single side length of square matrix

409

T @
n o
<

Fig. 14 Scaled timing results of both methods.

5.3.1 Decomposition

First step

Size of the output image: N X(N/2).

Number of output images: 2.

Size of each coefficient matrix: 4.

Number of additions: 4 X N X (N/2)X2=4N".
Number of multiplies: 4X NX (N/2)X2=4N>.
Second step

Size of the output image: (N/2) X (N/2).

Number of output images: 4.

Size of each coefficient matrix: 4.

Number of additions: 4 X (N/2) X (N/2) X 4=4N?.
Number of multiplies: 4 X (N/2)X (N/2) X 4=4N>.
Total number of additions: 8N2.

Total number of multiplies: 8N?.

5.3.2 Reconstruction

First step

Size of the input images: (N/2) X (N/2).

Number of input images: 4.

Size of each coefficient matrix: 4.

Number of additions: 4 X (N/2) X (N/2) X4=4N?.

Number of multiplies: 4 X (N/2) X (N/2) X 4=4N>.

Second step

Size of the input images: N X (N/2).

Number of input images: 2.

Size of each coefficient matrix: 4.

Number of additions: 4 X NX(N/2)X2= 4N2.

Number of multiplies: 4 X NX (N/2)X2=4N?.

Total number of additions: 8N

Total number of multiplies: 8N.

As compared with the first method, the pyramidal approach
with direct product reconstruction is evidently better. It not
only saves half of the operations both for decomposition
and reconstruction, but it is also easier to implement. For
the first method, four 4 X4 matrices have to be stored cor-
responding to the 2D LL, LH, HL, and HH wavelet filters.
For the second method, only two vectors of length 4 have
to be stored. Since these vectors can be stored in CPU
registers, this approach is much faster for a DSP implemen-
tation.
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5.4 Timing Results on the C6x DSP

Number

Program of cycles
2D direct product approach. Fully 168 260 503
optimized C program running from
external memory.
Pyramidal approach with 1D direct product 94133453
for reconstruction. Fully optimized C
program running from external memory.
Pyramidal approach with 1D direct product 70995925
for reconstruction. Fully optimized C
program running from internal DSP
memory.
Pyramidal approach with 1D direct product 42311990

for reconstruction. Fully optimized C
program running from internal DSP
memory. The wavelet filter coefficients are
stored in CPU registers.

The last combination, i.e., the pyramidal approach with
1D direct product for reconstruction, with the wavelet co-
efficients stored in the CPU registers runs in about 250 ms.

6 Conclusion

The results of this type of operation give us several advan-
tages and disadvantages. This type of procedure can be
used readily on DSP since its processing power is mani-
fested by an efficient multiply and accumulate operation.
We have shown this method substantially reduces the op-
erations over normal linear convolution. This procedure
also lends itself to programming the DSP chip for the par-
ticular orthogonal basis to be used. The disadvantage is the
storage needed for the reconstructed subspaces. However,
with the trend in more inexpensive memory, this is mini-
mal.
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