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ABSTRACT

The realization of electromechanical dynamic systems possessing specified input-output

dynamic properties is studied. Applications of this problem include the scaled shock and

vibration testing of complicated structures, the design of electromechanical filters and the

design of vibration absorbers. A two-step realization process is developed by which both

passive and active systems can be realized. In the first step, a passive mechanical system

is obtained, which is then modified in the second step to achieve active realization. For

example, in machinery emulation, the goal is to design an electromechanical system which

matches the vibrational energy flow at the locations where the machinery attaches to its

foundation. In this case, the passive realization would correspond to the machinery when

it is not in operation while the active realization would also account for the vibrational

energy produced during machinery operation.

Two techniques have been developed to obtain realizable models for the design of pas-

sive mechanical systems. The first technique involves searching the parameterized space of

congruent coordinate transformations relating input-output equivalent second order mod-

els for those that are realizable, i.e., those that can be directly interpreted as a network of

mechanical elements. The second technique involves estimating realizable models which

include both distributed and lumped mechanical elements directly from experimental ma-

chinery data. This approach utilizes a cost function dependent on accelerance and dynamic

vi



mass errors. Active emulation is achieved by adding vibration sources, e.g., shakers, to

the passive structure. These sources are driven under closed-loop control so as to produce

the desired level of vibration at the output locations.

Experimental evaluation of these techniques has been carried out through the design

of a modular, SISO machinery emulator, which can be adapted to match the mass and

dynamic properties of a desired machine within a frequency range of interest. Experimen-

tal results demonstrating the effectiveness of the techniques for both passive and active

emulation are presented.
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Chapter 1

Introduction

Our nature consists in motion; complete rest is death.

Blaise Pascal (1623-1662)

A ship’s structure is comprised of four major components: its outer structure, the

hull; its floors, the decks; a collection of internal structures, which reinforce the hull and

support the ship decks; and finally the ship’s equipment and machinery, mounted on the

decks. The hull and internal structures must meet static loading requirements given by

the maximum sea state to be encountered. In naval applications, dynamic considerations

are also important. Shock energy transmitted from the surrounding water can damage

deck-mounted equipment and machinery. In addition, machinery-generated vibration can

be transmitted to the water leading to detection or the detonation of acoustically-activated

mines. Thus, vibrational energy flow between the ship structure and shipboard machinery

or equipment is an important problem in naval design.

Numerical methods such as finite element analysis (FEA) are often used to test the

design of novel ship structures, however, these numerical methods have to make assump-

tions, such as the simplification of complex geometric shapes, the use of approximate

boundary conditions, approximate damping representations and estimated material prop-

erties. Thus, experimental validation of a new design is often required, especially for large

1



and complex structures. When a structure is small and simple or the testing expenses are

affordable, a full size physical model may be adopted for testing as is done in car crash

tests.

For such expensive, large and complicated structures as ship structures, however, scaled

vibration testing often has to be adopted to evaluate and improve their design. Thus, it

is required to design and fabricate scaled ship structures as well as scaled equipment and

machinery models. Scaled machinery models are referred to as machinery emulators here.

This research work will focus on design and implementation of machinery emulators. They

are inexpensive electromechanical systems which are able to reproduce the major dynamic

properties of the actual equipment and machinery at the foundation attachment points

where they are connected to the ship structures.

Depending on whether there are active moving components inside machinery such

as rotors or not, mechanical emulators can be classified as two types: passive mechanical

emulators and active mechanical emulators. The former emulates equipment or machinery

when it is not in operation and the latter emulates machinery when it is operating. The

mathematical definition of passivity refers to a system consisting only of elements such as

masses, spring and dashpots which can only store or dissipate energy, but not internally

generate energy [1].

There are two approaches to mechanical emulator design. The first is exact miniatur-

ization, which is expensive and time-consuming. This research follows another approach,

which is based on dynamic equivalence. It starts from the experimental measurement of

the dynamic properties of the actual equipment and machinery at their foundation at-

tachment points. Subsequently, a mathematical model directly realizable by mechanical

elements is obtained by mechanical realization theory, which is developed here. A me-

chanical emulator is designed which approximates the dynamic properties of the actual

equipment and machinery. In the later discussion, the word “machinery” is used to des-

ignate as both equipment and machinery. Passive machinery is referred to as machinery

when it is not in operation while active machinery is designated as machinery when it is

2



operating.

Ship structure

Equipment

or

Machinery

Scaled Ship structure

k1

k2

Mechanical Emulator

k3

m1

m2

m3 m4

Figure 1.1: A Schematic Example of a Passive Mechanical Emulator

The schematic relation between the actual passive machinery and its mechanical emu-

lator is illustrated in Figure 1.1. Suppose three modes dominate in the frequency response

of an actual machinery. A properly designed four-mass mechanical emulator then may be

used to replace this machinery in the scaled testing of the ship structure.

1.1 Dynamics of Machinery

Machinery is usually mounted on the decks by vibration isolators, which are resilient mem-

bers such as metal springs, rubbers, elastomers, polymers, pneumatic mounts and even

active isolators [2] [3] [4]. These isolators can reduce the vibrational energy transmission

between decks and machinery. Modeling and scaling of the vibration isolators is compli-

cated due to geometrical and material nonlinearities; their scaling is considered elsewhere,

e.g. [5]. In this research, forces and accelerations are assumed to be measured above the

isolators so that the emulator design problem can be treated independently. In addition,

this decoupling allows the machinery dynamics to be modeled linearly.

Passive machinery acts as vibration absorbers to the ship structure. In this role, the

vibration magnitude of the ship structure can be reduced at the resonant frequencies of

passive machinery. Under this scenario, however, some components inside the machin-

ery may undergo large magnitude motions, resulting in temporary malfunction and even

3



permanent damage.

As shown in Figure 1.2, the acceleration at the foundation is determined by the force

exerted by the ship structure and the accelerance of machinery, that is,

af |passive = AffFf (1.1)

where af |passive is the vector of acceleration at the attachment points, Aff is the ac-

celerance matrix of the passive machinery at its attachment points and Ff is the vector

of forces exerted by the ship structure to the passive machinery through the attachment

points. Here, accelerance is defined as the ratio of acceleration to force. The driving-point

accelerance means that the acceleration and force are measured at the same point and

in the same direction. During testing, it can usually be measured by an impedance head

which includes an accelerometer and force gauge.

When reciprocating or unbalanced machinery, such as diesel engines, electric motors

of air conditioning units, are operational, the inevitable unbalance of rotating elements

or the flow of fluids and steam causes the machinery to act as a vibration source to

the ship structure. Usually, machinery operates at particular rotational speeds. If the

operating frequency matches a resonant frequency of the ship structure, large vibration

magnitudes of the ship structure will be generated. Vibrations can be transmitted to other

vibration-sensitive equipment, to people and to the surrounding water, perhaps resulting

in detonation of mines.

Suppose that machinery is freely suspended and turned on. The acceleration at the

attachment points due to operation of machinery is decided by the following equation

af |active = AfiFi (1.2)

where Afi is the transfer accelerance matrix from the internal forces to the attachment

points and Fi is the vector of forces due to the moving components within the machinery.
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Usually, only af |active is available, which can be directly measured when the machinery

is operating.

Machinery

Ff

Fi

af

Figure 1.2: Dynamics of Machinery

The total response acceleration due to forces from the ship structure through mounts

and forces from the internal moving components is given by the following equation

af = af |passive + af |active = AffFf + AfiFi (1.3)

1.2 Mechanical Emulator Design Goals

Mechanical emulators also must act as not only a vibration absorber but also a vibration

source in the scaled vibration testing of a ship structure, just as machinery does while

it is mounted on the actual ship structure. Generally speaking, machinery can undergo

motions in six coordinate directions including three translations and three rotations. The

complexity of mechanical emulator design strongly depends on the number of coordinate

directions considered.

The coordinate directions can be separated into two groups, that is, those for which

dynamic matching over a frequency range is needed and those in which the machinery
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acts effectively as a rigid body for the desired frequency range. For the former case, there

are modes in the frequency range of interest. In the latter case, it requires that passive

machinery and its emulator have the same apparent inertia properties viewed from the

foundation attachment points. In summary, the design goals of the passive mechanical

emulator can be stated as follows:

1. Match mass and moment of inertia in the desired coordinate directions.

2. Match scalar accelerance or accelerance matrix within a range of frequency of interest

in the desired coordinate directions at the foundation attachment points.

Since it is desired that the mechanical emulator must be able to reproduce the effect

of machinery operation at its foundation attachment points, the active emulator design

adds a third requirement that it should reproduce the operating effect of machinery, that

is, accelerations at the attachment points in the desired directions.

1.3 Passive and Active Emulator Design Approaches

To satisfy these design goals, a two-step design procedure is used, as depicted in Figure

1.3. In the first step, a passive mechanical emulator is designed to match the dynamic

properties of passive machinery. In the next step, this passive emulator is modified into

an active one by adding an active element like a shaker, referred to in the following as an

emulating shaker driven by a controller to reproduce the foundation acceleration due to

machinery operation.

As illustrated in Figure 1.4, the passive mechanical emulator design approach involves

three major aspects: obtaining the accelerance data from the passive machinery; identi-

fying the passive machinery model; and realizing the model with mechanical elements.

During experimental testing, the driving-point accelerances are collected from the ex-

perimental measurement of the actual passive machinery by collecting the driving forces

and accelerations at the foundation attachment points. The passive machinery is excited
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Figure 1.3: Two-step Mechanical Emulator Design Procedure

by shakers while the input forces and acceleration responses are measured by force gauges

and accelerometers, respectively. The experimental data of the accelerance are acquired

and processed by a dynamic spectrum analyzer.

As shown in Figure 1.4, two approaches are used to obtain the design of the mechanical

emulator from the accelerance data. The first approach starts from the identification of

mathematical models such as a state space model or a transfer function by model iden-

tification methods in the time domain and frequency domain, respectively, [6] [7]. If the

order of the identified model is low, it can be directly used for the design of a mechanical

emulator. Otherwise, model reduction methods are used to obtain reduced order models.

The mechanical emulator model is achieved through the mechanical realization that con-

verts an initial model to a form realizable by mechanical elements. Development of the

mechanical realization methods is the major contribution in this research.

Alternatively, a nonlinear model estimation approach, developed in this research, can

directly result in a realizable model with a desired model structure from the accelerance

data. In this approach, a second order model form or other desired model form is selected

in either the time domain or the frequency domain, and a cost function is defined in the

frequency domain. Nonlinear optimization algorithms are employed to find the unknown

parameters in the model. The advantage of this method is that all unknown parameters
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Figure 1.4: The Passive Emulator Design Approach

in the realizable model have direct relations to the mechanical elements in the mechanical

emulator.

Once a realizable mechanical emulator model has been obtained, an emulator can be

implemented using masses, dampers and springs. Experimental testing is used to verify

that the realized mechanical emulator can reproduce the input/output dynamics of the

actual passive machinery and to tune the emulator as needed.

After a passive emulator has been designed and implemented, an emulating shaker

is used to reproduce the acceleration at the attachment points produced by machinery

operation. The active emulator design approach mainly involves three aspects, as shown

in Figure 1.5. For the first aspect, the foundation acceleration data of active machinery

should be collected. For the second, the transfer accelerance between the location where

the acceleration is measured and the location at which the emulating shaker mounts must

be obtained. Finally, a feedforward/feedback controller should be designed and imple-

mented for the emulating shaker.

When the active machinery has reached stable running condition, the acceleration

data at its foundation are recorded by a dynamic signal analyzer. Meanwhile, after the

mounting location of the emulating shaker is selected, the transfer accelerance between

the foundation attachment points and the shaker mounting location can be experimentally

determined or theoretically obtained from the passive emulator model. After that, the
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desired force profile can be calculated from the machinery foundation acceleration data

and the transfer accelerance of the passive emulator. To ensure that the emulating shaker

follows the desired force profile, a feedforward/feedback controller is developed to obtain

the voltage to be applied to the emulating shaker. Finally, experimental testing is carried

out to evaluate the active emulator’s performance under the same operating conditions as

the active machinery.
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Machinery On

Passive
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Data

Transfer
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Desired

Force
Voltage to

Shaker

Feed-forward/

feedback Controller

Emulating
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Passive

Emulator

Experimental

Testing

Experimental

Testing

Calculation

Figure 1.5: The Active Emulator Design Approach

1.4 Organization of the Dissertation

Chapter 2 provides background and a survey of the research work related to mechanical

emulator design. It formalizes several concepts important to mechanical realization and in-

cludes a discussion of modeling vibratory mechanical systems. Second order models, state

space models, transfer functions and their relationship are discussed. Many techniques

in model identification and reduction for mechanical vibrational systems are reviewed.

Prior work on mechanical realization including techniques in the frequency domain and

in the time domain are discussed in detail. Finally, mechanical emulators designed and

implemented by Navy contractors are discussed and analyzed. At the end of this chapter,

a detailed comparison is carried out between the capabilities of the current realization

9



methods and Navy contractors emulators, and the results of this dissertation work.

A theory of transformations relating realizations is developed in Chapter 3. The struc-

ture of realizable second order models is analyzed, resulting in necessary realization con-

ditions for mass, damping and stiffness matrices. Since a vibratory mechanical system can

be described by an infinite number of second order models related via congruent coordi-

nate transformations, those transformations are used to convert the initial second order

model to realizable forms. Parameterization of the orthogonal component is discussed,

including aligning the input and output influence vectors (or matrices) and converting the

damping and stiffness matrices to desired forms. Finally, it is shown how to obtain the

final mass matrix.

Two mechanical realization techniques are developed in Chapter 4. The first tech-

nique, which is applicable for a given second order model satisfying necessary realization

conditions discussed in Chapter 3, involves searching for the realizable second order mod-

els in the parameterized space of realization transformations. Several numerical examples

are provided to show the effectiveness of this technique. The second technique, direct

estimation of realizable model, is developed to obtain a realizable model directly from

experimental data. The estimation procedure including selection of a candidate model,

choice of cost function and nonlinear search, is presented. Estimation examples with ma-

chinery experimental data are used to demonstrate the estimation process and effectiveness

of this technique.

A mechanical emulator design methodology is developed in Chapter 5, including both

passive emulation and active emulation. In the passive mechanical emulator design, SISO

mechanical systems can be directly obtained from the realizable second order models by

interpreting them as networks of mechanical elements. A model configuration in which

oscillators do not have direct stiffness couplings, but damping couplings, is designed in

Section 5.1 for passive mechanical emulators undergoing motions in multiple coordinate

directions. Matching requirements of mass and moment of inertia between the passive

machinery and its passive mechanical emulator are presented. Unknown parameters as-
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sociated with mechanical elements can be obtained using the techniques from Chapter 4.

The specified amount of damping is achieved by free-layer and constrained-layer damping

treatments.

To reproduce the motions at the foundation attachment points due to machinery oper-

ation, the passive emulators are modified into active ones by incorporating active elements.

In this research, a shaker under closed loop control is used. In Section 5.2, three impor-

tant issues involving design of active emulators are addressed, including selection of the the

emulating shaker, selection of its mounting location and design of a feedforward/feedback

controller.

In Chapter 6, experimental passive and active emulators are presented. A machinery

test bed and accelerance data acquisition are discussed. A realizable mechanical emulator

model is identified with the measured driving-point accelerance of the machinery test bed

and a passive mechanical emulator is fabricated. A feedforward/feedback controller is

designed to control the emulating shaker to reproduce the foundation acceleration due

to the effect of machinery operation. Experimental results for both passive and active

emulation show good agreement of the input-output dynamic properties at the foundation

attachment points between machinery and its passive/active mechanical emulator.

The contributions of this dissertation are summarized in Chapter 7. Directions for

future research motivated by this work are also discussed.
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Chapter 2

Background and Related Work

If I have seen further, it is because I have stood on the shoulders of giants.

Issac Newton (1642-1727)

Equipment and machinery is mounted to the ship structures at attachment points,

as depicted in Figure 2.1. The number of these attachment points typically ranges from

one to four. If the distances between these attachment points are small compared to the

dimension of the ship structures, they may be treated as a single effective attachment

point in a dynamic analysis.

Ship Structure

Equipment

or

Machinery
x

Y

z

Figure 2.1: Attachment Points, Coordinate Directions of Equipment and Machinery

Machinery can undergo motions in six coordinate directions, which include three trans-

lational coordinates, x, y and z, and three rotational coordinates, θx, θy and θz. At each

attachment point, its dynamics can be described by the following equation in the Laplace
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domain

a(s) = A(s)F (s) (2.1)

where

a(s) is the vector of acceleration s2

[
x(s) y(s) z(s) θx(s) θy(s) θz(s)

]T

A(s) is the 6× 6 accelerance matrix

F (s) is the vector of force
[

Fx(s) Fy(s) Fz(s) Mx(s) My(s) Mz(s)

]T

Depending on the number of inputs and outputs, mechanical realization can be cate-

gorized as single-input, single-output (SISO) and multi-input, multi-output (MIMO). For

example, when one is only interested in testing vibration in the vertical direction z and

machinery has a single attachment point, this is a SISO mechanical realization problem.

When one needs to test vibrations in multiple directions or with several attachment points,

it requires design of a MIMO mechanical emulator.

2.1 Frequency Ranges of Interest in Various Coordinate Di-

rections

If all fixed-base frequencies of machinery modes in a particular coordinate direction are

higher than the upper limit of the frequency range of interest, the machinery can be

emulated as a rigid body in this coordinate direction. Under this circumstance, only the

mass and moment of inertia of the machinery in this coordinate direction need be matched

by the mechanical emulator.

There are two different types of rigid-body mode matchings - translational and rota-

tional. For the first type, according to Newton’s second law, machinery and its mechanical

emulator must possess the same apparent total mass in the coordinate direction. When

there is no coupling between the translational and rotational coordinates, the apparent

total mass is equal to the total mass. Otherwise, the apparent mass in the x or y coor-

dinate direction is the combined effect of the total mass and moment of inertia. In the
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second type, machinery and its mechanical emulator should possess the same moment of

inertia with respect to the attachment points in the corresponding rotational coordinate

directions, respectively.

Dynamic matching which concerns matching of corresponding modes between machin-

ery and its mechanical emulator can be carried out in several different model representa-

tions. These model types are described below.

2.2 Modeling Vibratory Mechanical Systems

Vibratory mechanical systems can be modeled either by analytical approaches, for in-

stance, Newton’s second law, Lagrange’s equation, or by numerical approaches such as

finite element analysis, or by experimental tests such as sinusoidal sweeps and impulse

responses. Whatever approach is used, modeling a vibratory mechanical system results in

three types of model representations: second order model, state space model and transfer

function. The first two are in the time domain and the last one is in the frequency domain.

Each is described below.

1. Second Order Model

By choosing an n×1 vector q as the set of coordinates, an m×1 vector u as the input

vector which is often an external force vector, and a p × 1 vector y as the output

vector which can be displacement, velocity, acceleration or even their combination,

a vibration system can be expressed as

Mq̈ + Cq̇ + Kq = Fu

y = Hdq + Hv q̇ + Haq̈ (2.2)

Here, the matrix M is the n×n mass matrix, which usually is a positive definite and

symmetric matrix. In the case of lumped masses, M is a diagonal matrix. The matrix

C is the n × n damping matrix, which is a positive (semi-) definite and symmetric
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matrix. In the case of proportional damping, C = αM + βK, where α and β are

constants [8]. It should be noted that all damping from the αM term corresponds

to skyhook dashpots which are attached to a fixed ground - a situation which is

impossible to achieve in machinery emulation. In practice, it is difficult to model

damping mechanisms. For structures with light damping, a proportional damping

assumption may be used [9]. The matrix K is the n × n stiffness matrix, which is

a positive (semi-) definite and symmetric matrix. F is the n × m input influence

vector (or matrix), which is determined by the location of excitations. Hd, Hv

and Ha are the output influence vectors (or matrices) of displacement, velocity and

acceleration, respectively. These matrices depend on what outputs are measured.

In most circumstances, acceleration signals at different locations are picked up by

accelerometers. In this case, Hd = Hv = 0, while Ha 6= 0. Throughout this research,

only acceleration outputs are considered.

2. State Space Model

By choosing the state variable vector as x =
[

q q̇

]T

, the second order model

(2.2) can be transformed to a state space model, which is widely used in the control

field

ẋ = Ax + Bu

y = Gx + Du (2.3)

where the matrix A is the 2n× 2n state matrix, A =

 0 I

−M−1K −M−1C

. The

matrix B is the 2n × m input matrix, B =
[

0 M−1F

]T

. The matrix G is the

p× 2n output matrix, G =
[

Hd 0

]
+

[
0 Hv

]
+ Ha

[
M−1K M−1C

]
. The

matrix D is the p×m direct transmission matrix, D = HaM
−1F .

The state space representation which is not unique, depends on the choice of state
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variables. The different representations are related to each other by coordinate trans-

formations. By properly choosing coordinate transformations, realizations with spe-

cial properties can be obtained. In the structural dynamics area, modal realization,

McMillan normal form realization [10] and balanced realization [11] are widely used,

which can be found in the appendix A.

3. Transfer Function

A transfer function is the ratio of the Laplace transformation of the outputs to the

Laplace transformation of the inputs with zero initial conditions [12]. For single-

input single-output systems, the transfer function can be expressed as

H(s) =
Y (s)
U(s)

=

i=m∑
i=0

bis
i

j=n∑
j=0

ajs
j

= c0

i=m∏
i=1

(s− zi)

j=n∏
j=1

(s− pj)

(2.4)

where Y (s) and U(s) are the Laplace transformations of the scalar output and scalar

input, respectively. The quantity s is a complex variable. The coefficients ai’s are

determined by the intrinsic properties of the mechanical systems. The coefficients

bi’s are determined by both the intrinsic properties of the systems and choices of

inputs and outputs. c0 is a coefficient. zi’s and pj ’s are zeros and poles, respectively.

For multi-input and multi-output systems, the transfer function matrix should be

used as

Y (s) = H(s)U(s) (2.5)

where Y (s) is an p× 1 vector of inputs, U(s) is a m× 1 vector of outputs and H(s)

is a p×m transfer function matrix.

Usually, the transfer function data can be obtained by experimental testing with a

sinusoidal sweep in a frequency range.

Several conventional notations are reviewed here, which are used later in the text.
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1. Dynamic Stiffness

The dynamic stiffness is the ratio of the Laplace transformation of the input force

to the Laplace transformation of the output displacement.

2. Mechanical Impedance

The mechanical impedance is the ratio of the Laplace transformation of the input

force to the Laplace transformation of the output velocity.

3. Dynamic Mass

The dynamic mass is the ratio of the Laplace transformation of the input force to

the Laplace transformation of the output acceleration.

4. Driving point and Transfer Relationships

If the input and output are measured at the same attachment point and in the

same coordinate direction, the relationship is called a driving-point relationship.

Otherwise, it is called a transfer relationship.

The above model representations are related to each other. The conversion from

a second order model to a state space model has been discussed earlier. The inverse

transformation is necessary in mechanical realization if a state space model is identified

from model identification. For this purpose, several methods are available [13] [14] [10]

[15] [16] [17] and [18].

By Laplace transformation of (2.2) and (2.3), and after simple manipulations, the

relationship between the second order model, state space model and transfer function can

be found as

Y (s) = (Hd + Hvs + Has
2)(Ms2 + Gs + K)−1FU(s) = [C(sI −A)−1B + D]U(s) (2.6)

The second order model representation and state space model representation of a

system are not unique since the internal coordinates can be chosen arbitrarily. Different
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representations are related to each other through coordinate transformations. The transfer

function of a system is unique, however, and is invariant with respect to the choice of

coordinates.

Since the mechanical emulator design starts with the identification of a model of one of

these three types from accelerance experimental data, model identification and reduction

are briefly discussed below.

2.2.1 Model Identification and Reduction

Many mature time-domain and frequency-domain techniques are available for the pur-

pose of model identification. In most cases, the identified parameters in the specified

model do not have explicit physical meaning. In mechanical emulator design, however,

the identified parameters must have an explicit relationship to the mechanical elements

in the emulator model. Therefore, new identification techniques are needed so that the

unknown parameters can be directly related to mechanical elements. For this purpose,

several widely used methods of model identification in the time domain and frequency

domain are reviewed here. Since the order of the identified model may be high, model

reduction may be necessary. Model reduction techniques are briefly reviewed at the end

of this subsection.

In the time domain, a state space model is widely employed for model identifica-

tion. Many identification techniques are available, such as the Eigensystem Realization

Algorithms (ERA) and ERA with Data Correlations (ERA/DC) [19] [20] [21] [22], the

Q-Markov cover algorithm [23] [24] [25], Numerical Algorithms for Subspace State Space

System Identification (N4SID) [26] [27]. All these methods attempt to find the matrices

A, B, C and D in the state space model (2.3). For example, the well known ERA obtains

the matrices in the state space model through minimizing the error between the Han-

kel matrix and the experimental data. The Hankel matrix is formed through the shifted

Markov parameters, which is also known as the discrete-time impulse response functions.

Furthermore, the order of state space model is determined by the number of the largest
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singular values of the Hankel matrix. In [28], performances of several system identification

methods for flexible structures were compared by using an FEM two-input, two-output

model of a structure.

The major drawback of most time domain model identification techniques is that a

large error in the vicinity of anti-resonances may exist although a high accuracy curve

matching in the time domain can be achieved [29]. Another drawback of those methods

for mechanical emulator realization is that the unknown parameters in the state space do

not directly relate to physical elements.

The identification of frequency response functions (FRFs) in the modal analysis com-

munity falls in the category of the frequency domain identification. Because an enormous

number of methods are available, only a few are reviewed here. The circle-fitting method

expresses the FRF as a weighted summation of terms of modes and identifies the modal

parameters through a least squares algorithm at each mode. The frequency response

curve in the Nyquist plot is a circle at the vicinity of its resonance [30]. The Ewins-

Gleeson method, which is valid for lightly damped structures, also expresses the FRF as

a weighted summation of terms of modes. Its resonance frequencies, however, are deter-

mined by the peaks in the FRF data and its N weighting coefficients are solved with data

at N frequency points [31]. The rational fraction polynomial method is one of the most

widely used frequency domain methods. This method formulates the error between the

analytical frequency response function and experimental data as a set of linear equations

with unknown coefficients of the numerator and denominator in the rational fraction FRF.

Subsequently, a least squares procedure is adopted to obtain the unknown coefficients [32].

All frequency domain model identification methods discussed above did not consider

noise. Since noise ubiquitously exists in the input and output measurement, however, the

method of estimator for linear systems (EliS) can be applied to identify a transfer function

[33]. This method formulates the transfer function identification as a nonlinear weighted

least squares problem. The weighting factors are chosen as reciprocals of variances of the

errors at frequency points. It is solved by using numerical methods for solving nonlinear
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least squares problems, such as Newton-Gauss method and Levenberg-Marquardt method.

If the order of the identified model is high, model reduction has to be used to obtain

a reduced order model. Many model reduction techniques are available in both the finite

element analysis and control communities. Several popularly used methods are reviewed

here. Guyan’s model reduction [34] is based on the viewpoint of static structural analysis.

Its basic idea is to eliminate the subset of coordinates, at which no forces are applied.

The set of coordinates in the reduced model is a subset of the initial coordinates. The

generalized dynamic reduction uses a subset of eigenvectors of the full order model to form

a transformation between the full order and reduced order models [35]. Modal reduction

is a conceptually simple reduction method, which omits the coordinates in the modal

realization (A.1) corresponding to: (1) high decay rates, or (2) high resonance frequencies,

or (3) large magnitudes of poles [11].

When the modal density of equipment and machinery is high, however, balanced reduc-

tion through balanced realization (A.3) by Moore has good performance for it minimizes

the error between frequency response functions of the full order model and reduced order

model, by removing the most uncontrollable and unobservable coordinates [36]. It has a

drawback, however, that the reduced order model may not preserve passivity. A passive

system can only absorb or dissipate energy, but not generate energy. To overcome this

drawback, the passivity preserving balanced reduction by Chen and Wen [37] can be used.

This method is more effective than modal reduction to obtain reduced-order models of

equipment and machinery from the viewpoints of the frequency, time and shock spectra

domains [38]. Simplified representations of complicated vibratory subsystems with a high

modal density such as equipment were obtained through the Dirichlet to Neumann or DtN

map by Barbone, et al. [39] [40] [41] [42].

The time-domain and frequency-domain models from identification and reduction may

not be in a form corresponding to a mechanical system. Therefore, it is necessary to apply

mechanical realization techniques to convert these models to a form directly realizable by

mechanical elements. The problem of mechanical realization can be defined in terms of
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models, which must be interpreted as networks of mechanical elements or be converted

to a form in which such an interpretation can be made. In the time domain, mechanical

elements including masses, dashpots and springs may be directly obtained from the mass,

damping and stiffness matrices in a given second order model, which has already been

transformed to realizable form. Otherwise, this model has to be converted to such a form.

In the frequency domain, a given transfer function has to be decomposed into a form from

which mechanical elements can be obtained.

2.3 Prior Work on Mechanical Realization

A variety of techniques have been developed which specifically address the identification

of, or conversion to, a model in realizable form. In the frequency domain, the inverse

eigenvalue/vibration approach and methods from electric network synthesis are available.

In the time domain, serial realizations and parallel realizations may be obtained through

special coordinate transformations. In addition, Navy contractors have designed and fab-

ricated several mechanical emulators for commercial-off-the-shelf (COTS) cabinets, pumps

and heat exchangers. These techniques are described below.

2.3.1 Frequency Domain Realization

In the frequency domain, mechanical realization can be formulated as a problem of how to

determine the distribution of mass, damping and stiffness from a given transfer function or

from a set of poles and zeros which correspond to resonance frequencies and anti-resonance

frequencies, respectively. There have been two bodies of work developed to solve this prob-

lem. The first is the inverse eigenvalue/vibration approach developed by researchers in

mathematics and mechanics. The second approach is based on electrical network synthesis

theory.
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Inverse Eigenvalue/Vibration Approach

The inverse eigenvalue/vibration problem concerns how to determine the mass, damping

and stiffness matrices in the second order model (2.2) so that the realized system possesses

the required resonance frequencies. It contrasts with the direct problem which studies the

relationship between the input and output given a known distribution of mass, damping

and stiffness. Prior work on the inverse vibration problem is limited to isospectral mechan-

ical systems, which possess the same set of resonance frequencies, but have different mass,

damping and stiffness matrices. There are several survey articles available, for example,

[43] [44] [45] [46] [47].

...

F

kn kn-1 kn-2 k1

mn mn-1 m1

x

Figure 2.2: Serial Model

A widely studied inverse vibration problem is to determine the masses and springs in

the serial model illustrated in Figure 2.2 with two given sets of real scalars {λ1, λ2, · · · , λn}

and {µ1, µ2, · · · , µn−1}[45]. The set {λ1, λ2, · · · , λn} are eigenvalues of the matrix A =

M−1/2KM−1/2, where M and K are mass and stiffness matrices to be determined. The

set {µ1, µ2, · · · , µn−1} consists of eigenvalues of the matrix Â, which is obtained by deleting

the last row and last column of A. The solution to this inverse vibration problem exists

only if the given two sets satisfy the following interlacing conditions

0 ≤ λ1 < µ1 < λ2 < µ2 < · · · < µn−1 < λn (2.7)

When damping is incorporated in the serial model, however, the elements in the two

given sets are usually complex numbers and do not satisfy the interlacing conditions.

A method was presented to solve the inverse vibration problem of a serial model with

damping, through the approach of the quadratic matrix pencil Q(s) = s2I + sC + K,
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where C and K are, respectively, damping and stiffness matrices in [48]. Starting from

a known serial model, the method can find serial models with equivalent properties, but

there still remains a question of what requirements should be imposed on the sets of λi

and µj .

There have been other inverse vibration techniques which can generate more compli-

cated models, for example, [49] [50] [51] [52]. The resulting models from these methods,

however, do not have corresponding physical structures. Therefore, the application of the

inverse vibration approach is very limited for the purpose of realization of mechanical

emulators. In the next subsection, a more powerful realization approach by applying elec-

trical network synthesis is discussed.

Electrical Network Synthesis Applied to Mechanical Realization

As early as the 1930’s, Norton designed mechanical systems like loudspeakers in terms of

the circuit theory [53] [54]. The monograph Mechanical F ilters in Electronics by John-

son covered how to apply the equivalence of passive electrical and mechanical elements

to the design of high-Q mechanical filters [53]. The electromechanical analogy is widely

used today in design and simulation of micro-electro-mechanical systems (MEMS), [55]

[56] [57] [58] [59].

There are two types of electromechanical analogy. One type is the mobility analogy

by which velocity is analogous to voltage and force to current. In terms of elements, a

mass, dashpot and spring correspond to a capacitor, resistor and inductor, respectively.

Under this type of analogy, a mechanical system has the same network topology as its

equivalent electrical system [53]. Another type of the electromechanical analogy is the

impedance analogy in which force is analogous to voltage and velocity to current. In this

approach, a mass, dashpot and spring are analogous to an inductor, resistor and capacitor,

respectively. Since the impedance analogy is more understandable, this analogy is adopted

in the following discussion.

Using the electromechanical analogy, most of results in electrical network synthesis,
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which is a well-developed field, can be employed for mechanical realization. Electrical

network synthesis is a theory on how to design electrical circuits, such as filters, with

desired input-output behaviors. Its history can be found in the review article written by

Darlington [54]. Books by Guillemin [60], Valkerburg [61] and Baher [1], are thorough

references in this field.

For any passive electrical or mechanical system, which is a stable system without

internal energy-generating sources, the driving-point relationship in the frequency domain

should satisfy the positive realness requirement first given by Otto Brune in complete form

in his doctoral thesis in 1931. A positive-real transfer function P (s), where s is a complex

number, is defined as follows:

Definition 2.1. [60] A function P (s) is termed a positive real function if it satisfies the

following two conditions: (1) all coefficients are real; (2) the real part of P (s) is positive

for any complex number s with a positive real part, i.e., Re{P (s)} ≥ 0 for Re{s} ≥ 0.

Positive realness is the necessary and sufficient condition for a given driving-point

transfer function to be realized by a passive mechanical system. The requirement of the

positive realness is equivalent to the passivity requirement. Furthermore, a positive real

transfer function has the property that its reciprocal is also a positive real function [1].

Mechanical realization can be carried out by expanding a given positive real transfer

function into special forms in which parameters are directly related to physical compo-

nents. These expansion forms determine the topology of the realized mechanical systems.

In the following discussion, realization of mechanical systems without damping, which is

analogous to the synthesis of an LC (inductor-capacitor) electrical network, is used to

demonstrate realization procedures. Other realizations such as realization of mechanical

systems with mass and damping or with damping and stiffness, follow similar procedures.

At the end of the following discussion, realization of mechanical systems with mass, damp-

ing and stiffness is briefly discussed.

Besides the positive realness requirement, the driving-point accelerance A(s) of a me-
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chanical system without damping should also satisfy A(jω) + A(−jω) = 0 for all real

numbers ω, where j =
√
−1. Such a driving-point accelerance is a reactance function or

Foster function, which implies no energy dissipation in the mechanical system. In general,

it can always be expressed in the following form

A(s) = c0

i=n∏
i=1

(s2 + µ2
i )

j=n∏
j=0

(s2 + λ2
j )

(2.8)

where c0 is a positive real constant, and µi (i = 1, 2, · · · , n) and λj (j = 1, 2, · · · , n) are

positive real numbers, which satisfy the interlacing conditions 0 ≤ λ0 < µ1 < λ1 < µ2 <

λ2 < · · · < µn < λn. All poles (jλj and −jλj) and zeros (jµi and −jµi) alternate on

the imaginary axis. This explains why the interlacing conditions (2.7) is required in the

inverse vibration approach while building a serial model.

By expanding the accelerance (2.8) into different forms, we have the following canonical

realizations, which are defined as those with the minimum number of spring elements

between masses.

1. Parallel Model Realization I

The reciprocal of the accelerance (2.8) can be expressed in a partial fraction expan-

sion form as follows
1

A(s)
= m0 +

k0

s2
+

j=n∑
j=1

mjkj

mjs2 + kj
(2.9)

which corresponds to the mechanical system as illustrated in Figure 2.3. According

to the above expansion, the antiresonance frequencies of the driving-point acceler-

ance happen at the fixed-base resonance frequencies of oscillators, given by

ωj =

√
kj

mj
(2.10)
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Figure 2.3: Parallel Model Realization I

2. Parallel Model Realization II

Another parallel model realization can be achieved by expressing the accelerance

(2.8) in a partial fraction expansion form as

A(s) =
1

m0
+

s2

k0
+

j=n∑
j=1

s2

mjs2 + kj
(2.11)

which is shown in Figure 2.4, where the accelerance is defined as

A(s) =

i=n∑
i=0

s2Xi(s)

F (s)
(2.12)

k0

m2 m3m1 mn

F

m0

...k1 k2 k3 kn

F

F F Fx0 x1 x2 x3 xn

Figure 2.4: Parallel Model Realization II

3. Serial Model Realization

A serial model realization of the accelerance (2.8) can be obtained through a con-
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tinued fraction expansion form as follows

1
A(s)

= m0 +
1

s2

k1
+

1

m1 +
1

s2

k2
+ · · ·

(2.13)

In the above expansion, the last element may be a mass or a spring, as illustrated in

Figure 2.5 (a) and (b), respectively. This is decided by the properties of the given

accelerance.

......
F F

mn mn-1 m0

(a) End element is mass (b) End element is spring

kn kn-1 k1 kn+1 kn kn-1 k1

mn mn-1 m0

x x

Figure 2.5: Serial Model

4. Parallel/Serial and Serial/Parallel Combination Realization

The accelerance (2.8) can also be expressed in combination of a partial fraction ex-

pansion form and continued fraction expansion form, which result in a parallel/serial

realization or serial/parallel realization.

From a practical viewpoint, the realizations of Figures 2.3 (b) and 2.5 (a) are good

model forms for mechanical emulators since skyhook springs are prohibited in mechanical

emulators and they have the minimum number of springs. These two realizations have

the following properties:

1. Total Mass

mt =
i=n∑
i=0

mi =
{

1
A(s)

}
s=0

(2.14)

2. Base Mass

mb = m0 =
{

1
A(s)

}
s=∞

(2.15)

27



From the above two properties, it can be concluded that the driving-point dynamic

mass of a vibratory mechanical system without skyhook elements approaches its base mass

at very low frequency and its total mass at very high frequency. In this scenario, according

to (2.9), the number of modes is equal to the number of lumped masses in the system.

Moreover, since two equivalent mechanical realizations have the same transfer function,

they must have the same amount of total mass and base mass.

When damping is incorporated, mechanical realization is analogous to RLC (resistor-

inductor-capacitor) network realization. Different from a reactance accelerance, the driving-

point accelerance of a damped mechanical system cannot be realized as a parallel or serial

model unless it satisfies certain constraints. A parallel model realization can be obtained

only when the given accelerance can be expressed as follows

1
A(s)

= m0 +
i=n∑
i=1

mi(cis + ki)
mis2 + cis + ki

(2.16)

A serial model realization is achievable only if the given accelerance can be expanded

in the following continued fraction expansion

1
A(s)

= m0 +
1

1
c1

s
+

k1

s2

+
1

m1 +
1

1
c2

s
+

k2

s2

+ · · ·

(2.17)

For mechanical realization of SISO driving-point mechanical systems without damping

or with proportional damping, the inverse eigenvalue/vibration approach can give a serial

realization and electric network synthesis can conveniently generate both serial realization

and parallel realization. However, for a vibratory mechanical system with nonproportional

damping, one cannot obtain mechanical realizations with these two approaches except for

some special cases. Another limitation of these two approaches is their difficulty in dealing

with SISO transfer mechanical systems and MIMO mechanical realization problems. Time
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domain realization discussed below, however, can overcome these limitations.

2.3.2 Time Domain Realization

In the time domain, a second order model is often used to describe a vibratory mechanical

system. If the second order model is in realizable form, the elements of its mass, damping

and stiffness matrices are directly related to the mechanical elements of the mechanical

system. Otherwise, this model may be converted to realizable form by congruent coor-

dinate transformations. Available methods consider how to convert a given second order

model to a serial model realization or to a parallel model realization. These methods are

limited to the cases of either no damping or proportional damping.

Before discussing these realization methods, second order models for the realizable

parallel and serial realizations of Figure 2.3 (b) and 2.5 (a) are derived below. Denoting

the displacement of the i′th mass from its equilibrium point as xi, then the second order

models are obtained as follows.

Parallel Model Realization

The parallel model can be described by

Mpẍ + Cpẋ + Kpx = e1u

y = eT
1 ẍ (2.18)
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where the subscript p stands for “parallel” and the matrices are defined as

Mp =



m0

m1

m2

. . .

mn


Cp = βKp

Kp =



i=n∑
i=1

ki −k1 −k2 −kn

−k1 k1

−k2 k2

. . .

−kn kn



(2.19)

In the parallel realization, the mass matrix is a diagonal matrix with m0 ≥ 0, mi > 0,

i = 1, 2, · · · , n and the stiffness matrix is a border diagonal matrix with ki > 0, i =

1, 2, · · · , n. If there is no damping, then β = 0.

Serial Model Realization

The serial model is given by

Msẍ + Csẋ + Ksx = e1u

y = eT
1 ẍ (2.20)
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where the subscript s stands for “serial” and the matrices and vectors are defined as

Ms =



m0

m1

m2

. . .

mn


Cs = βKs

Ks =



k1 −k1

−k1 k1 + k2 −k2

−k2 k2 + k3

. . . . . .

−kn kn


e1 =

[
1 0 · · · 0

]T

(2.21)

In this realization, the mass matrix is diagonal with m0 ≥ 0, mi > 0, i = 1, 2, · · · , n

and the stiffness matrix is tridiagonal with ki > 0, i = 1, 2, · · · , n. If there is no damping,

then β = 0.

It is well known that any undamped or proportionally damped mechanical system

can be converted to serial and parallel realizations in the sense of the same driving-point

relationship. For the SISO mechanical system, the conversion from a general mechanical

system without damping or with proportional damping to a serial model was studied

through a coordinate transformation by Falk [62]. The algorithm for finding the coordinate

transformation was also presented there. It was used to obtain equivalent serial models

from mechanical systems with complicated spring couplings in [63]. The conversion from

a general mechanical model to a parallel model was obtained through the normal mode

theory by O’Hara and Cunniff [64]. O’Hara and Cunniff’s result was generalized to a
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mechanical system undergoing three-dimensional vibration by Pierce [65].

To obtain a serial model realization, it is necessary to find a transformation which can

convert any symmetric stiffness matrix to a tridiagonal stiffness matrix. To this end, there

are several methods available in matrix computation, including Givens’ method by Givens’

rotations, Householder’s method by Householder’s reflections and Lanczos’ method by a

recursive process [66] [67]. These tridiagonalization methods have been widely used to

calculate eigenvalues of symmetric matrices. No result with these methods, however, is

available for the purpose of mechanical realization except [68], where the Householder’s

method was used to obtain a tridiagonal stiffness matrix satisfying the required resonance

frequencies.

In order to obtain a parallel model realization, however, a transformation which can

change any symmetric stiffness matrix to a border diagonal stiffness matrix, is required.

A method in [67] can perform this task.

The advantage of time domain realization techniques is that mechanical elements can

be directly obtained from the realizable second order model converted from the given

second order model via special congruent coordinate transformations. Algorithms of these

transformations are available in matrix computation. Another advantage of time domain

realization techniques is that they may be used to deal with SISO transfer mechanical

realization and MIMO mechanical realization problems. The major limitation of these

techniques, however, is that they cannot handle realization of nonproportionally damped

vibratory mechanical systems because the available coordinate transformations cannot

convert the damping and stiffness matrices to the desired realizable forms simultaneously.

2.3.3 Navy Contractor Emulators

The design and fabrication of a variety of mechanical emulators was carried out by the

Navy laboratories and contractors. Exact miniaturization and modal reduction were two

approaches adopted by them [38]. Exact miniaturization was used to obtain scaled me-

chanical models for commercial-off-the-shelf (COTS) cabinets, as shown in Figure 2.6 [69].
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Lumped masses or bags of beads were attached on the shelves to emulate the mass effect

of equipment and damping.

Figure 2.6: Mechanical Emulator for COTS Cabinets

Modal reduction was also used to design emulators of equipment cabinets [69]. These

emulators were designed to match the scaled mass and the lowest four fundamental fixed-

base frequencies corresponding to bending, torsional and axial deflection. The damping

within the emulators was obtained by enclosing the head of the emulator in beads made

of damping materials.

Additional emulators were built to model components such as heat exchangers [70].

In this design case, the mechanical emulator was designed to match the scaled mass, the

center of mass and rotary inertia of the heat exchanger. Damping was matched by filling

the hollow components and the surrounding container with granular damping materials.

Some theoretical and experimental results on passive and active mechanical emulation

were reported in Deshpande’s master thesis [71]. A passive mechanical emulator was

designed for a scaled machinery test bed comprised of modular components. Although

damping was considered in the design, the polymeric damping treatments used had to be

iteratively modified through experiment to achieve the desired level. For active emulation,

the feasibility of using a shaker to reproduce the effect of active machinery was tested on

the scaled machinery test bed. A PD feedback controller was used to control the shaker

33



to generate the desired motion at the attachment point.

2.4 Summary

Prior work on mechanical realization with second order models mainly focused on un-

damped or proportionally damped vibratory mechanical systems due to the difficulty in

dealing with nonproportional damping. Both frequency domain and time domain realiza-

tion techniques can be used to obtain two special realization forms, that is, parallel and

serial model realizations for a SISO driving-point accelerance. No techniques are available,

however, for solving more complicated realization problems such as SISO transfer accel-

erances or MIMO accelerances. Although modal decoupling can result in a realization in

which all oscillators are attached to a fixed base, this kind of realization does not work

for mechanical emulator design since skyhook elements are prohibited.

Furthermore, all currently available realization techniques cannot deal with nonpropor-

tional damping without approximation. As demonstrated with an example in Appendix

B, however, the approximation of nonproportional damping by proportional damping can

introduce significant errors if there is strong damping coupling between modes associated

with oscillators. Therefore, to obtain high fidelity realizable second order models, it is

important to incorporate nonproportional damping.

To overcome disadvantages of current realization methods, this dissertation research

develops a general and systematic realization theory for both passive and active mechanical

emulator design with consideration of arbitrary viscous damping in design and implemen-

tation. A comparison between the design capabilities of existing methods and the goals

of this research is carried out in Table 2.1. This research considers the realization of

mechanical systems with multiple attachment points and multiple coordinate directions

which can be uncoupled or coupled. In theory, an infinite number of modes can be dealt

with, but in practice, the number of important modes is on the order of ten. Transforma-

tions for realizing SISO and MIMO mechanical systems are discussed in Chapter 3. Two
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numerical methods for obtaining realizable models are developed in Chapter 4. A design

methodology for passive and active emulator design is developed in Chapter 5 and exper-

imental emulation is carried out in Chapter 6. Arbitrary viscous and structural damping

are considered in the design and implementation of mechanical emulators.
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Table 2.1: Design Capabilities of Existing Methods versus this Research
Capability FDR in

Section
2.3.1

TDR in
Section
2.3.2

Work
in [69]
[70]

Work in [71] This Re-
search

Number of Attach-
ment Points

1 1 1 1 Multiple

Number of coordi-
nate Directions

1 1 or
multiple

4 (un-
cou-
pled)

1 Multiple
(coupled or
uncoupled)

Number of Modes theory
=∞

Theory
=∞

4 Theory=∞;
Practice=up
to 10

Theory=∞;
Practice=up
to 10

Systematic Passive
Emulation Theory

N/A N/A No SISO SISO and
MIMO

Design with
Damping

No or
propor-
tional
damping

No or
propor-
tional
damping

No Viscous
damping

Viscous and
structural
damping

Semi-analytical
Damping Treat-
ment

N/A N/A No Empirical Based on
relations
between loss
factor and
number of
damping
layers.

Active Emulation N/A N/A No Tested fea-
sibility on
machinery
test bed.

Developed
system-
atic design
method
using a feed-
forward/
feedback
controller.

FDR: Frequency Domain Realization
TDR: Time Domain Realization
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Chapter 3

Theory of Transformations

Relating Realizations

A journey of a thousand miles begins with a single step.

Lao Zi, Ancient Chinese Philosopher

A vibratory mechanical system in general can be described by an infinite number

of second order models. These models are related to each other by congruent coordinate

transformations. The theory to be developed here is used to find the transformations, each

of which corresponds to a specific second order model which can be directly interpreted as

a network of mechanical elements. The structure and properties of realizable second order

models will be analyzed, in particular, for vibratory mechanical systems without skyhook

elements since no skyhook elements are permitted in mechanical emulators.

To overcome the difficulty in directly finding a transformation corresponding to a real-

ization, a technique of decomposing the transformation into a product of three components

is adopted. The first component is the inverse of the square root of the initial mass matrix,

which is used to mass normalize the given second order model. The second component,

which is an orthogonal matrix, is used to align the input and output influence vectors
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(or matrices) and to convert the damping and stiffness matrices to desired forms. For

undamped or proportionally damped mechanical systems, parallel model and serial model

realizations can always be obtained by proper selection of this orthogonal component.

For nonproportionally damped mechanical systems, however, this component has to be

parameterized by a finite set of free parameters. Finally, the last component is the square

root of the final mass matrix which is obtained from the null space vector of the damping

or stiffness matrix.

3.1 Structure of Realizable Second Order Models

Mechanically realizable mass, damping and stiffness matrices possess special properties.

Moreover, input and output influence vectors (or matrices) also should have special forms

for realizable second order models. These two issues are discussed in detail below.

3.1.1 Mechanically Realizable Mass, Damping and Stiffness Matrices

Several assumptions have been made in this research. Since skyhook springs and dampers

cannot be implemented in machinery emulation, all models discussed below preclude them.

Another assumption in this research is that each mass in the system is connected to at

least one mass by at least one spring or one spring and dashpot, that is, there are no

isolated masses in the mechanical emulator design. Viscous damping is assumed in the

second order models since it can be explicitly represented. Structural damping will also

be used when it is necessary to model continuous elements with Euler-Bernoulli’s beam

model, which is covered in Chapter 5.

A stiffness or damping matrix realizable by mechanical elements must satisfy several

properties. Since these requirements are the same for both types of matrices, a realizable

stiffness matrix is used to demonstrate them. The simple mechanical system of Figure 3.1

is used here to illustrate these properties. The mass and stiffness matrices are expressed
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as follows

M =



m0

m1

m2

m3



K =



k1 + k2 + k4 −k1 −k2 −k4

−k1 k1 + k3 0 −k3

−k2 0 k2 0

−k4 −k3 0 k3 + k4


(3.1)

m2

m1

m3

F

m0

k1

k2

k3

k4

x

Figure 3.1: A Simple Mechanical Model

The stiffness matrix can be decomposed in the following form [72]

K = CKKDCT
K (3.2)

where the connectivity matrix is CK =



1 1 1 0 1

1 −1 0 1 0

1 0 −1 0 0

1 0 0 −1 −1


and the nonnegative
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diagonal matrix is KD =



0

k1

k2

k3

k4


.

The connectivity matrix CK shows how all masses are connected by springs. The first

column of CK represents the rigid body mode of the system in Figure 3.1, corresponding

to the zero element of KD. The other columns of CK indicate connections between pairs

of masses. For example, the third column represents the connection between m0 and m2

by stiffness k2 in KD. For a mechanical system with n masses and nk springs, CK is an

n× (nk + 1) matrix and KD is an (nk + 1)× (nk + 1) diagonal matrix.

Similarly, a mechanically realizable damping matrix C can also be decomposed as

C = CCCDCT
C , where CC is a connectivity matrix and CD is a diagonal matrix with

nonnegative diagonal elements. It should be noted that CC is not necessarily equal to CK .

If the damping matrix is proportional to the stiffness matrix, however, they have the same

connectivity matrix, i.e., CK = CC . It should be noted that in general, a proportional

damping matrix C can be expressed as C = αM + βK, where α and β are two constants.

For the mechanical emulator design, however, α has to be zero since the term αM leads

to skyhook dampers which are prohibited. Therefore, the damping and stiffness matrices

must share the same null space vector
[

1 1 · · · 1

]T

corresponding to a resonance

frequency of zero, that is, null(C0) = null(K0). At this frequency, all masses undergo the

same motion and the whole structure moves like a rigid body.

It can be summarized that the mechanically realizable mass, damping and stiffness

matrices must satisfy the following realization conditions:

M = diag(
[

m0 m1 · · · mn

]
),mi > 0

C = CT , Cii > 0, Cij ≤ 0, C

[
1 1 · · · 1

]T

= 0
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K = KT ,Kii > 0,Kij ≤ 0,K

[
1 1 · · · 1

]T

= 0 (3.3)

where i, j = 0, 1, 2, · · · , n and i 6= j.

The most important task in mechanical realization is to find techniques to convert

mass, damping and stiffness matrices obtained from experimental input-output data to a

form satisfying the realization conditions (3.3).

3.1.2 Desired Input and Output Influence Vectors or Matrices

As discussed in Chapter 2, mechanical realization can be categorized as single-input,

single-output (SISO) and multi-input, multi-output (MIMO). Depending on where the

excitation force is applied and the output acceleration is measured, SISO systems can

be further classified as driving-point realizations and transfer realizations. For MIMO

systems, a third category is added for those realizations involving both driving-point and

transfer accelerances. The desired input and output influence vectors or matrices are

discussed below.

1. SISO Mechanical Realizations

In a driving-point realization, the acceleration and force are measured at the same

attachment point and in the same coordinate direction. A SISO transfer realization

involves an acceleration and force measured at different attachment points or in

different coordinate directions.

Without loss of generality, it is assumed that for the driving-point case, the input

force is excited and the output acceleration is measured at the first coordinate. Thus,

the input and output influence vectors have the following relationship

Ff = HT
f = e1 (3.4)

where e1 is an element of the standard basis for Rn, which has a 1 at its first
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component and 0’s elsewhere.

In a similar fashion, for the transfer case, the input force is assumed excited at

the first coordinate and the output acceleration is assumed measured at the second

coordinate

Ff = e1

Hf = eT
2 (3.5)

where e2 is an element of the standard basis for Rn, which has a 1 at its second

component and 0’s elsewhere.

2. MIMO Mechanical Realizations

Denote the set of indices of coordinates at which excitation forces are applied as If

and the set of indices of coordinates at which accelerations are measured as Ia. An

initial MIMO second order model (3.9) can be categorized as one of the following

three types:

(a) Driving-point Accelerance

In this case, If = Ia, which means the forces are applied and accelerations are

measured at the same set of coordinates, as shown in Figure 3.2. In the final

realizable model (3.13), without loss of generality, it is assumed that If = Ia

correspond to the first m coordinates, as depicted in Figure 3.2. The input and

output influence matrices in (3.13) are given by

Ff = HT
f =

[
e1 e2 · · · em

]
(3.6)

(b) Transfer Accelerance

In this case, it has If ∩ Ia = ∅. This means there is no common coordinate at

which an excitation force is applied and an acceleration is measured. In the
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F3
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...

x

Figure 3.2: Mechanical System of a MIMO Driving-point Accelerance

final realizable model (3.13), without loss of generality, it is assumed that the

excitation forces are applied at the first m coordinates and the accelerations

are measured at the next p coordinates, as depicted in Figure 3.3. Obviously,

m and p must satisfy m+p ≤ n. Thus, the input and output influence matrices

in the realizable model (3.13) are given by

Ff =
[

e1 e2 · · · em

]
HT

f =
[

em+1 em+2 · · · em+p

]
(3.7)

Mechanical
Vibration System

F1

x1

F2

x2

Fm

xm

F3

x3

...

xm+1 xm+2

xm+p

...

Figure 3.3: Mechanical System of a MIMO Transfer Accelerance

(c) Driving-point and Transfer Accelerance

This is the most comprehensive case which satisfies If ∩ Ia 6= ∅, as shown in

Figure 3.4. Without loss of generality, it is assumed in the final realizable model

(3.13) that the excitation forces are applied at the first m coordinates and the

accelerations are measured at the first r coordinates and the m+1′th, m+2′th,

· · ·, m+(p− r)′th coordinates, where r ≤ min(m, p), as depicted in Figure 3.4.
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The input and output influence matrices are given by

Ff =
[

e1 e2 · · · em

]
HT

f =
[

e1 e2 · · · er em+1 em+2 · · · em+(p−r)

]
(3.8)

Mechanical
Vibration System

F1

x1

F2

x2

Fm

xm

Fr

x r

...

...

...

F r+1

xr+1 xm+1
xm+2

xm+(p-r)

Figure 3.4: Mechanical System of a MIMO Driving-point and Transfer Accelerance

3.1.3 Mechanically Realizable Second Order Model

In the time domain, congruent coordinate transformations can be applied in mechanical

realization since the input-output relationship and symmetry of mass, damping and stiff-

ness matrices need to be preserved. An initial second order model which describes the

driving-point relationship of a mechanical system without skyhook elements is given by

M0ẍ + C0ẋ + K0x = F0u

y = H0ẍ (3.9)

where the mass matrix M0 = MT
0 > 0, the damping matrix C0 = CT

0 ≥ 0 and the

stiffness matrix K0 = KT
0 ≥ 0. Assume that there are n masses in a vibratory mechanical

system. Thus, the mass, damping and stiffness matrices are n × n square matrices. The

relationship between the input influence vector (or matrix) F0 and output influence vector

(or matrix) H0 depends on the coordinates in which the inputs and outputs are chosen.

In the simplest case, if the initial model (3.9) describes a driving-point accelerance, then

it satisfies F0 = HT
0 .
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Choose a coordinate transformation

x = Tq (3.10)

where T is an unknown nonsingular matrix.

Substituting (3.10) into (3.9) yields

M0T q̈ + C0T q̇ + K0Tq = F0u

y = H0T q̈ (3.11)

Premultiplying the above equation by the transpose of the coordinate transformation T ,

one obtains

T T M0T q̈ + T T C0T q̇ + T T K0Tq = T T F0u

y = H0T q̈ (3.12)

which can be rewritten as

Mf q̈ + Cf q̇ + Kfq = Ffu

y = Hf q̈ (3.13)

where Mf , Cf , Kf , Ff and Hf are, respectively, the final mass, damping and stiffness ma-

trices, and the input influence vector (or matrix) and output influence vector (or matrix).

They are defined as

Mf = T T M0T

Cf = T T C0T

Kf = T T K0T

45



Ff = T T F0

Hf = H0T (3.14)

If the final second order model (3.13) is realizable, the mass, damping and stiffness

matrices Mf , Cf and Kf must satisfy the realization conditions (3.3). Furthermore, the

input and output influence vectors (or matrices) must be in the desired forms provided

in Subsection 3.1.2. Therefore, the necessary conditions for a second-order system to be

mechanically realizable are that (3.3) is satisfied and that the input and output influence

matrices can be transformed to one of (3.4) to (3.7).

Generally speaking, it is difficult to directly find the congruent coordinate transforma-

tion corresponding to a realizable model. Therefore, in this research, the transformation

is decomposed as a product of several components so that each component can be found

separately. This will be covered in the following section.

3.2 Decomposition of the Congruent Coordinate Transfor-

mations

The realizing congruent coordinate transformations can be decomposed into a product of

three components as follows

T = M
−1/2
0 RM

1/2
f (3.15)

The first component, the inverse of the square root of the initial mass matrix, is used

to mass normalize the initial second order model (3.9). The second component R is

an orthogonal matrix which should perform two tasks: (1) align the input and output

influence vectors (or matrices) to the desired forms; (2) convert the damping and stiffness

matrices to the desired realizable forms in which all of off-diagonal elements are negative.

The orthogonal matrix has the following properties: (1) it can preserve the identity mass

matrix in the mass normalized second order model; (2) it belongs to an orthogonal group
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which can be easily parameterized. The last component is the square root of the final

mass matrix Mf .

After subsequently applying each component of the transformation R, the initial second

order model (3.9) or the second order model obtained in the previous step is changed to

a new form. The model obtained after each transformation step is given below.

Denote the first coordinate transformation as

x = M
−1/2
0 z (3.16)

Substituting this transformation into (3.9) and pre-multiplying by M
−1/2
0 , yields the

mass normalized second order model

z̈ + Cz ż + Kzz = Fzu

y = Hz z̈ (3.17)

with its matrices defined by

Cz = M
−1/2
0 C0M

−1/2
0

Kz = M
−1/2
0 K0M

−1/2
0

Fz = M
−1/2
0 F0

Hz = H0M
−1/2
0 (3.18)

Denote the second coordinate transformation as

z = Rw (3.19)

where R is an orthogonal matrix, that is, R−1 = RT .

Substituting the above transformation into (3.17) and pre-multiplying by RT , yields a
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new second order model

ẅ + Cwẇ + Kww = Fwu

y = Hwẅ (3.20)

with matrices defined by

Cw = RT CzR

Kw = RT KzR
T

Fw = RT Fz (3.21)

Hw = HzR (3.22)

Finally, denote the third coordinate transformation as

w = M
1/2
f q (3.23)

Substituting the above transformation into (3.20) and pre-multiplying by M
1/2
f , yields

the following second order model

Mf q̈ + Cf q̇ + Kfq = Ffu

y = Hf q̈ (3.24)

with its matrices defined by

Cf = M
1/2
f CwM

1/2
f

Kf = M
1/2
f KwM

1/2
f

Ff = M
1/2
f Fw

Hf = HwM
1/2
f (3.25)
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It should be noted that the input and output influence vectors (or matrices) in the

model (3.20) are already in the desired forms except for a scaling factor. The last trans-

formation scales the input and output influence vectors (or matrices) in the model (3.20).

These two influence vectors (or matrices) satisfy

Fw

||Fw||
=

Ff

||Ff ||
Hw

||Fw||
=

Hf

||Hf ||
(3.26)

3.3 Parameterization of the Orthogonal Component R

As discussed in Section 3.2, the orthogonal component R in the congruent coordinate

transformation T must carry out two tasks when it is applied to the mass normalized

model (3.17). First, this component needs to align the input and output influence vectors

(or matrices) Fz and Hz in (3.17) to the desired forms Fw and Hw in (3.20). Second,

the component R subsequently should convert the damping matrix Cz and the stiffness

matrix Kz to the desired forms Cw and Kw in (3.20), in which all diagonal elements are

positive and all off-diagonal elements are nonpositive.

Consequently, the orthogonal component R can be decomposed as a product of two

orthogonal matrices

R = RIORe (3.27)

In the above equation, the component RIO performs the first task; and Re carries out

the second task while preserving the input and output influence matrices obtained in the

previous step.

Two matrix computation algorithms can be used as the orthogonal component Re, as

discussed in Subsection 2.3.2, resulting in parallel or serial realizations with no damping

or proportional damping. There is no general algorithm to find this orthogonal component

Re when nonproportional damping exists, however. This research adopts parameterization
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of this orthogonal component to find the total congruent coordinate transformation T in

(3.15).

In the following two subsections, how to obtain the above two orthogonal components

RIO and Re are discussed. The first component RIO is obtained below and another

component Re will be determined in the later subsection.

3.3.1 Aligning the Input and Output Influence Vectors (or Matrices)

After applying the transformation RIO to the mass normalized model (3.17), a new model

can be obtained. Denote the coordinate transformation as

z = RIOz̃ (3.28)

Substituting (3.28) into the mass normalized model (3.17) and pre-multiplying by RT
IO

yields the following model

¨̃z + Cz̃
˙̃z + Kz̃ z̃ = Fz̃u

y = Hz̃
¨̃z (3.29)

in which the matrices are defined by

Cz̃ = RT
IOCzRIO

Kz̃ = RT
IOKzR

T
IO

Fz̃ = RT
IOFz

Hz̃ = HzRIO (3.30)

The first orthogonal component RIO of the transformation R can be obtained by

QR factorization of the input and output influence vectors (or matrices). In this QR

factorization, a matrix is decomposed into a product of an orthogonal matrix and an
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upper triangular matrix. A property of this method, which is proved in Appendix C, is

that a matrix whose column vectors are perpendicular to each other can be factored as a

product of an orthogonal matrix and a diagonal matrix. This property is used extensively

in the following discussion.

1. SISO Driving-point Accelerance

Recall (3.4) in Section 3.1.2. After aligning the input and output influence vectors

Fz and Hz in (3.17) via the orthogonal transformation RIO, the input and output

influence vectors Fz̃ and Hz̃ in (3.29) should satisfy the following relationship

Fz̃

||Fz̃||
=

HT
z̃

||HT
z̃ ||

= e1 (3.31)

Suppose the QR factorization of the input and output influence vectors Fz and Hz

has the following form

Fz = HT
z = Q

[
||Fz||e1 0 · · · 0

]
(3.32)

where Q is an orthogonal matrix.

Consequently, the orthogonal component RIO is found as follows

RIO = Q (3.33)

2. SISO Transfer Accelerance

The input and output influence vectors in the final realizable second order model

(3.13) must have the form in (3.5). Thus, after aligning the input and output

influence vectors with the orthogonal transformation RIO, the input and output

influence vectors Fz̃ and Hz̃ in (3.29) should satisfy the following relationship

Fz̃

||Fz̃||
= e1
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Hz̃

||Hz̃||
= eT

2 (3.34)

Therefore, the orthogonal component RIO should satisfy

Fz̃ = RT
IOFz = ||Fz||e1

Hz̃ = HzRIO = ||Hz||eT
2 (3.35)

or equivalently

RT
IO

[
Fz HT

z

]
=

[
||Fz||e1 ||Hz||e2

]
(3.36)

According to the property of QR factorization, suppose the matrix
[

Fz HT
z

]
can

be factorized as follows

[
Fz HT

z

]
= Q

[
||Fz||e1 ||Hz||e2

]
(3.37)

Therefore, the orthogonal component RIO is obtained as follows

RIO = Q (3.38)

3. MIMO Accelerances

The input and output influence matrices in the final realizable model (3.13) must be

in one of the forms given by (3.6), (3.7) and (3.8). It depends on the realization type

to which the given model (3.9) belongs. QR factorization of the input and output

influence matrices can also be used to align these matrices to the desired forms.

(a) Driving-point Accelerance

In this case, the input influence matrix is the transpose of the output influence

matrix, i.e., Fz = HT
z in the model (3.17). After aligning them to the correct
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form by the orthogonal transformation RIO, Fz̃ and Hz̃ in (3.29) should satisfy

Fz̃ = RT
IOFz =

[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm ||em

]

Hz̃ = HzRIO =



||fz1 ||eT
1

||fz2 ||eT
2

· · ·

||fzm ||eT
m


(3.39)

Suppose the QR factorization of Fz is given by

Q

[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm ||em

]
= Fz (3.40)

where Q is an orthogonal matrix. The orthogonal component RIO is then

obtained as follows

RIO = Q (3.41)

(b) Transfer Accelerance

In this case, the input and output influence matrices in the final realizable

model (3.13) must possess the form given by (3.7). Thus, after aligning Fz

and Hz in the model (3.17) by the orthogonal transformation RIO, the input

and output influence matrices Fz̃ and Hz̃ in the model (3.29) should satisfy the

following relationships

Fz̃ = RT
IOFz =

[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm ||em

]

Hz̃ = HzRIO =



||hz1 ||eT
m+1

||hz2 ||eT
m+2

· · ·

||hzp ||eT
m+p


(3.42)
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or equivalently

RT
IO

[
Fz HT

z

]
=[

||fz1 ||e1 · · · ||fzm ||em ||hz1 ||em+1 ||hz2 ||em+2 · · · ||hzp ||em+p

]
(3.43)

where fzi (i = 1, 2, · · · ,m) is the i′th column vector of Fz and hzi (i = j, 2, · · · , p)

is the j′th row vector of Hz.

Suppose QR factorization of the matrix
[

Fz HT
z

]
is given by

[
Fz HT

z

]
=

Q
[
||fz1 ||e1 · · · ||fzm ||em ||hz1 ||em+1 ||hz2 ||em+2 · · · ||hzp ||em+p

]
(3.44)

The orthogonal component RIO is then given by the following equation

RIO = Q (3.45)

(c) Driving-point and Transfer Accelerance

The input and output influence matrices in the final realizable model (3.13)

must have the form given by (3.8). Thus, after the orthogonal transformation

RIO, the input and output influence matrices Fz̃ and Hz̃ in (3.29) should satisfy

the following relationships

Fz̃ = RT
IOFz =

[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm ||em

]
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Hz̃ = HzRIO =



||fz1 ||eT
1

||fz2 ||eT
2

...

||fzr ||eT
r

||hz(r+1)
||eT

m+1

||hz(r+2)
||eT

m+2

· · ·

||hzp ||eT
m+(p−r)



(3.46)

To fulfill the above requirements, the component RIO can be decomposed as a

product of two orthogonal transformations

RIO = RFzRHz (3.47)

In (3.47), the first component RFz satisfies

RT
Fz

Fz =
[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm ||em

]
(3.48)

Suppose the QR factorization of Fz is given by

QFz

[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm ||em

]
= Fz (3.49)

where QFz is an orthogonal matrix. The first component RFz then can be

chosen as

RFz = QFz (3.50)

From (3.48), the first m column vectors of RFz (or QFz) should be equal to

fzi/||fzi || (i = 1, 2, · · · ,m), respectively. According to (3.8), HzRFz should
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have the following form

HzRFz =



||fz1 ||eT
1

||fz2 ||eT
2

...

||fzr ||eT
r

H̄z


(3.51)

where H̄z =
[

0(p−r)×m H̃z

]
and H̃z is a (p− r)× (n−m) matrix.

The second component RHz of the transformation RIO needs to preserve ej ’s

(j = 1, 2, · · · ,m) and should convert (3.51) to the the following form

(HzRFz)RHz =



||fz1 ||eT
1

||fz2 ||eT
2

...

||fzr ||eT
r

||hz(r+1)
||eT

m+1

||hz(r+2)
||eT

m+2

· · ·

||hzp ||eT
m+(p−r)



(3.52)

Suppose the QR factorization of H̃T
z is given by

QHz

[
||hz(r+1)

||ẽ1 ||hz(r+2)
||ẽ2 · · · ||hzp ||ẽm+p

]
= H̃T

z (3.53)

where QHz is an orthogonal matrix and ẽi is an element of the standard basis

for Rn−m, which has a 1 at its i′th component and 0’s elsewhere.
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The equation (3.53) can be rewritten into



||hz(r+1)
||ẽT

m+1

||hz(r+2)
||ẽT

m+2

...

||hzp ||ẽT
m+p


QT

Hz
= H̃z (3.54)

or equivalently 

||hz(r+1)
||ẽT

m+1

||hz(r+2)
||ẽT

m+2

...

||hzp ||ẽT
m+p


= H̃zQHz (3.55)

Thus, the second component RHz in (3.47) is given by

RHz =

 Im×m 0

0 QHz

 (3.56)

It should be noted that RHz preserves ei’s (i = 1, 2, · · · ,m).

Consequently, from (3.47), (3.50) and (3.56), the component RIO of the trans-

formation R in (3.27) is given by

RIO = RFzRHz = QFz

 Im×m 0

0 QHz

 (3.57)

3.3.2 Converting to Realizable Damping and Stiffness Matrices

After aligning the input and output influence vectors (or matrices) as described in the

preceding subsection, a second orthogonal component Re needs to be applied to convert

the damping and stiffness matrices in the model (3.29) to the desired forms in which

all diagonal elements are positive and all off-diagonal elements are nonnegative. This
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orthogonal component Re must simultaneously preserve the input and output influence

vectors (or matrices) in the model (3.29). After applying the second transformation Re,

the model (3.29) results in the model (3.20). Denote the coordinate transformation

z̃ = Rew (3.58)

Substituting the above transformation into (3.29) and pre-multiplying RT
e , yields the

following second order model which is the same as (3.20)

ẅ + Cwẇ + Kww = Fwu

y = Hwẅ (3.59)

in which

Cw = RT
e Cz̃Re

Kw = RT
e Kz̃Re

Fw = RT
e Fz̃

Hw = Hz̃Re (3.60)

It should be noted that the input and output influence vectors (or matrices) in the

model (3.29) have been already in the desired forms only with a lack of scaling. In

addition, the transformation Re does not change their forms. These two influence vectors

(or matrices) satisfy

Fz̃

||Fz̃||
=

Fw

||Fw||
=

Ff

||Ff ||
Hz̃

||Hz̃||
=

Hw

||Hw||
=

Hf

||Hf ||
(3.61)

The component Re is obtained below for each type of mechanical realization.
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1. SISO Accelerances

For mechanical realization of SISO accelerances, the orthogonal component Re should

preserve the input and output influence vectors Fz̃ and Hz̃ given by (3.31) or (3.35).

This component thus should have the following form

Re =

 Inio×nio 0

0 R̃e

 (3.62)

where Inio×nio is an nio×nio identity matrix and R̃e is an (n−nio)×(n−nio) orthog-

onal matrix. Here, the number nio is determined by the type of SISO accelerances

nio =

 1 for SISO driving-point accelerances

2 for SISO transfer accelerances
(3.63)

Therefore, Re belongs to the orthogonal group O(n−nio) and can be parameterized

by (n− nio)(n− nio − 1)/2 free parameters for a mechanical system with n masses.

The relationship between the number of masses and the dimension of the solution

space of transformations is listed in Table 3.1.

Table 3.1: Number of Masses versus Dimension of the Solution Space
Number of
Masses

Dim (Solution Space) for
Driving-point Accelerances

Dim (Solution Space) for
Transfer Accelerances

1 0 0
2 0 0
3 1 0
4 3 1
5 6 3
6 10 6
7 15 10
8 21 15
9 28 21
10 36 28
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For realizing the driving-point accelerance with no damping or proportional damp-

ing, serial and parallel model realizations can be obtained by choosing Re as special

orthogonal transformations. To obtain a serial model, Re can be chosen as a product

of two orthogonal matrices, i.e., Re = HS, where H is the Householder’s transfor-

mation [67] of the stiffness matrix Kz̃ in (3.29) and S is a diagonal matrix in which

diagonal elements are −1’s at rows of positive off-diagonal elements of HT KzH and

1’s at other rows. To find a parallel model, Re can be chosen as a product of two

orthogonal matrices, i.e., Re = PS, where P is in form of

 1

P̃

 and S is a

diagonal matrix in which diagonal elements are −1’s at rows of positive off-diagonal

elements of P T KzP and 1’s at other rows. Here P̃ can be chosen as the eigen-

vector matrix of the matrix from deleting the first row and column of Kz̃ in the

model (3.29) [67]. The same transformation can be used to convert the proportional

damping matrix to realizable form.

2. MIMO Accelerances

For realizing MIMO accelerances, the orthogonal component Re should preserve the

input and output influence matrices given by (3.39), or (3.42) or (3.46). Re can be

expressed as

Re =

 Inio×nio 0

0 R̃e

 (3.64)

where Inio×nio is an nio×nio identity matrix and the matrix R̃e ∈ O(n−nio). Here,

the number nio is determined by the type of MIMO accelerances

nio =


m for MIMO driving-point accelerances

m + p for MIMO transfer accelerances

m + p− r for MIMO driving-point and transfer accelerances

(3.65)

Therefore, Re belongs to the orthogonal group O(n−nio) which can be parameterized
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by (n− nio)(n− nio − 1)/2 free parameters.

In summary, the number of free parameters for the component Re increases quadrat-

ically with the increment of the number of masses in a mechanical system. These free

parameters can be chosen as either 2-dimensional rotation angles or reflection angles. In

this research, the product of a series of 2-dimensional rotation transformations is adopted

as the orthogonal component Re. Two-dimensional rotations, also known as Givens ro-

tations, have been widely used to convert symmetric matrices to tridiagonal matrices in

solving symmetric matrix eigenvalue problems [67].

In general, Re can be expressed as

Re =
i=np∏
i=1

Ri (3.66)

where Ri is the i′th 2-D rotation matrix. Since matrix multiplications do not commute,

there are many possible orders of multiplication. To find realizable second order models

from a given model, one only needs to use Re with a specific order of multiplication.

Because of periodicity of the cosine and sine functions, the range for each angle can be

chosen from 0 to 2π. These are not the minimum ranges to cover all of O(n− nio).

For instance, the orthogonal component Re in (3.27), associated with a four-mass

mechanical system of SISO driving-point accelerance, can be parameterized by three 2-

dimensional rotational angles. These three 2-D rotation transformations which preserve

the driving-point input and output influence vectors are given by

Rθ1 =



1

cosθ1 −sinθ1

sinθ1 cosθ1

1
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Rθ2 =



1

1

cosθ2 −sinθ2

sinθ2 cosθ2


(3.67)

Rθ3 =



1

cosθ3 −sinθ3

1

sinθ3 cosθ3


The second orthogonal component Re in the orthogonal transformation R then can be

expressed as

Re(θ1, θ2, θ3) = Rθ1Rθ2Rθ3 (3.68)

After parameterization of Re, the realizations can be found by search in the solution

space of the congruent coordinate transformations. This will be discussed in the next

chapter. Moreover, realizations with special requirements such as a minimum number of

connecting elements may be obtained through considering additional constraints during

the search.

3.4 Properties of Transformations Relating Realizable Mod-

els

The initial second order model (3.9) and its final realizable model (3.13) have many prop-

erties. Only those properties associated with mass are discussed below, including those for

SISO mechanical realizations and MIMO mechanical realizations. Properties related to

damping and stiffness can be obtained by following similar approaches to those presented

here.
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3.4.1 SISO Mechanical Realizations

If the initial second order model (3.9) describing SISO accelerances can be converted to the

final second order model (3.13), these two second order models must satisfy the following

theorem.

Theorem 3.1. The given second order model (3.9) describing SISO accelerances and its

final second order model (3.13) satisfy the following identity

H0M
−1
0 F0 = HfM−1

f Ff =


1

mf1

for a driving-point accelerance

0 for a transfer accelerance
(3.69)

where mf1 is the first mass in the final mass matrix Mf = diag

([
mf1 mf2 · · · mfn

])
.

Proof. From (3.14),

F0 = (T T )−1Ff

H0 = HfT−1 (3.70)

M0 = (T T )−1MfT−1

Thus,

H0M
−1
0 F0 = HfT−1

[
(T T )−1MfT−1

]−1
(T T )−1Ff = HfM−1

f Ff (3.71)

1. Driving-point Accelerance Case

Because Ff = e1, HT
f = e1, and Mf = diag

([
mf1 mf2 · · · mfn

])

H0M
−1
0 F0 = HfM−1

f Ff = e1diag

([
mf1 mf2 · · · mfn

])−1

eT
1

= m−1
f1

e1e
T
1 = m−1

f1
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2. Transfer Accelerance Case

Because Ff = e1, HT
f = e2, and Mf = diag

([
mf1 mf2 · · · mfn

])
,

H0M
−1
0 F0 = HfM−1

f Ff = e1diag

([
mf1 mf2 · · · mfn

])−1

eT
2 = m−1

f1
e1e

T
2 = 0

(3.72)

Theorem 3.1 means that all equivalent realizable second order models describing the

same SISO driving-point accelerance must have the same mass at the driving location

although their remaining parts may be totally different. For the transfer accelerance case,

there is a corollary stated below.

Corollary 3.1. Mass normalization of the initial second order model (3.9) describing the

SISO transfer accelerance can recover perpendicularity between the input influence vector

and the output influence vector, i.e., HzFz = 0.

This corollary is important since the input and output influence vectors in the final

realizable model should be perpendicular to each other. This corollary can be proven

below.

Proof. The inner product between the input influence vector and the output influence

vector in the mass normalized second order model (3.17) is given by

HzFz = (H0M
−1/2
0 )(M−1/2

0 F0) = H0M
−1
0 F0 (3.73)

According to Theorem 3.1, thus it holds

HzFz = 0 (3.74)
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Interior

Mechanical

System

F

x1

x2
mf2

mf1

Figure 3.5: Mechanical System of a SISO Transfer Accelerance

The final mass vector mf =
[

mf1 mf2 · · · mfn

]
needs to be scaled by Theorem

3.1 for the driving-point accelerance case. Just as driving-point systems fix the driving

mass, transfer systems shown in Figure 3.5, must possess the same mass at the driving

location and the mass at the location where the acceleration is measured although the

interior mechanical systems vary from one system to another. In this case, the final mass

vector mf should be scaled according to the following Theorem.

Theorem 3.2. The input influence vector and the output influence vector in the mass

normalized second order model (3.17) describing a SISO transfer accelerance should satisfy

the following relationships

||Fz|| = ||M−1/2
0 F0|| =

1
√

mf1

||Hz|| = ||H0M
−1/2
0 || = 1

√
mf2

(3.75)

or equivalently

mf1 =
1

||Fz||2
=

1

||M−1/2
0 F0||2

mf2 =
1

||Hz||2
=

1

||H0M
−1/2
0 ||2

(3.76)

which can be proven below.
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Proof. Suppose the eigenvalue decomposition of the initial mass matrix is given by

M0 = V DV T (3.77)

where V is the eigenvector matrix which is an orthogonal matrix, that is, V T = V −1 and

D is a diagonal matrix with positive diagonal elements. The square root of M0 thus can

be calculated by

M
1/2
0 = V D1/2V T (3.78)

Furthermore, it holds

M0 = V DV T = (V D1/2)(D1/2V T ) = (V D1/2M
−1/2
f )Mf (M−1/2

f D1/2V T ) (3.79)

Since M0 = (T T )−1MfT−1, T can be chosen as

T−1 = M
−1/2
f D1/2V T or T = V D−1/2M

1/2
f

(3.80)

Then

Fz = M
−1/2
0 F0 = (V D1/2V T )−1(T T )−1Ff = (T T V D1/2V T )−1Ff (3.81)

Substituting (3.80) into (3.81) yields

Fz = M
−1/2
0 F0 = (T T V D1/2V T )−1Ff

=
[(

V D−1/2M
1/2
f

)T
V D1/2V T

]−1

Ff

= V M
−1/2
f Ff

= V
1

√
mf1

e1

=
1

√
mf1

v1

(3.82)

where v1 is the first column vector in the orthogonal eigenvector matrix V . Therefore, the
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following relationship holds

||Fz|| = ||M−1/2
0 F0|| =

1
√

mf1

(3.83)

In the similar way, the following relationship can be proven

||Hz|| = ||H0M
−1/2
0 || = 1

√
mf2

(3.84)

3.4.2 MIMO Mechanical Realizations

Similar results as discussed above for SISO accelerances can be obtained for MIMO ac-

celerances. If the initial second order model (3.9) describing MIMO accelerances can be

converted to the final second order model (3.13), these two second order models must

satisfy the following theorem.

Theorem 3.3. The given second order model (3.9) describing SISO accelerances and its

final second order model (3.13) satisfy the following identities

1. MIMO Driving-point Accelerance

H0M
−1
0 F0 = HfM−1

f Ff = diag(
[

1
mf1

1
mf2

· · · 1
mfm

]
) (3.85)

2. MIMO Transfer Accelerance

H0M
−1
0 F0 = HfM−1

f Ff = 0p×m (3.86)

3. MIMO Driving-point and Transfer Accelerance

H0M
−1
0 F0 = HfM−1

f Ff = diag(
[

1
mf1

1
mf2

· · · 1
mfr

0 · · · 0

]
) (3.87)
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where mfi
(i = 1, 2, · · · ,m) is the mass at which the i′th force is applied .

Proof. From (3.71), it is known

H0M
−1
0 F0 = HfM−1

f Ff (3.88)

For each type of accelerances, its corresponding necessary realization condition is

proven below.

1. Driving-point Accelerance

Since Ff = HT
f =

[
e1 e2 · · · em

]
and Mf = diag

([
mf1 mf2 · · · mfn

])
,

H0M
−1
0 F0 = HfM−1

f Ff = diag

([
1

mf1

1
mf2

· · · 1
mfm

])
(3.89)

2. Transfer Accelerance

With consideration of (3.7) and Mf = diag

([
mf1 mf2 · · · mfn

])
, it yields

H0M
−1
0 F0 = HfM−1

f Ff

=



eT
m+1

eT
m+2

...

eT
m+p





mf1

mf2

...

mfn



−1

[
e1 e2 · · · em

]

=
[

em+1 em+2 · · · em+p

]T [
m−1

f1
e1 m−1

f2
e2 · · · m−1

fm
em

]
= 0p×m

(3.90)

3. Driving-point and Transfer Accelerance

With consideration of Mf = diag

([
mf1 mf2 · · · mfn

])
and (3.8),

H0M
−1
0 F0 = HfM−1

f Ff
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=
[

e1 e2 · · · er em+1 em+2 · · · em+(p−r)

]T



mf1

mf2

. . .

mfn



−1

[
e1 e2 · · · em

]

=
[

e1 e2 · · · er em+1 em+2 · · · em+(p−r)

]T

[
m−1

f1
e1 m−1

f2
e2 · · · m−1

fm
em

]

=

 M−1
r 0

0 0


p×m

(3.91)

where Mr = diag

([
mf1 mf2 · · · mfr

])
.

For the driving-point accelerance, the final mass vector should be scaled according to

the following corollary associated with Theorem 3.3.

Corollary 3.2. The masses at the driving points are related to the input influence and

output influence matrices in the mass normalized model (3.17) as follows

mfi
=

1
||fzi ||2

=
1

||hzi ||2
(i = 1, 2, · · · ,m) (3.92)

where fzi (i = 1, 2, · · · ,m) is the i′th column vectors of Fz and hzi (i = 1, 2, · · · ,m) is the

i′th row vectors of Hz. In addition, the column vectors of Fz are perpendicular to each

other, i.e., fT
zi

fzj = 0 for i 6= j; the row vectors of Hz are perpendicular to each other too,

i.e., hzih
T
zj

= 0 for i 6= j.
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Proof. Denote the mass normalized input and output influence matrices in (3.17) as

Fz = M
−1/2
0 F0 =

[
fz1 fz2 · · · fzm

]

Hz = H0M
−1/2
0 =



hz1

hz2

...

hzm


(3.93)

According to Theorem 3.3,

HzFz = H0M
−1
0 F0 = diag

([
1

mf1

1
mf2

· · · 1
mfm

])
(3.94)

Therefore,

hzifzi =
1

mfi

hzifzj = 0 for i 6= j (3.95)

Since hzi = fT
zi

, the equation (3.95) can be rewritten as follows

hzih
T
zi

=
1

mfi

hzih
T
zj

= 0 for i 6= j

fT
zi

fzj = 0 for i 6= j (3.96)

Thus, the following relationship holds

mfi
=

1
||fzi ||2

(i = 1, 2, · · · ,m) (3.97)
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Since fzi = hT
zi

(i = 1, 2, · · · ,m), it yields

mfi
=

1
||fzi ||2

=
1

||hzi ||2
(i = 1, 2, · · · ,m) (3.98)

For the transfer accelerance, the following corollary associated with Theorem 3.3 pro-

vides the reason why the second component in the transformation (3.15) should be an

orthogonal matrix.

Corollary 3.3. The product of the input influence matrix and the output influence matrix

in the mass normalized second order model (3.17) from the given second order model (3.9)

which describes a MIMO transfer accelerance is a zero matrix, that is, HzFz = 0p×m.

Proof. According to (3.17), the inner product between the input influence vector and the

output influence vector in the mass normalized second order model is

HzFz = H0M
−1/2
0 M

−1/2
0 F0 = H0M

−1
0 F0 = 0p×m (3.99)

In the above derivation, the equation (3.86) in Theorem 3.3 has been used.

For the transfer accelerance, in the final realizable model (3.13), the final mass vector

needs to be scaled according to the following theorem.

Corollary 3.4. The masses at the excitation points and the acceleration measurement

points are related to the input influence and output influence matrices in the mass nor-

malized second order model (3.17) as follows

mfi = 1
||fzi ||2

(i = 1, 2, · · · ,m)

mfi = 1
||hzj ||2

(j = i−m; i = m + 1,m + 2, · · · ,m + p) (3.100)
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where fzi (i = 1, 2, · · · ,m) is the i′th column vector of Fz and hzj (j = 1, 2, · · · , p) is the

j′th row vector of Hz.

Proof. Denote the mass normalized input and output influence matrices in (3.17) as

Fz = M
−1/2
0 F0 =

[
fz1 fz2 · · · fzm

]

Hz = H0M
−1/2
0 =



hz1

hz2

...

hzp


(3.101)

According to (3.13), (3.15) and (3.7), it yields

Ff = T T F0 = M
1/2
f RT M

−1/2
0 F0 = M

1/2
f RT Fz (3.102)

that is,

M
−1/2
f

[
e1 e2 · · · em

]
=

[
RT fz1 RT fz2 · · · RT fzm

]
(3.103)

or equivalently

[
1

√
mf1

1
√

mf2

· · · 1
√

mfm

]
=

[
RT fz1 RT fz2 · · · RT fzm

]
(3.104)

Therefore, the following relations hold

1
√

mfi

ei = RT fzi (i = 1, 2, · · · ,m) (3.105)

Thus, with consideration of the fact that R is an orthogonal matrix, the following

relations hold

mfi
=

1
||fzi ||2

(i = 1, 2, · · · ,m) (3.106)
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In the similar way, the following relations can be proved

mfi
=

1
||hzj ||2

(i = m + 1,m + 2, · · · ,m + p; j = i−m) (3.107)

For the driving-point and transfer accelerance, the final mass vector mf in (3.13)

should be scaled according to the following Corollary 3.5.

Corollary 3.5. The masses at the coordinates where excitation forces are applied and

where accelerations are measured are related to the input influence and output influence

matrices in the mass normalized second order model (3.17) as follows

mfi
=

1
||fzi ||2

(i = 1, 2, · · · ,m)

mf(m+j)
=

1
||hz(r+j)

||2
(j = 1, 2, · · · , p− r) (3.108)

where fzi (i = 1, 2, · · · ,m) is the i′th column vector of Fz and hzj (j = 1, 2, · · · , p) is the

j′th row vector of Hz.

Proof. Denote the mass normalized input and output influence matrices in (3.17) as

Fz = M
−1/2
0 F0 =

[
fz1 fz2 · · · fzm

]

Hz = H0M
−1/2
0 =



hz1

hz2

...

hzp


(3.109)

where fzi ’s and hzj ’s are column vectors of the input influence matrix and row vectors of

the output influence matrix in the mass normalized second order model (3.17), respectively.
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According to (3.13), (3.15) and (3.8), it yields

Ff = T T F0 = M
1/2
f RT M

−1/2
0 F0 = M

1/2
f RT Fz (3.110)

that it,

M
−1/2
f

[
e1 e2 · · · em

]
= RT

[
fz1 fz2 · · · fzm

]
(3.111)

or equivalently

[
1

√
mf1

e1
1

√
mf2

e2 · · · 1
√

mfm

em

]
=

[
RT fz1 RT fz2 · · · RT fzm

]
(3.112)

Therefore, the following relations hold

1
√

mfi

ei = RT fzi (i = 1, 2, · · · ,m) (3.113)

With consideration of the fact that the transformation R is an orthogonal matrix, the

following relations hold

mfi
=

1
||fzi ||2

(i = 1, 2, · · · ,m) (3.114)

In a similar way, by considering Hz, the following relations can also be proved

mf(m+j)
=

1
||hz(r+j)

||2
(j = 1, 2, · · · , p− r) (3.115)

It should be noted that the first r masses can also be calculated by mfi
=

1
||hzi ||2

,

(i = 1, 2, · · · , r) since it holds fzi = hT
zi

(i = 1, 2, · · · , r).
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3.5 Obtaining the Final Mass Matrix

After the damping and stiffness matrices Cw and Kw in the model (3.59) have been put in

the correct form, the final mass matrix Mf in the realizable model (3.13) can be obtained

by solving for the null space vectors of the damping and stiffness matrices in (3.20) and

scaling according to results proved in Section 3.4. Since it is assumed that no skyhook

elements are permitted, the damping and stiffness matrices share the same null space

vector. Therefore, only one of these two matrices is enough for determining the mass

matrix in the realizable model (3.13). According to the realization conditions given in

(3.3), the damping and stiffness matrices in (3.13) satisfy

Kf

[
1 1 · · · 1

]T

= 0

Cf

[
1 1 · · · 1

]T

= 0 (3.116)

According to (3.25), (3.116) is equivalent

Cw
√

mf = 0

Kw
√

mf = 0 (3.117)

where mf is the final mass vector, i.e., mf =
[

mf1 mf2 · · · mfn

]
.

The unit null space vector can be obtained from either Cw or Kw. The final mass

vector then is obtained by scaling this null space vector accordingly so that the base mass

and total mass of the system is preserved, as shown in Table 3.2.

Obviously, the final mass matrix Mf is dependent on the choice of the orthogonal

transformation Re. Only for undamped and proportionally damped mechanical systems

can this transformation be explicitly obtained by available algorithms in matrix compu-

tation. Therefore, for realizing nonproportionally damped vibratory mechanical systems,

the key task to finding a realizable second order model using the congruent coordinate
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Table 3.2: Scaling the Final Mass Vector
Type of Mechanical Realization Theorems
SISO Driving-point Accelerance Theorem 3.1

SISO Transfer Accelerance Theorem 3.2
MIMO Driving-point Accelerance Theorem 3.3 or Corollary 3.2

MIMO Transfer Accelerance Corollary 3.4
MIMO Driving-point and Transfer Accelerance Theorem 3.3 or Corollary 3.5

transformations is to obtain the orthogonal transformation Re described in this chapter.

Two methods for obtaining a realizable model are presented in the next chapter, including

a technique for searching the space of the realizable transformations.
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Chapter 4

Two Techniques for Obtaining

Realizable Models

Everything should be made as simple as possible, but not simpler.

Albert Einstein (1879-1955)

Two methods are presented for obtaining realizable models. The first involves searching

the space of realization transformations, parameterized by a finite set of free parameters

as described in Chapter 3. This method starts with a given second order model satisfying

the realization conditions discussed in Chapter 3. The second technique involves a direct

estimation of realizable models from experimental input-output data. Both techniques are

described below.

4.1 Searching the Parameterized Space of Realization Trans-

formations

For a given second order model (3.9), congruent coordinate transformations T can be

applied to obtain realizable second order models. Recall from (3.15) and (3.27) that these
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congruent coordinate transformations T have been decomposed as

T = M
−1/2
0 RM

1/2
f = M

−1/2
0 (RIORe)M

1/2
f (4.1)

The first component M
−1/2
0 is readily available from the given second order model

(3.9) and the second component RIO can be obtained via QR factorization of the input

and output influence vectors (or matrices) in (3.29). Also, the last component M
1/2
f can

be obtained by solving the null space vectors of the damping and stiffness matrices in

(3.20) and scaling them according to theorems or corollaries listed in Table 3.2.

Therefore, the key task to obtain mechanical realizations is to find Re in (4.1). An

explicit solution is available only for a SISO driving-point accelerance with either no

damping or proportional damping. In general, Re belongs to an orthogonal group which

can be parameterized by a finite number of free parameters. The dimension of the space of

realizable transformations increases quadratically with the number of masses in mechanical

systems.

When the number of masses is small, e.g., 3 or 4, an exhaustive search can be carried

out and the search results can be easily visualized. For mechanical systems with more

masses, however, it is impractical to use this search technique. Moreover, it is difficult

to incorporate additional search criteria, such as minimizing the number of springs and

dashpots with this approach. In these cases, other efficient search techniques [73] [74] [75]

must be used. For those cases amenable to search of the transformation space, a cost

function is needed.

As has been shown in Chapter 3, a realizable second order model satisfies (3.3) in

which all off-diagonal elements of the stiffness and damping matrices must be nonpositive.

A natural way to choose the cost function as

J(θ) = w1SK + w2SC (4.2)
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where θ is the vector of rotation angles, SK is the summation of all positive off-diagonal

elements in the stiffness matrix and SC is the summation of all positive off-diagonal ele-

ments in the damping matrix. In order to balance the contributions from the stiffness and

damping matrices, two weighting factors are given as

w1 = 1

w2 =
trace(K)
trace(C)

(4.3)

where trace(·) is defined as the summation of diagonal elements of a matrix. Since the

congruent orthogonal transformation does not change the trace of a matrix, the weighting

factor w2 actually is a constant.

With cost function (4.2), a wide choice of optimization techniques can be used to find

the angle vector θ. Once the cost function reaches zero, the search stops, resulting in a

realization. During a nonlinear search, a small jump in a random direction with a random

magnitude may have to be applied if the search converges to a local minimum.

In practice, however, a mechanical realization may not be found for a high-dimensional

system due to the problems associated with optimization techniques applied to nonlinear

systems. In those cases when the cost function does not reach zero, but does reach a small

positive number, then an approximate realizable second order model may be obtained by

removing all small positive off-diagonal elements as discussed below.

4.1.1 Approximate Solutions

An approximate realizable model may be obtained by removing small positive elements

from the damping and stiffness matrices. When this process is applied, however, the

resulting damping and stiffness matrices are not singular any more. Since the damping

and stiffness matrices should have the same null space vector relating to the final mass

vector, further operations are needed to restore the singularities and null space vector. To

this end, singular value decomposition (SVD) [76] can be applied.
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Denote the damping and stiffness matrices after removing small positive off-diagonal

elements as C and K, respectively. Their SVD’s can be written as

C = UCSCV T
C

K = UKSKV T
K (4.4)

where UC , VC , UK and VK are n× n orthogonal matrices and n is the number of masses.

The diagonal matrix SC is expressible as diag(
[

σC1 σC2 · · · σCn

]
) and its nonneg-

ative singular values σCi ( i=1, 2, · · ·, n) are ordered from the largest to the smallest.

Another diagonal matrix SK is expressible as diag(
[

σK1 σK2 · · · σKn

]
) and its non-

negative singular values σKi ( i=1, 2, · · ·, n) are also ordered from the largest to the

smallest.

Since the zeroed positive off-diagonal elements were very small, the lowest singular

values σCn and σKn should be very close to zero. Therefore, their corresponding column

vectors vCn and vKn in the matrices VC and VK can be approximately considered as the

null space vectors of the matrices C and K, respectively, since

CvCn = UCSCV T
C vCn = UCSCV T

C vCn = UCSC

[
0 0 · · · 1

]T

= σCnuCn

KvKn = UKSKV T
K vKn = UKSKV T

K vKn = UKSK

[
0 0 · · · 1

]T

= σKnuKn (4.5)

where vCn and vKn are the n′th column vectors in the matrices VC and VK , respectively.

Here uCn and uKn are the n′th column vectors of the matrices UC and UK , respectively.

In general, the approximate null space vectors vCn and vKn are not equal. To balance

the approximation error induced from the damping and stiffness matrices, an approximate

null space vector for both damping and stiffness matrices is constructed by averaging vCn

and vKn as

v =
vCn + vKn

2
(4.6)

80



Consequently, the final mass matrix mf can be obtained according to Table 3.2. By

applying the congruent coordinate transformation M
1/2
f to the matrices C and K, two

new matrices are obtained as

C̃f = M
1/2
f CM

1/2
f

K̃f = M
1/2
f KM

1/2
f (4.7)

where all off-diagonal elements in the matrices C̃f and K̃f are nonpositive.

Since the final mass matrix is obtained from the vector v, the matrices C̃f and K̃f do

not strictly satisfy

C̃f

[
1 1 · · · 1

]T

= 0

K̃f

[
1 1 · · · 1

]T

= 0 (4.8)

In order to make the final realizable model (3.13) possess a rigid body mode, the

approximate final damping and stiffness matrices can be constructed by modifying their

diagonal elements. The following two steps can be carried out:

1. Subtract the diagonal elements from the damping and stiffness matrices C̃f and K̃f

˜̃Cf = C̃f −DC̃f

˜̃Kf = K̃f −DK̃f
(4.9)

where DC̃f
is the diagonal matrix constructed from the main diagonal of the matrix

C̃f and DK̃f
is the diagonal matrix constructed from the main diagonal of the matrix

K̃f .

2. Set the absolute value of the sum of each row as the diagonal elements

Cf = ˜̃Cf + diag(|sum( ˜̃Cf )|)
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Kf = ˜̃Kf + diag(|sum( ˜̃Kf )|) (4.10)

where sum(·) is a column vector with each element as a sum of all elements in a

row of a matrix. Cf and Kf are the final realizable damping and stiffness matrices,

which share the same null space vector
[

1 1 · · · 1

]T

.

Similarly, an approximate realizable second order model may be obtained by removing

small connecting elements from a realizable second order model. This process is straight-

forward as discussed below.

4.1.2 Approximation Error by Removing Connecting Elements with

Small Values

Realizable second order models obtained through either exhaustive search or other search

methods may possess mechanical elements with very small values. To make it easy to

implement mechanical emulators under this circumstance approximate realizable second

order models can obtained by removing these mechanical elements. Since total mass in

the realization must be preserved, only damping and stiffness elements may be removed.

Suppose that according to the decomposition in (3.2), the stiffness matrix in the real-

izable second order model (3.13) can be expressible as

Kf = CKf
KDKf

CT
Kf

(4.11)

where the connectivity matrix CKf
depends on the couplings between masses. Here, the

nonnegative diagonal matrix KDKf
can be expressed as diag(

[
0 k1 k2 · · · knk

]
),

where ki (i=1, 2, · · ·, n) are positive spring constants and nk is the number of springs in

the realization.

By removing the small diagonal elements in the matrix KDKf
and the corresponding

column vectors in the matrix CKf
, an approximate stiffness matrix K̃f can be obtained
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as

K̃f = CK̃f
KDK̃f

CT
K̃f

(4.12)

where CK̃f
is the connectivity matrix after removing the column vectors associated with

small spring constants, KDK̃f
is the diagonal matrix after removing the small spring

constants. Note that the approximate stiffness matrix K̃f is still in realizable form. The

omitted stiffness elements are included in the following matrix Kr

Kr = Kf − K̃f (4.13)

In a similar way as discussed above, an approximate damping matrix can also be

obtained as

C̃f = CC̃f
CDC̃f

CT
C̃f

(4.14)

where CC̃f
is the connectivity matrix after removing the column vectors associated with

small dashpots, CDC̃f
is the diagonal matrix after removing the small dashpots. The

removed damping elements are included in the following matrix

Cr = Cf − C̃f (4.15)

Therefore, an approximate realizable second order model is obtained as

Mf ẍ + C̃f ẋ + K̃fx = Ffu

y = Hf ẍ (4.16)

Suppose that the accelerance of the original second order model (3.13) is A(s) and the

accelerance of the approximate second order model (4.16) is Ã(s). The original accelerance

A(s) is given by

A(s) = Hfs2(Mfs2 + Cfs + Kf )−1Ff (4.17)
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The approximate accelerance Ã(s) is expressible as

Ã(s) = Hfs2(Mfs2 + C̃fs + K̃f )−1Ff (4.18)

The approximation error E(s) induced by removing the small connecting elements is

expressed as

E(s) = A(s)− Ã(s) (4.19)

To simplify the approximate error, the following identity is used.

(A + B)−1 = A−1 − (A + B)−1BA−1 (4.20)

Using (4.20), the approximation error can be rewritten as

E(s) = A(s)− Ã(s) = −Hfs2∆(Mfs2 + C̃fs + K̃f )−1Ff (4.21)

where ∆ = (Mfs2 + Cfs + Kf )−1(Crs + Kr).

Usually, the relative error E(s)A−1(s) is more useful, but its expression is so compli-

cated that it is not helpful in determining how the omitted connecting elements are related

to the approximation error. In particular, for a SISO mechanical system, the relative error

can be expressed as

E(s)
A(s)

= F T
f (Crs + Kr)(Mfs2 + C̃fs + K̃f )−1Ff (4.22)

which means the relative error is equal to the (1, 1) element in the square matrix (Crs +

Kr)(Mfs2 + C̃fs + K̃f )−1 dependent on the complex number s.

Norms such as the H2 and H∞ norms of the approximation error may be adopted as

||E(s)||∞ = ||A(s)− Ã(s)||∞ = max
ω

|A(jω)− Ã(jω)| SISO case

||E(s)||∞ = ||A(s)− Ã(s)||∞ = max
ω

σmax(A(jω)− Ã(jω)) MIMO case
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||E(s)||2 =

√
1
2π

∫ ∞

−∞
trace

(
(A(jω)− Ã(jω))H(A(jω)− Ã(jω))

)
dω (4.23)

where σmax denotes the largest singular value of a matrix.

4.1.3 Numerical Examples

In this section, several numerical examples are used to demonstrate how searching the

space of realizable congruent transformations is carried out. Each example involves five

steps as listed below.

1. Check whether the given model (3.9) satisfies (3.3) and figure out which type of

mechanical realization it belongs to;

2. Mass normalize the given second order model, resulting in a new second order model

(3.17) with an identity mass matrix;

3. Put the input and output influence vectors (or matrices) into the desired forms with

the orthogonal component RIO;

4. Convert the damping and stiffness matrices into desired forms while preserving the

input and output vectors (or matrices) with another orthogonal component Re;

5. Solve for the final mass matrix Mf .

In each numerical example discussed below, only the fourth step is detailed since the

other steps were discussed in detail in Chapter 3.

Mechanical Realization of SISO Driving-point Accelerances

Here, two examples of mechanical systems describing driving-point accelerances are

used to demonstrate both an exhaustive search and a nonlinear search using (4.2) in the

space of parameterized congruent coordinate transformations, Re.

Example 1: Four-mass Mechanical System
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An initial second order model in realizable form with its accelerance shown in Figure

4.1 is given by


7.6941 0 0 0

0 0.0220 0 0

0 0 0.2502 0

0 0 0 0.1616


ẍ +


0.3770 −0.0177 −0.1450 −0.2143

−0.0177 0.0178 0 −0.0001

−0.1450 0 0.1450 0

−0.2143 −0.0001 0 0.2144


ẋ

+


14444 0 −10633 −3810

0 474 −474 0

−10633 −474 11528 −421

−3810 0 −421 4232


x =


1

0

0

0


u

y =
[

1 0 0 0
]
ẍ

(4.24)

The magnitude level at low frequencies is close to the reciprocal of the total mass. In

particular, at zero frequency, it is exactly the reciprocal of total mass. In contrast, the

magnitude at the high frequency range closely approaches the reciprocal of the base mass.

According to Table 3.1, the number of 2-D rotation free parameters is 3. With the

orthogonal transformation matrix (3.68), the result of the exhaustive search in the solution

space is shown in Figure 4.2, where a three-degree angle grid is used. The shaded areas are

realizable regions with colors specifying different numbers of connecting elements between

masses. It would be expected that realizations with fewer connecting elements are located

at the boundary between realizable and unrealizable regions because some elements in

damping and stiffness matrices change their signs at the boundary.

According to the properties of the orthogonal component Re, given in Appendix D,

realizations in different regions are related to each other by permutation matrices. By

removing all redundant realizable regions, the minimum set of the realizable regions can
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Figure 4.1: Driving-point Accelerance of a Second Order Model

be obtained and is depicted in Figure 4.3. Two realization examples from this region

are presented here. They possess the same accelerance as the initial second order model

(4.24). Since the initial model (4.24) is already a realization with the fewest connecting

elements, the following examples have more connecting elements.

Realization 1: When angles are chosen as θ1 = 300o, θ2 = 90o and θ3 = 200o, the

realizable second order model is obtained as follows


7.6941

0.2179

0.1616

0.0542


q̈ +


0.3770 −0.1236 −0.2143 −0.0391

−0.1236 0.1279 0 −0.0043

−0.2143 0 0.2144 −0.0001

−0.0391 −0.0043 −0.0001 0.0435


q̇
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+


14444 −9774 −3810 −860

−9774 10358 −387 −197

−3810 −387 4232 −34

−860 −197 −34 1091


q =


1

0

0

0


u

y =
[

1 0 0 0
]
q̈

(4.25)

In this realization, there is one more damping element and two more stiffness elements

than the original realization (4.24).

Realization 2: When angles are given by θ1 = 300o, θ2 = 80o and θ3 = 200o,

a realizable second order model with fully populated damping and stiffness matrices is
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Figure 4.3: Minimum Realizable Region for the Driving-point Accelerance

achieved as follows


7.6941

0.1945

0.2131

0.0262


q̈ +


0.3770 −0.1022 −0.2623 −0.0125

−0.1022 0.1147 −0.0101 −0.0024

−0.2623 −0.0101 0.2789 −0.0066

−0.0125 −0.0024 −0.0066 0.0214


q̇

+


14444 −8960 −5161 −323

−8960 9280 −212 −107

−5161 −212 5478 −105

−323 −107 −105 535


q =


1

0

0

0


u

y =
[

1 0 0 0
]
q̈

(4.26)

Although the initial model (4.24) and two realizations (4.25) and (4.26) have different

mass, damping and stiffness matrices, they have several common features: (1) the same

driving-point accelerance; (2) the same total mass and base mass; (3) the same damping
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and stiffness associated with the base mass.

Example 2: Ten-mass Mechanical System

According to Table 3.1, the number of 2-dimensional rotation parameters for a ten-mass

system is 36 so an exhaustive search of this space is impractical. Therefore, a nonlinear

search with the cost function defined by (4.2) is carried out. The vectors and matrices

in the second order model (3.29) after mass normalization and alignment of input and

output influence vectors are given below. The given damping matrix is not a weighted

sum of the mass and stiffness matrices.

Cz̃ = 10
−2 ×



2.7128 0.5884 0.9063 0.3057 0.2789 0.0366 −0.5277 0.3770 −0.8588 0.1026

0.5884 2.2130 −0.4462 0.1803 −0.5566 −0.0037 0.1355 0.3250 0.7427 −0.2086

0.9063 −0.4462 3.2407 0.1044 −0.7221 0.1187 0.2252 0.5407 0.8267 0.1413

0.3057 0.1803 0.1044 2.4779 −0.0200 −0.5379 −0.1216 −0.8723 0.8624 −0.1269

0.2789 −0.5566 −0.7221 −0.0200 2.5065 −0.5251 −0.0023 0.3179 −0.1601 −0.0073

0.0366 −0.0037 0.1187 −0.5379 −0.5251 3.2081 −0.3332 0.0705 0.0055 −0.0668

−0.5277 0.1355 0.2252 −0.1216 −0.0023 −0.3332 2.9139 −0.3074 −0.2305 0.1764

0.3770 0.3250 0.5407 −0.8723 0.3179 0.0705 −0.3074 2.7448 0.5058 −0.6769

−0.8588 0.7427 0.8267 0.8624 −0.1601 0.0055 −0.2305 0.5058 2.5958 0.5924

0.1026 −0.2086 0.1413 −0.1269 −0.0073 −0.0668 0.1764 −0.6769 0.5924 3.5425



Kz̃ = 10
4 ×



1.6685 0.5279 0.2255 0.0964 0.2052 0.1663 −0.3627 0.0432 −0.6797 0.0093

0.5279 1.1712 −0.0615 −0.0742 0.0952 0.0664 −0.1747 −0.2261 0.3368 −0.2184

0.2255 −0.0615 1.3728 −0.1508 −0.3500 0.0709 0.2709 −0.0669 0.3985 0.1844

0.0964 −0.0742 −0.1508 1.5194 −0.0821 −0.0457 0.0360 −0.0362 0.4447 0.0249

0.2052 0.0952 −0.3500 −0.0821 1.7704 −0.0591 −0.0855 −0.0525 0.2505 −0.2485

0.1663 0.0664 0.0709 −0.0457 −0.0591 1.9298 −0.0199 0.1753 0.1535 0.0034

−0.3627 −0.1747 0.2709 0.0360 −0.0855 −0.0199 1.3734 −0.1139 −0.0153 0.2045

0.0432 −0.2261 −0.0669 −0.0362 −0.0525 0.1753 −0.1139 1.6008 0.0808 −0.1654

−0.6797 0.3368 0.3985 0.4447 0.2505 0.1535 −0.0153 0.0808 1.5770 0.3236

0.0093 −0.2184 0.1844 0.0249 −0.2485 0.0034 0.2045 −0.1654 0.3236 1.9318


Fz̃ = H

T
z̃ =

[
1 0 0 0 0 0 0 0 0 0

]T

The initial guess for the set of 2-dimensional rotation angles was generated by random

numbers within the angle range from 0 to 2π. The Nelder-Mead nonlinear minimization

method was used for the search. At each iteration, a maximum of 2500 evaluations of

the cost function was permitted. The search terminates when a realizable model is found.
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Since the search is initiated by random numbers, results vary from trial to trial. The

results of one trial, comprising six iterations, are as follows.

Mf = diag(
[

1.0000 0.5897 0.2208 0.3018 0.4610 0.3100 0.3778 0.1229 0.3782 0.5211
]
)

Cf = 10
−2 ×



2.7128 −0.4864 −0.0520 −0.1772 −0.5985 −0.2404 −0.2864 −0.0659 −0.4470 −0.3590

−0.4864 1.8425 −0.0005 −0.0719 −0.5606 −0.0152 −0.2845 −0.0205 −0.0673 −0.3355

−0.0520 −0.0005 0.7682 −0.1320 −0.0733 −0.1213 −0.0533 −0.0006 −0.1780 −0.1572

−0.1772 −0.0719 −0.1320 0.8836 −0.0622 −0.1643 −0.0609 −0.0001 −0.1234 −0.0916

−0.5985 −0.5606 −0.0733 −0.0622 1.4538 −0.0001 −0.0023 −0.0123 −0.0421 −0.1024

−0.2404 −0.0152 −0.1213 −0.1643 −0.0001 0.8747 −0.2050 −0.0001 −0.0992 −0.0291

−0.2864 −0.2845 −0.0533 −0.0609 −0.0023 −0.2050 1.2671 −0.0013 −0.2212 −0.1522

−0.0659 −0.0205 −0.0006 −0.0001 −0.0123 −0.0001 −0.0013 0.1040 −0.0004 −0.0028

−0.4470 −0.0673 −0.1780 −0.1234 −0.0421 −0.0992 −0.2212 −0.0004 1.2354 −0.0569

−0.3590 −0.3355 −0.1572 −0.0916 −0.1024 −0.0291 −0.1522 −0.0028 −0.0569 1.2867



Kf = 10
4 ×



1.6685 −0.4698 −0.0265 −0.1705 −0.1809 −0.2239 −0.1058 −0.0074 −0.1632 −0.3205

−0.4698 1.0694 −0.0007 −0.0809 −0.1432 −0.0702 −0.2497 −0.0315 −0.0041 −0.0193

−0.0265 −0.0007 0.3609 −0.0754 −0.0129 −0.0278 −0.0135 −0.0422 −0.0718 −0.0900

−0.1705 −0.0809 −0.0754 0.4805 −0.0295 −0.0759 −0.0004 −0.0068 −0.0407 −0.0004

−0.1809 −0.1432 −0.0129 −0.0295 0.6300 −0.1016 −0.0522 −0.0001 −0.1088 −0.0008

−0.2239 −0.0702 −0.0278 −0.0759 −0.1016 0.6269 −0.0876 −0.0359 −0.0008 −0.0033

−0.1058 −0.2497 −0.0135 −0.0004 −0.0522 −0.0876 0.6655 −0.0096 −0.1182 −0.0285

−0.0074 −0.0315 −0.0422 −0.0068 −0.0001 −0.0359 −0.0096 0.1967 −0.0178 −0.0453

−0.1632 −0.0041 −0.0718 −0.0407 −0.1088 −0.0008 −0.1182 −0.0178 0.5453 −0.0199

−0.3205 −0.0193 −0.0900 −0.0004 −0.0008 −0.0033 −0.0285 −0.0453 −0.0199 0.5280


Ff = H

T
f =

[
1 0 0 0 0 0 0 0 0 0

]T

As expected, this model has the same driving-point accelerance as the initial model, as

depicted in Figure 4.4. The damping and stiffness matrices have many small connecting

elements which may be removed by the technique discussed in Subsection 4.1.2. The

number of damping and stiffness elements which need to be kept depends on the desired

approximate error limit. After the damping elements smaller than 0.001 and stiffness

elements less than 50 have been removed, for instance, the resulting approximate damping

and stiffness matrices are given by
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Ca = 10
−2 ×



2.5949 −0.4864 0 −0.1772 −0.5985 −0.2404 −0.2864 0 −0.4470 −0.3590

−0.4864 1.6671 0 0 −0.5606 0 −0.2845 0 0 −0.3355

0 0 0.5885 −0.1320 0 −0.1213 0 0 −0.1780 −0.1572

−0.1772 0 −0.1320 0.5969 0 −0.1643 0 0 −0.1234 0

−0.5985 −0.5606 0 0 1.2615 0 0 0 0 −0.1024

−0.2404 0 −0.1213 −0.1643 0 0.7310 −0.2050 0 0 0

−0.2864 −0.2845 0 0 0 −0.2050 1.1493 0 −0.2212 −0.1522

0 0 0 0 0 0 0 −0.0000 0 0

−0.4470 0 −0.1780 −0.1234 0 0 −0.2212 0 0.9695 0

−0.3590 −0.3355 −0.1572 0 −0.1024 0 −0.1522 0 0 1.1063



Ka = 10
4 ×



1.6685 −0.4698 −0.0265 −0.1705 −0.1809 −0.2239 −0.1058 −0.0074 −0.1632 −0.3205

−0.4698 1.0646 0 −0.0809 −0.1432 −0.0702 −0.2497 −0.0315 0 −0.0193

−0.0265 0 0.3602 −0.0754 −0.0129 −0.0278 −0.0135 −0.0422 −0.0718 −0.0900

−0.1705 −0.0809 −0.0754 0.4797 −0.0295 −0.0759 0 −0.0068 −0.0407 0

−0.1809 −0.1432 −0.0129 −0.0295 0.6291 −0.1016 −0.0522 0 −0.1088 0

−0.2239 −0.0702 −0.0278 −0.0759 −0.1016 0.6228 −0.0876 −0.0359 0 0

−0.1058 −0.2497 −0.0135 0 −0.0522 −0.0876 0.6651 −0.0096 −0.1182 −0.0285

−0.0074 −0.0315 −0.0422 −0.0068 0 −0.0359 −0.0096 0.1966 −0.0178 −0.0453

−0.1632 0 −0.0718 −0.0407 −0.1088 0 −0.1182 −0.0178 0.5404 −0.0199

−0.3205 −0.0193 −0.0900 0 0 0 −0.0285 −0.0453 −0.0199 0.5234



In so doing, 26 dashpots out of 45 dashpots and 8 springs out of 45 springs have been

removed. The accelerance of the approximate model is also depicted in Figure 4.4.

Mechanical Realization of SISO Transfer Accelerances

Two examples of SISO transfer accelerances are presented here. The first example is a

four-mass system and the second is a five-mass system. The angle regions where realiza-

tions exist are found by exhaustive search in the solution space of congruent coordinate

transformations.

1. Four-mass Example

According to Table 3.1, the dimension of the solution space of the congruent co-

ordinate transformation is one. Assume the force excitation is applied at the first

coordinate and the acceleration is measured at the second coordinate. To preserve

the input and output influence vectors e1 and e2, the orthogonal transformation Re
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Figure 4.4: Driving-point Accelerance of a Mechanical System with Ten Masses

should have the following form

Re =



1 0 0 0

0 1 0 0

0 0 cosθ −sinθ

0 0 sinθ cosθ


(4.27)

An initial second order model describing a transfer accelerance of a four-mass system
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is given by



2180 −780 −164 −168

−780 2211 −513 −110

−164 −513 1027 2

−168 −110 2 76


ẍ +



6100 −5560 614 112

−5560 10928 −6735 120

614 −6735 13163 154

112 120 154 32


ẋ

+



44840 −31595 −3245 1290

−31595 55460 −13255 1460

−3245 −13255 42380 790

1290 1460 790 320


x =



2

4

−1

4


u

y =
[
−20 3 5 2

]
ẍ (4.28)

By exhaustive search, the angle region where realizations exist, is presented in Figure

4.5. Here, a 0.1 degree angle grid is used and realizations exist in the region ranging

from 233.8o to 263.4o. It should be noted that some realizations may exist between

233.7o and 233.8o and between 263.4o and 263.5o. With a finer angle grid, it is found

that the number of damping elements can range from five to six. This is also true

for the stiffness elements. Since the number of them cannot reach five at the same

time, the total number of connecting elements in realizations range from eleven to

twelve. At the angle 263.4912o, the realization with the fewest stiffness elements is

obtained as follows



2.0000 0 0 0

0 5.0000 0 0

0 0 5.2086 0

0 0 0 0.7914


q̈ +



8.0000 −1.0000 −4.1626 −2.8374

−1.0000 13.0000 −7.5460 −4.4540

−4.1626 −7.5460 14.4830 −2.7744

−2.8374 −4.4540 −2.7744 10.0658


q̇
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+



80.0000 −20.0000 −41.3192 −18.6808

−20.0000 90.0000 −55.9819 −14.0181

−41.3192 −55.9819 97.3011 −0.0000

−18.6808 −14.0181 −0.0000 32.6990


q =



1

0

0

0


u

y =
[

0 1 0 0

]
q̈ (4.29)

which indicates no direct stiffness connection between the third and fourth masses.
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Figure 4.5: Realizable Region for a Four-mass System of a SISO Transfer Accelerance

2. Five-mass Example

In this case, the dimension of the solution space is three, according to Table 3.1.

Assume the force excitation is applied at the first coordinate and the acceleration is

measured at the second one.

The orthogonal transformation Re thus is given by

Re = Rθ1Rθ2Rθ3 (4.30)
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where Rθ1 , Rθ2 and Rθ3 are expressible as

Rθ1 =



1 0 0 0 0

0 1 0 0 0

0 0 cosθ1 −sinθ1 0

0 0 sinθ1 cosθ1 0

0 0 0 0 1



Rθ2 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cosθ2 −sinθ2

0 0 0 sinθ2 cosθ2



Rθ3 =



1 0 0 0 0

0 1 0 0 0

0 0 cosθ3 0 −sinθ3

0 0 0 1 0

0 0 sinθ3 0 cosθ3



The initial second order model of the transfer accelerance is given by



36.0632 0.2743 7.0077 37.1531 −14.0227

0.2743 16.5796 −6.7431 5.5551 2.1107

7.0077 −6.7431 17.1533 16.6964 −13.3775

37.1531 5.5551 16.6964 61.9214 −25.8255

−14.0227 2.1107 −13.3775 −25.8255 17.8591


ẍ +
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97.2937 −57.5426 91.8234 72.4757 −38.5575

−57.5426 62.9875 −56.3684 −51.0698 29.9845

91.8234 −56.3684 92.8620 64.1156 −37.4205

72.4757 −51.0698 64.1156 60.7210 −27.3858

−38.5575 29.9845 −37.4205 −27.3858 34.8577


ẋ +



931.9559 −207.5005 567.4285 768.4827 −618.2834

−207.5005 383.5154 −262.6956 −186.1123 172.2111

567.4285 −262.6956 514.7016 383.3350 −393.4070

768.4827 −186.1123 383.3350 709.9495 −487.2931

−618.2834 172.2111 −393.4070 −487.2931 544.2288


x =



1.9574

−0.2111

0.5512

0.4620

−1.2316


u

y =
[

0.5045 1.1902 −1.0998 −0.3210 1.0556

]
ẍ

(4.31)

which is not in realizable form.

An exhaustive search of transformation space results in Figure 4.6, where realizations

exist in the shaded regions. Here, a uniform angle grid of one degree in each search

direction is used. According to the properties of the orthogonal transformation Re

discussed in Appendix D, any one of the six realizable regions includes all possible

realizations since realizations in other realizable regions can be mapped to those in

this region by permutation matrices. For example, at θ1 = 36.60o, θ2 = 235.98o and

θ3 = 319.82o, a realization with fully populated damping and stiffness matrices is

found as follows



2.0000 0 0 0 0

0 5.0000 0 0 0

0 0 1.9995 0 0

0 0 0 3.9998 0

0 0 0 0 10.0008


q̈ +
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8.5000 −1.0000 −4.9993 −2.0001 −0.5006

−1.0000 13.3000 −7.9989 −4.0002 −3.0009

−4.9993 −7.9989 23.1945 −9.9978 −0.1984

−2.0001 −4.0002 −9.9978 16.1483 −0.1501

−0.5006 −0.3009 −0.1984 −0.1501 1.1500


q̇ +



130.0000 −20.0000 −34.9942 −24.9996 −50.0063

−20.0000 92.0000 −29.9954 −39.9999 −2.0047

−34.9942 −29.9954 89.9780 −14.9956 −9.9928

−24.9996 −39.9999 −14.9956 84.9939 −4.9989

−50.0063 −2.0047 −9.9928 −4.9989 67.0028


q =



1

0

0

0

0


u

y =
[

0 1 0 0 0

]
q̈

(4.32)
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Figure 4.6: Realizable Regions for the Five-Mass Example
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These numerical examples have demonstrated that searching the parameterized space

of the realization transformations can be effective. This technique assumes that an initial

second order model satisfies the necessary conditions appearing at the end of Section

3.1. In contrast, if experimental data are available from machinery, a direct estimation

technique for realizable models can be used, which is described below.

4.2 Direct Estimation of Realizable Models from Experi-

mental Data

Experimental frequency response function (FRF) data can be easily acquired from passive

machinery. Alternatively, in the application of filter design, a desired transfer function is

specified. In either case, it is desired to obtain a mechanical model matching the input-

output data. Under these scenarios, a direct model estimation technique can be used,

resulting in mechanical realizations possessing a preselected model form.

This technique involves three important aspects: selection of candidate realizable mod-

els; choice of appropriate cost functions; and a nonlinear search for unknown parameters

in the realizable models. Once a candidate model form is chosen, defined in either the

time domain or the frequency domain, the key task is to find the unknown parameters,

which have direct relations to the mechanical elements in the model. The cost function

should be defined to minimize the error between the experimental FRF data and the FRF

of the desired model. Starting from initial guesses for unknown parameters, nonlinear

search methods are then applied to estimate these unknown parameters.

4.2.1 Direct Estimation Procedure

As a candidate model form, one can adopt any second order model satisfying all necessary

realization conditions discussed in Chapter 3, any transfer function expandable into a

desired form, or any other model form corresponding to a physical realization.

To facilitate implementation of mechanical emulators, however, simple realizable mod-
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els should be selected whenever possible. In particular, for proportionally damped me-

chanical systems, canonical model realizations such as parallel or serial realizations should

be chosen. Moreover, while damping is nonproportional and light, as discussed in Ap-

pendix B, a parallel realization or a serial realization may be used to approximate the

desired dynamic properties. In this case, it should be noted that damping is not neces-

sarily assumed to be proportional damping, that is, the damping matrix is not a weighted

sum of mass and stiffness matrices per se. For highly damped mechanical systems with

strong damping couplings between modes, as also discussed in Appendix B, parallel model

realizations and serial model realizations cannot be used in general. Otherwise, significant

errors may arise from approximation.

Passive machinery acts as a vibration absorber at its antiresonance frequencies in its

foundation driving-point accelerance, as discussed in Chapter 1. Therefore, a cost function

should ensure matching of amplitudes and frequencies at both resonance and antiresonance

frequencies. Assume all accelerances are put in a column vector form. The cost function

for the j′th accelerance Amj (fi) should consist of two parts, which are the accelerance error

and dynamical mass error. Since these two errors are not necessarily of the same order of

magnitude, the cost function for each accelerance is defined as a weighted summation to

normalize their contributions

Jj = w1j

i=n∑
i=0

∣∣Amj (fi)−Arj (fi)
∣∣2 + w2j

i=n∑
i=0

∣∣∣∣ 1
Amj (fi)

− 1
Arj (fi)

∣∣∣∣2 (4.33)

where the subscript m stands for “machinery”, the subscript r stands for “realization”.

In (4.33), Amj (fi) and Arj (fi) are accelerances of the j′th machinery accelerance data

from measurements and the j′th accelerance in the realization at the frequency point fi,

respectively. The two weighting factors are given by

w1j = 1
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w2j =

i=n∑
i=0

∣∣Amj (fi)
∣∣2

i=n∑
i=0

∣∣∣∣ 1
Amj (fi)

∣∣∣∣2
(4.34)

If one only needs to match the j′th accelerance of a realization with experimental

data, then the above cost function Jj is enough. Otherwise, a total cost function can be

obtained by the following equation to match all accelerances simultaneously,

J =
j=nA∑
j=1

w̃jJj (4.35)

where nA is the number of accelerances and w̃j ’s are weighting factors. These weighting

factors should be chosen so that the contributions from all accelerances are balanced.

The resulting nonlinear optimization problem is solvable by many techniques, such as

those discussed in [77]. In this research, the Nelder-Mead simplex method is adopted since

it is robust for strongly nonlinear problems [78] [73]. To initiate the search, initial values

should be provided for the unknown parameters. Good initial values may be obtained by

comparing the accelerance of the model with initial values to the experimental accelerance.

For a parallel or serial model realization, all initial masses can be assigned based on an

understanding of the passive machinery mass properties. The initial spring constants koi

(i=1, 2, · · ·, n-1) then can be calculated from the following relations

koi = moi(2πfoi)
2 (4.36)

where moi is the i′th oscillator mass and foi is the i′th oscillator antiresonance frequency

obtained from the experimental data.

The dimensionality of this nonlinear estimation depends on the number of unknown

parameters in the realizable model form. For a second order model in parallel or serial

form, given by (2.18) and (2.20), respectively, for a mechanical system with n masses, the

101



dimensionality is 3n−2. In contrast, if fully populated damping and stiffness matrices are

adopted, the dimensionality is n2. As discussed in Appendix B, a parallel model realization

or a serial model realization may be a good approximation to a mechanical system with

light damping. Although a realization with fully populated damping and stiffness matrices

can model a given mechanical system accurately, it can be both difficult and expensive to

implement, especially with a large number of masses. A tradeoff between them is to use

a model with a border diagonal stiffness matrix and a fully populated damping matrix.

In this case, the dimensionality is
3n− 2

2
+

n2

2
, which is the average between the parallel

model and the fully populated model. In so doing, damping is approximated, but this

approximation may be quite accurate.

It often happens that the identified second order model has elements with small values

compared to other elements of the same type. In this case, these elements may be removed,

resulting in a simpler mechanical system without causing much error.

This direct estimation technique will be extensively used in the design of passive me-

chanical emulators in Section 5.1 of Chapter 5 and Section 6.3 of Chapter 6. Two examples

of the approach are presented here.

4.2.2 Direct Estimation Examples

In this subsection, the procedure and performance of the direct model estimation are

demonstrated with two examples, comprised of four and six masses, respectively. In the

first example, a fully populated second order model is used while for the latter, a parallel

model is adopted.

Four-mass Example

For this example, the driving-point accelerance data, shown in Figure 4.7, was collected

from a mechanical system of four lumped masses connected by viscoelastic elements. The

accelerance level in the low frequency range is flat, which indicates a rigid body mode.

In addition, each mode should be associated with a mass. Thus, four masses are needed
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in the realizable model. A fully populated second order model satisfying all realizability

conditions, is chosen as follows



|m1|

|m2|

|m3|

|m4|


ẍ +



i=4∑
i=2

|c1i| −|c12| −|c13| −|c14|

−|c21|
i=4∑

i=1,i6=2

|c2i| −|c23| −|c24|

−|c31| −|c32|
i=4∑

i=1,i6=3

|c3i| −|c34|

−|c41| −|c42| −|c43|
i=4∑

i=1,i6=4

|c4i|


ẋ

+



i=4∑
i=2

|k1i| −|k12| −|k13| −|k14|

−|k21|
i=4∑

i=1,i6=2

|k2i| −|k23| −|k24|

−|k31| −|k32|
i=4∑

i=1,i6=3

|k3i| −|k34|

−|k41| −|k42| −|k43|
i=4∑

i=1,i6=4

|k4i|


x = e1u

y = eT
1 ẍ

(4.37)

where absolute values are used to force the resulting mass, damping and stiffness elements

to be nonnegative.

By initiating the nonlinear search with an initial guess of a parallel model realization,

a mechanical realization is obtained, as depicted in Figure 4.8. As expected, very good

accelerance matching in the range of frequency has been achieved, as illustrated in Figure

4.7.

Six-mass Example

The driving-point accelerance from a machinery test bed is depicted in Figure 4.9. The
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Figure 4.7: Example 1: Driving-point Accelerance Comparison of Experimental Data and
Identified Realizable Model

plot reveals a rigid body mode along with five modes at higher frequencies. Since the modes

exhibit sharp peaks around their resonance and antiresonance frequencies, a parallel model

(2.18) can be used, as discussed in Appendix B. Note that in (2.18), the damping matrix

is not assumed to be a weighted sum of the mass and stiffness matrices. Since the data

below 10 Hz are noisy due to the usable frequency range of the impedance head, the cost

function is defined between 10 Hz and 100 Hz. Using direct estimation, a parallel model,

shown in Figure 4.10, is identified with its masses, dashpots and spring constants listed

in Table 4.1. Magnitude comparison of the experimental and parallel model accelerances

in Figure 4.9 indicates that good agreement has been achieved except for some amplitude

discrepancy between 50 Hz and 70 Hz. Good agreement is also obtained in the phase

plots, which are not included here.

In this subsection, two examples demonstrating direct estimation from experimental
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c =0.1452

c =0.2143

Figure 4.8: Example 1: Identified Mechanical Model

Table 4.1: Parameters in the Parallel Model Estimated by Direct Estimation
Number of Oscillator i mi, kg ci, N · s/m ki, N/m fi =

√
ki/mi,Hz

0 1.876
1 0.100 0.164 3161 28.30
2 0.0815 0.1621 4034 35.41
3 0.1586 0.173 8500 36.84
4 0.0351 0.0503 2815 45.08
5 0.0894 0.121 8787 49.89

data have been presented. This technique can also be used to estimate damping associated

with a mode, as are discussed in Subsection 5.1.5. More complicated applications of this

technique are addressed in Chapter 6, where a passive mechanical emulator is designed

and implemented.
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Figure 4.9: Example 2: Driving-point Accelerance of Experimental Data and the Identified
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Figure 4.10: Example 2: The Identified Mechanical Model
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Chapter 5

Mechanical Emulator Design

Methodology

Technology feeds on itself. Technology makes more technology possible.

Alvin Toffler (1928- )

Given a model in realizable form, this chapter presents a systematic design method-

ology for implementing this model as a passive or active emulator. From the view of the

attachment points where machinery is mounted to its supporting structure, machinery

and its mechanical emulator must have the same dynamics, that is, they must have the

same rigid body modes and frequency responses within the frequency range of interest.

To this end, there are two design goals for a passive emulator: (1) matching mass and

moment of inertia between machinery and its passive mechanical emulator; (2) matching

their attachment point accelerances in the frequency range of interest. For active mechan-

ical emulator design, a third design goal is to reproduce the attachment point acceleration

of the operating machinery.
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5.1 Passive Emulator Design

In this chapter, it is assumed that the passive mechanical emulator undergoes rigid-body

motions in the horizontal, vertical and planar rotational coordinate directions, which

should match those of the passive machinery as well as possible. In addition, the mo-

tion in the horizontal direction has many modes in the frequency range of interest. The

design methodology presented here can be extended to the design of more complicated

mechanical emulators, for example, those with many modes both in the horizontal and

vertical directions.

5.1.1 Modular Design

While all undamped or proportionally damped mechanical systems can be converted to

parallel model realizations in the form of (2.18), for nonproportionally damped mechanical

systems, this is not the case. While realizations with border diagonal stiffness matrices

(parallel springs) can always be obtained, the associated damping matrices may be fully

populated. For ease of implementation, however, the realizable model should be made as

simple as possible. Therefore, in the the passive mechanical emulator design discussed

in this chapter, a border diagonal stiffness matrix is always used, and damping is ap-

proximated by minimizing the error between a model with the desired damping matrix

and experimental data of the passive machinery. The guideline for choice of the desired

damping matrix form is that it should be simple whenever possible. In the simplest case

for implementation, a border diagonal matrix is also used, resulting in a parallel model

realization. If the matching between the realizable model and experimental data is not as

good as expected, more damping connections between oscillators may be required.

Following this approach, a passive emulator model is shown in Figure 5.1. It consists

of a base frame, a round mounting rod, two identical vertical bars, an additional mass

and a desired number of oscillators (eight in the figure). The base frame is fabricated

from metal plates such that its modes lie above the frequency range of interest. The

108



round mounting rod stiffens the base frame and is used to mount oscillators to the frame

by fixtures which are not shown in the figure. The additional mass is used to satisfy

mass matching requirements and is connected to the base frame by two identical vertical

bars with appropriately designed dimensions. Each oscillator is composed of block masses

clamped on a spring steel plate with damping layers on its surface. Depending on the

damping connections in the identified realizable model, damping elements may be applied

between two oscillators, a situation not shown in Figure 5.1. The modular mechanical

components for the oscillators and base frame were designed and fabricated as described

in [71].

Additional

Mass m
a

.

Two Identical

Vertical Bars

Base Frame

Oscillator

Mass mo  j

Spring Steel

Plate with

Damping Layers

.Ce

Round Rod

la

.

.Cv

Cb

A
Attachment Point

lb

lv

le

w

t

Cross Section

of Vertical Bars

.

lo  j

Ca

Figure 5.1: Side View of the Passive Mechanical Emulator
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Since the mass of the base frame is far greater than that of an oscillator, the oscillator

can be approximated as a block mass at the tip of a cantilever beam. An oscillator with

the desired fixed-base resonance frequency can be obtained by adjusting the distance from

the mounting fixture to the oscillator mass. Given the desired frequency of the oscillator,

the length of the beam can be estimated either by a continuous model or by a lumped-

parameter model, as described in Appendix F.

The substructure comprised of the two identical vertical bars connecting the additional

mass and the base frame can be considered a rigid body if the fundamental mode of

this substructure is outside the frequency range of interest. Due to the mass constraint,

however, the two vertical bars are not very stiff and so the mode associated with bending

of these bars may often fall within the frequency range of interest. In this situation, the

two identical vertical bars should be designed so that this structural mode can match that

passive machinery mode with apparent mass closest to the apparent mass of this structural

mode.

The major parameters of the passive mechanical emulator are defined in Table 5.1.

5.1.2 Mass Matching Requirements

For matching of mass and moment of inertia, the passive machinery and its passive emula-

tor can be idealized as the simple model depicted in Figure 5.2, where A is the attachment

point of the passive machinery, m is the total mass, C is the center of mass and IC is the

moment of inertia with respect to the center of mass C.

To match rigid-body motions in the vertical coordinate direction, the passive machinery

and its emulator should have the same total mass, mm = me, where the subscripts m and

e stand for “machinery” and “emulator”, respectively. Moreover, to match the rigid body

rotational mode, the passive machinery and its emulator must possess the same moment

of inertia with respect to the attachment point A, ImA = IeA, where the second subscript

stands for “attachment point”.

In the horizontal coordinate direction, however, the apparent mass viewed at the at-
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Table 5.1: Notation for the parameters in the Passive Mechanical Emulator
Item Definition Determined by
mt Total mass of the passive mechanical emulator Given passive machinery
ma Additional mass Equation (5.13)
mb Total mass of the base frame, round rod and

mounting fixtures
Less than the apparent
base mass

moj j′th oscillator mass Estimation in Subsection
5.1.4

mv Mass of a vertical bar Total and base masses
ICb

Moment of inertia of the base frame, round rod and
mounting fixtures with respect to its own center of
mass Cb

Equation (5.16)

ICv Moment of inertia of the identical vertical bars
with respect to its own center of mass Cv

ICv = 1/12mvL
2
v, where

Lv is the length of the ver-
tical bars

ICoj
Moment of inertia of the j′th oscillator with re-
spect to its center of mass Coj

Oscillator dimensions

ICa Moment of inertia of the additional mass ma with
respect to its center of mass Ca

Additional mass dimen-
sions

le Distance from the attachment point of machinery
A to that of the passive mechanical emulator Ce

Theorem 5.1

la Distance from the additional mass center Ca to the
mass center of the passive mechanical emulator Ce

Equation (5.14)

lb Distance from the mass center of the base frame,
round rod and mounting fixtures Cb to the mass
center of the passive mechanical emulator Ce

Mass center of mb

lv Distance from the mass center of vertical bars Cv

to the mass center of the passive mechanical emu-
lator Ce

Distance between Cv and
Ce

loj Length of the spring steel plate in the j′th oscilla-
tor

Required spring constant
in the model (5.17)

E Complex Young’s modulus of the two identical ver-
tical bars with damping treatments, E = E0(1 +
jη), where E0 is the elastic modulus which is a real
number

Material (aluminum here)

η Effective loss factor of the two identical vertical
bars with damping treatments

Estimation in Subsection
5.1.4

nd Number of polymeric free damping layers or con-
strained damping layers

η and (5.30) and (5.31)

w Width of the two identical vertical bars Estimation in Subsection
5.1.4

t Thickness of the two identical vertical bars Total and base masses
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A
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m, IC

Figure 5.2: Emulator Undergoing Motions in the Horizontal, Vertical and Rotational
Coordinates

tachment point is dependent on the total mass and on the moment of inertia IA with

respect to the attachment point A. Suppose that a horizontal force F is applied at the

attachment point and the horizontal displacement x is measured at the same point. The

equations of motion are given by the following

IC θ̈ = FLC

F = mẍC

x = xC + LCθ

(5.1)

where xC is the horizontal displacement of the mass center C and θ is the angular dis-

placement away from the vertical coordinate.

By manipulation of (5.1), the apparent mass in the horizontal coordinate direction,

defined by the force and acceleration at the same point in the same coordinate direction,

can be obtained as follows

mapp(s) =
F (s)
a(s)

=
F (s)

s2x(s)
=

m

1 +
mL2

C

IC

(5.2)

where app stands for “apparent mass”. According to this equation, it can be concluded
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that the apparent mass mapp in the horizontal coordinate direction is less than the actual

total mass m.

In order to ensure that the passive machinery and its emulator have the same motion

in the horizontal coordinate under the same excitation, they must have the same apparent

mass in the horizontal coordinate direction,

mmapp = meapp or
mm

1 +
mmL2

mC

ImC

=
me

1 +
meL

2
eC

IeC

(5.3)

where LmC is the distance from the attachment point of the passive machinery to its

mass center and LeC is the distance from the attachment point of the passive mechanical

emulator to its mass center.

In summary, the mass matching requirements between the passive machinery and its

passive emulator can be interpreted by the following three equations

mm = me

mm

1 +
mmL2

mC

ImC

=
me

1 +
meL

2
eC

IeC

ImA = IeA

(5.4)

These requirements can be reduced to the following theorem.

Theorem 5.1. For the passive machinery and its emulator to have the same dynamic

properties in the horizontal, vertical and planar rotational coordinates, they must possess

the same total mass, the same location of the mass center with respect to the attachment

point and the same moment of inertia with respect to the center of mass, that is,

mm = me

LmC = LeC

ImC = IeC

(5.5)
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Proof. From the first and second equations in (5.4),

L2
mC

ImC
=

L2
eC

IeC
or ImC =

L2
mC

L2
eC

IeC (5.6)

By the parallel axis theorem, the third equation in (5.4) can be rewritten as

ImC + mmL2
mC = IeC + meL

2
eC (5.7)

Substituting (5.6) into (5.7), yields

L2
mC

L2
eC

IeC + mmL2
mC = IeC + meL

2
eC (5.8)

which can be rewritten in the following form with consideration of mm = me,

mm(L2
mC − L2

eC) = (1−
L2

mC

L2
eC

)IeC (5.9)

This can be further simplified as

(L2
mC − L2

eC)(mmL2
eC + IeC) = 0 (5.10)

Since the second term in the above equation does not vanish,

LmC = LeC (5.11)

Substituting (5.11) into (5.6),

ImC = IeC (5.12)

Theorem 5.1 can be easily extended to more complicated passive emulator design.
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By Theorem 5.1, the additional mass ma can be determined by

ma = mt −mb −
j=n∑
j=1

moj (5.13)

where n is the number of oscillators in the passive mechanical emulator. For the current

emulator model in Figure 5.1, the number of the oscillators is n = 8.

According to the mass center matching, the distance of the additional mass from the

mass center of the passive mechanical emulator can be determined by

la =
mblb + mvlv +

∑j=n
j=1 moj loj

ma
, (5.14)

where these parameters have been defined in Table 5.1.

Finally, Theorem 5.1 requires matching of moment of inertia with respect to the at-

tachment point A. The mass distribution of the passive mechanical emulator should be

designed to satisfy the the following constraint

IeC = ImC (5.15)

Here, the moment of inertia of the passive mechanical emulator is given by

IeC = (ICb + mbl
2
b ) + (ICv + mvl

2
v) +

j=n∑
j=1

(ICoj + moj l
2
oj

) + (ICa + mal
2
a), (5.16)

where all parameters have been defined in Table 5.1.

In practice, (5.15) can only be approximately satisfied since it is difficult to take into

consideration all of the geometric details of the building components. Usually, only the

dimensions of the components with large moments of inertia need to be designed carefully.
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5.1.3 Modeling the Passive Mechanical Emulator Model

When using the model configuration in Figure 5.1 to implement a passive mechanical

emulator, one must obtain a dynamic model describing its dynamics in the horizontal

coordinate direction. Using a lumped-parameter model or a continuous model depends on

whether the bending mode arising from the flexibility of the two vertical bars falls within

the frequency range of interest.

Since the passive emulator model is composed of modular units, each unit can be

modeled separately. Subsequently, the total model of the passive mechanical emulator can

be obtained by the substructure synthesis method [79]. The advantage of this modeling

method is that the models for the modular units are reusable.

Define the structure after removing all oscillators in Figure 5.1 as the base structure of

the passive mechanical emulator. The attachment points of all oscillators approximately

have the same acceleration in the horizontal coordinate direction as the base frame of

the passive mechanical emulator. Therefore, the total driving-point accelerance can be

obtained by

At(ω) =
1

1
Ab(ω)

+
1

Ao(ω)

(5.17)

where ω is the frequency in radians per second, At(ω) is the total driving-point accelerance

of the passive mechanical emulator, Ab(ω) is the driving-point accelerance of the base

structure and Ao(ω) is the driving-point accelerance of all oscillators.

The driving-point accelerance of the base structure Ab(ω) can be chosen in two ways.

In the first, it is selected as the apparent mass of the base structure if the first mode of the

base structure has a frequency higher than the upper frequency limit. Under this scenario,

the base structure acts like a rigid body without any bending in the two identical vertical

bars. The driving-point accelerance of the base structure is given by

Ab(ω) = meapp =
me

1 +
meL

2
eC

IeC

(5.18)
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where the notations have been defined in Subsection 5.1.2. In this case, with the current

configuration in Figure 5.1, the model (5.17) in the frequency domain is equivalent to the

following second order model in the time domain with m0 = mb

Meẍ + Ceẋ + Kex = Feu

y = Heẍ (5.19)

which matrices are defined as follows

Me = diag(
[

m0 mo1 mo2 · · · mo8

]
)

Ce =



∑i=8
i=1 coi −co1 −co2 · · · −co8

−co1 co1 · · ·

−co2 co2 · · ·
...

. . .

−co8 co8



Ke =



∑i=8
i=1 koi −ko1 −ko2 · · · −ko8

−ko1 ko1 · · ·

−ko2 ko2 · · ·
...

. . .

−ko8 ko8


H = F T =

[
1 0 0 · · · 0

]

where m0 is the apparent base mass, e stands for “emulator”, the positive parameters moi ,

coi and koi (i = 1, 2, · · · , 8) are masses, dashpots and springs of oscillators, respectively.

Here, the damping matrix Ce is assumed as a border diagonal matrix, but in general it

should be a fully dense realizable matrix.

The second approach to selecting the driving-point accelerance of the base structure
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Ab(ω) is obtained by modeling the base structure using the continuous Euler-Bernouli

beam model, as discussed in Appendix E. This approach applies when the first structural

mode of the base structure in Figure 5.1 falls within the frequency range of interest.

Under this scenario, the structural mode of the base structure should be used to match

the machinery mode that has the closest mass to the structural mode. This oscillator

should be removed from the passive mechanical emulator.

All oscillators in Figure 5.1 share the same acceleration in the horizontal coordinate

direction. For a border diagonal damping matrix, the driving-point accelerance of all

oscillators Ao(ω) in (5.17) can also be obtained in two ways. In the first, each oscillator

is modeled according to the continuous Euler-Bernoulli beam model. Subsequently, the

total model for all oscillators is obtained by the substructure synthesis method, given by

Ao(ω) =
1∑i=n

i=1

1
Aoi(ω)

, (5.20)

where Aoi(ω) is the driving-point accelerance of the i′th oscillator, discussed in Appendix

F.

Alternatively, the distributed elements of each oscillator can be approximately modeled

by lumped-parameter elements, resulting in the accelerance Ao(ω) given by

Ao(ω) =
1∑i=n

i=1

1
Aoi(ω)

(5.21)

where the driving-point accelerance for the i′th oscillator Aoi is given by

Aoi(ω) =
mois

2 + cois + koi

moi(cois + koi)
(5.22)

From (5.17) and (5.21), it can be shown that the anti-resonance frequencies in the

driving-point accelerance of the emulator are located at the fixed-base resonance frequen-

cies of the oscillators. Their amplitudes strongly depend on damping. This phenomenon
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was called “Shock Spectrum Dip” by Cunniff and O’Hara [80], [81]. These fixed-base

undamped resonance frequencies can be determined by

foi =
1
2π

√
koi

moi

(5.23)

The loss factors of the oscillators can be obtained by

ηoi = 2ζoi =
coi√

koimoi

, (5.24)

where ηoi is the damping ratio of the i′th oscillator.

For a realizable damping matrix in general form, the total model of all oscillators Ao(ω)

can be obtained by

Ao(ω) = −Hω2(−Mω2 + Cωj + K)F (5.25)

5.1.4 Estimation of Unknown Parameters in the Passive Emulator

The unknown parameters in the emulator model (5.17) can be obtained by the direct

estimation technique discussed in Section 4.2. The cost function for estimation is defined

by

J = w1

i=n∑
i=0

|At(ωi)−Am(ωi)|2 + w2

i=n∑
i=0

∣∣∣∣ 1
At(ωi)

− 1
Am(ωi)

∣∣∣∣2 (5.26)

where Am(ωi) is the driving-point accelerance of the passive machinery measured at the

frequency ωi radians per second. Two weighting factors are picked as

w1 = 1 (5.27)

w2 =
S1

S2

where S1 and S2 are defined by

S1 =
i=n∑
i=0

|Am(ωi)|2 (5.28)
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S2 =
i=n∑
i=0

∣∣∣∣ 1
Am(ωi)

∣∣∣∣2 (5.29)

After solving for all unknown parameters of the passive emulator, the model in Figure

5.1 can be assembled. Its performance should be evaluated experimentally. These two

issues will be covered when the implementation of a representative mechanical emulator

is described in Chapter 6.

5.1.5 Emulator Damping

The desired amount of damping can be achieved through surface damping treatments,

which are designed to reduce noise or vibration by dissipating vibrational energy into other

forms of energy, mainly heat [82]. Surface damping treatments, including both free-layer

damping and constrained-layer damping, are adopted since they are easy to implement.

There have been many books and articles on damping as well as the modeling and testing

of damping treatments. Examples include the monologues [83], [84] and articles [85], [86],

[87], [88], [89], [90].

Usually, it is difficult to precisely model damping since it depends on many factors

such as the material properties, temperature, geometric configuration, and the underlying

structure. Thus, semi-analytical equations in polynomial form are fit to experimental

data according to the least squares method. Both free-layer damping treatments and

constrained damping treatments are addressed below.

1. Free-layer Damping Treatments

Free-layer damping treatments consist of layers of damping materials, often poly-

meric materials, applied to the surface of the structure, as depicted in Figure 5.3.

When the structure undergoes deformation, the layers of damping material expe-

rience cyclic extensional deformation and so dissipate the mechanical energy. This

kind of damping treatment can usually only achieve small loss factors since the

extensional deformation is limited.
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With free-layer damping treatments, the specified amount of damping can be ob-

tained without significant change in structural stiffness because the damping layers

are very soft in comparison. The analytical model between the effective loss factor

and the number of free damping layers is called the Oberst equation and is discussed

in Appendix G. Experimental measurements are carried out to verify whether the

Oberst equation is applicable in the particular free-layer damping treatment mate-

rial. The modal loss factors are calculated from the measured data associated with

different numbers of damping layers and a polynomial is fit to the modal loss factors,

resulting in the relation between the number of damping layers and the modal loss

factor.

E, I

F

L b

C

M, IC

xO

Spring Steel

Damping Layer

Figure 5.3: Oscillator Model with Free-layer Damping Treatment

In this research, 3MTM viscoelastic damping polymer 112P05 manufactured by

3MTM Industrial Business Electronics Markets Materials Division, is adopted for

the free-layer damping treatment. It has a thickness of 0.005 inch for a single layer

and a working temperature range from 0 to 65 Celsius degrees [91].

Since it is impossible to obtain the loss factor directly, indirect measurements are

used here. In the experiments, an oscillator made from a known mass and a fixed-

length spring steel beam with a particular number of 112P05 damping layers is

mounted on the round rod of the base frame, which is hung by soft strings, and then

the driving-point accelerance at the foundation attachment point is measured.
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Figure 5.4: Effect of Free Layer Damping Treatments

For damping layer thicknesses between 0 to 30 layers, the driving-point accelerances

are measured by slow sinusoidal sweeps, as shown in Figure 5.4. The damping layers

do not significantly shift resonance and antiresonance frequencies even with many

damping layers The only significant difference before and after damping treatments

of thirty 112P05 damping layers is that the magnitudes around resonance and an-

tiresonance frequencies are changed.

With the direct estimation technique discussed in Section 4.2, a model of a lumped-

parameter oscillator with a mass mo, dashpot co and spring ko connected to a base

mass mb, as depicted in Figure F.2, is used to fit each set of experimental data

associated with a particular number of damping layers. The modal loss factors η

then can be estimated by (5.24), as listed in Table 5.2. For the free layer damping

treatment, as shown in Figure 5.5, the Oberst equation has very good matching with

the measured data as long as the modal loss factor of the beam before treatments is
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incorporated in the Oberst equation. The parameters of the damping layer used in

the Oberst equation are obtained from the nomograph provided by 3MTM Corpora-

tion [91], which shows the relation of the viscoelastic damping polymers versus both

the loss factor and storage modulus (the real part of the complex Young’s modulus)

for ranges of frequencies and temperatures.

Table 5.2: The Modal Loss Factors of the Free-layer Damping Treatments Calculated
from the Measured Data (modal loss factor of the steel beam before treatments is η0 =
2.24× 10−3, nd is the number of free damping layers, η is modal loss factor of the spring
steel beam after treatments.)

nd η nd η nd η

1 2.26 11 2.52 21 3.84
2 2.26 12 2.61 22 4.00
3 2.29 13 2.77 23 4.20
4 2.31 14 2.85 24 4.39
5 2.29 15 2.99 25 4.38
6 2.33 16 3.05 26 4.68
7 2.37 17 3.22 27 4.98
8 2.40 18 3.39 28 5.16
9 2.42 19 3.60 29 5.42
10 2.48 20 3.76 30 5.61

Since the loss factor is a rational function of the number of damping layers, as

discussed in Appendix G, it is expected that a polynomial can be used to fit the

experimental data. With the least squares method, the polynomial is obtained as

follows

η = 10−3 × (0.004305n2 − 0.01672n + 2.2627) (5.30)

With a desired loss factor, the number of free damping layers can be determined by

(5.30).

2. Constrained-layer Damping Treatments

To obtain a large amount of damping, constrained-layer damping treatments should

be used, as shown in Figure 5.6. A polymeric damping layer is constrained between
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Figure 5.5: Comparison Between the Measured Data, Prediction of the Oberst Equation
and the Polynomial of (5.30)

the spring steel beam and the constraining aluminum layer. If one constrained-layer

damping layer is not enough to obtain the desired loss factor, then multiple layers

can be applied. In contrast to the free-layer damping treatments, these treatments

dissipate vibration energy mainly through shear deformations of the damping ma-

terials [82]. Modeling of the constrained-layer damping treatments, especially with

multiple layers, is quite tedious. Therefore, a polynomial relating the loss factors to

the number of layers is obtained based on experimental measurements.

In this research, DynaplateTM , a light-weight aluminum constrained layer damper,

is used, manufactured by Dynamic Control of North America, Inc. It consists of a

thin polymeric damping layer and a constraining aluminum layer. Its specifications

can be found in [92]. For this material, the indirect measurement method used in the
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free-layer damping treatments is also used. Since the constrained damping layer is

relatively stiff, the applied damping layers significantly stiffen the structure. The res-

onance and antiresonance frequencies increase as shown in Figure 5.7, as the number

of layers n changes from 0 to 10. In addition, the magnitudes at the resonances and

antiresonances change dramatically with increasing numbers of constrained damping

layers.

Table 5.3: Modal Loss Factor of the Constrained-layer Damping Treatments Calculated
from Measured Data (loss factor of the steel beam before treatments η0 = 2.97× 10−3, nd

is number of constrained damping layers, η is modal loss factor of the spring steel beam
after treatments.)

nd η nd η

1 1.13 6 3.10
2 1.58 7 3.45
3 2.03 8 3.63
4 2.40 9 4.41
5 2.78 10 4.22

With the same technique used in the free-layer damping treatments, the modal loss

factors are calculated from the measured data of driving-point accelerances with

different numbers of constrained damping layers, as listed in Table 5.3. A third order

polynomial is fit to the modal loss factors by the least-squares method, resulting in

the relation between the number of constrained damping layers and the modal loss

factor, given by

η = 10−3 × (0.0203n3 − 0.4723n2 + 6.6957n + 3.8567) (5.31)

In summary, several observations can be made on the use of damping treatments:

(1) For free-layer damping, the farther away the damping layer is from the neutral

axis, the more extensional deformation it undergoes. Thus the increment of the modal

loss factor per damping layer increases as the number of damping layers increases. For
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Figure 5.6: Oscillator Model with Constrained-layer Damping Treatments

the constrained-layer damping treatment, however, the increment of the modal loss factor

per damping layer decreases as the number of damping layers increases when both ends

of the damping layers are not clamped.

(2) By combining the free-layer and constrained-layer damping treatments, any desired

amount of loss factor may be obtained quite accurately.

(3) Damping properties of polymeric layers depend on temperature, excitation fre-

quency, dimensions and the configuration. Placing damping materials in the location

where they will undergo the largest extensional deformation, maximizes their contribu-

tion to modal loss factor. For example, spacers can be used as shown in Figures 5.9 to

increase damping.

5.1.6 Design and Implementation Steps for Passive Emulators

The design and implementation of passive mechanical emulators, as discussed in this

section, are summarized below:

1. Passive Mechanical Emulators with a Single Coordinate Direction

Step 1: Obtain the realizable second order model (3.13) by either one of the two

techniques discussed in Chapter 4;

Step 2: Interpret the realizable mass, damping and stiffness matrices as a network

of mechanical elements;
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Figure 5.7: Effect of Constrained Layer Damping on Frequency and Amplitude

Step 3: Realize the desired mass, damping and stiffness by modular mechanical

elements, including block masses, polymeric damping layers and elastic beams, re-

spectively. The number of damping layers is determined by (5.30) and (5.31). After

properly choosing the cross section, the length of each elastic beam can be deter-

mined by any nonlinear zero finding technique, as discussed in Appendix F.

2. Passive Mechanical Emulators with Multiple Coordinate Directions

Depending on whether motions in different coordinate directions are coupled or not,

passive mechanical emulators can be categorized as two types. For the first type,

there are no couplings of dynamic properties between different coordinate directions.

Therefore, the apparent total and base masses in each coordinate direction are equal

to the actual total and base masses, respectively. In this case, the steps for design

and implementation of single coordinate direction emulators are simply repeated for
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Figure 5.8: Relation of Loss Factor and Number of Constrained Damping Layers

each coordinate direction.

When the coordinate directions are coupled, however, the apparent total and base

masses in each coordinate direction may be different from the actual total and base

masses. In this case, the apparent total and base masses should be preserved as

well as the actual total and base masses. The design and implementation steps are

summarized as follows:

Step 1: Match the rigid body modes between passive machinery and its mechanical

emulator according to Theorem 5.1 such that the apparent static total and base

masses are preserved. After a base frame in Figure 5.1 is selected, the parameters

mb and lb are determined and the additional mass ma and the location of its mass

center la are then determined by (5.13) and (5.14).
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Figure 5.9: Oscillator Model with Free-layer Damping Treatments and a Spacer

Step 2: Obtain realizable models, by either of the two techniques in Chapter 4 for all

the coordinate directions of interest. The total and base masses are not the actual

ones, but apparent ones, respectively, which have been preserved in the first step.

Step 3: Check whether the structural mode due to the bending of vertical bars

connecting the base frame and additional mass falls within the frequency range of

interest or not. If it is higher than the upper frequency limit, no further work is

necessary in this step. Otherwise, one has to use a continuous model or lumped

and continuous hybrid model obtained from (5.17) in Step 2 and go back to Step 2.

Under this scenario, to reduce computational time, the previously obtained oscillator

parameters are fixed during model estimation in Step 2. Usually, there are two

aspects to be determined, the dimensions of the cross section and the effective loss

factor of the vertical bars.

Step 4: Implement the realizable models with mechanical elements. The geometric

dimensions of mechanical elements should be designed so that (5.15) can be satisfied.

5.2 Active Emulator Design

During operation of machinery, many factors, such as unbalanced rotating elements, pro-

duce vibrations at the attachment points. These vibrations are mainly determined by the

amplitudes and directions of the internal exciting forces, the transmission paths from those
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forces to the attachment points and the dynamic interaction between active machinery and

its mounting structures.

This attachment point vibration is reproduced by the addition of a shaker, referred to

as an emulating shaker, to the passive emulator. The shaker’s mounting location should

be properly selected and its input voltage must be appropriately controlled. This research

only focuses on reproducing translational motions of active machinery. Usually, at least

one shaker should be used to reproduce motion in each coordinate direction. By using

two separately mounted emulating shakers, rotational motions may be reproduced.

The advantage of using a shaker under closed-loop control is that a single shaker

can reproduce an arbitrary acceleration profile. The active emulation problem is a type

of command following control. A controller for the emulating shaker is needed so that

the active emulator can reproduce the attachment point acceleration of the operating

machinery. A feedback controller has to be used since it is difficult to accurately model

the interaction between the emulating shaker and the passive mechanical emulator.

One way to implement feedback control is to compare the actual accelerations at the

foundation attachment points of active machinery and that of its active emulator. If

there is no additional external excitation on the active machinery, this is a good choice

to design a feedback controller. Otherwise, the actual attachment point acceleration is

affected not only by machinery operation but also by external excitation. In this scenario,

it is misleading to compare the desired attachment point acceleration and the actual

attachment point since the latter also includes the influence of external excitation.

In this research, a control approach is adopted in which the emulating shaker is com-

manded to reproduce the force at its mounting location in (1.2) that corresponds to the

attachment point acceleration that occurs when there is no external loading. As given in

(1.3), this approach provides for total attachment point acceleration to be a linear combi-

nation of the effects of internal and external forcing. This approach assumes that external

excitation does not have much effect on the equivalent internal forcing of operating ma-

chinery. The goal of the controller for the emulating shaker is that the actual force this
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shaker generates follows the desired force as closely as possible.

Design of an active mechanical emulator involves three aspects: selection of the emu-

lating shaker, selection of its mounting location and design of a controller for the shaker.

These are discussed below.

5.2.1 Selection of the Emulating Shaker and its Mounting Location

The basic guidelines for selecting an emulating shaker are that its output force within the

range of frequency of interest must exceed the desired force and that its mass should not

exceed the mass of the element on which it mounts since the same amount of mass as the

emulating shaker should be removed from that element. For instance, in Figure 1.3, the

mass m′
3 satisfies

m′
3 = m3 −mshaker (5.32)

where mshaker is the emulating shaker mass.

Theoretically, the emulating shaker can be mounted anywhere. Because of the mass

constraint 0 < mshaker < m3, however, it is usually a good choice to mount the emulating

shaker on the base frame of the passive mechanical emulator, as shown in Figure 6.8.

Moreover, another advantage of this mounting location is that it usually requires shaker

force of smaller magnitude.

After the mounting location is chosen, the transfer accelerance from the measured

acceleration to the mounting location can be readily measured. The force which the

shaker needs to generate is determined by the following equation

F (s) =
a(s)

Atf (s)
(5.33)

where a(s) is the attachment point acceleration of the active machinery and Atf (s) is the

transfer accelerance Atf (s) from the location where the attachment point acceleration is

measured to the mounting location of the emulating shaker. If the mounting location of
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the emulating shaker is close to the attachment point, the transfer accelerance may be

approximately chosen as the reciprocal of the apparent total mass of the passive mechanical

emulator. An emulating shaker can be selected according to the estimated required force.

Based on the measured transfer accelerance Atf (s) and the acceleration data a(s) at

the attachment point of the active machinery, the force that the emulating shaker needs

to generate can be computed from (5.33). If the actual force matches the capability of

the selected emulating shaker, no further work is necessary. Otherwise, another emulating

shaker must be selected.

5.2.2 Feedforward/feedback Controller for the Emulating Shaker

In this research, a PD controller is used in the feedback path together with a feedforward

controller. Both make use of a dynamic model, V (s)/F (s), between shaker voltage and

force applied to the emulator. This controller is shown in Figure 5.10. The gain Kf is

determined by the sensitivity of the force gauge and the gain set in the signal conditioner.

Desired

Force

V(s)/F(s)

V(s)/F(s)PD Emulating

Shaker

Passive

Emulator

Kf

Force

Gauge
+

-

+
+

Figure 5.10: Feedforward/feedback Controller for the Emulating Shaker in Active Emula-
tion

It is usually difficult to accurately obtain the transfer function V (s)/F (s) by an analyt-

ical method since the force which a shaker generates strongly depends on how the shaker

and the mechanical emulator interact. This transfer function can, however, be readily

obtained experimentally by model identification from measured data by a slow sinusoidal

sweep.
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In the feedforward/feedback controller, the desired force is determined by (5.33). If

the acceleration is composed of several dominant harmonics, the force profile is likely to

be dominated by these frequencies. In this case, the amplitude and phase angle of each

frequency component in the force profile can be evaluated using (5.33). Otherwise, the

time-domain force profile is obtained from the inverse Fourier transformation of F (s).
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Chapter 6

Experimental Passive and Active

Emulation

Tell me, I forget. Show me, I remember. Involve me, I understand.

Xun Zi (About 310-237 B.C.), Ancient Chinese Philosopher

This chapter presents an experimental validation of the design procedures presented

in the previous chapter. Rather than test a single machine, a machinery test bed was

constructed which could represents systems with a variety of modes and variable internal

forcing. The design of this test bed is first described followed by a description of the data

acquisition system. A modular emulator test bed is then presented. Implementation of

the passive and active emulator design rules is then illustrated along with an evaluation

of the experimental results.

6.1 Machinery Test Bed

According to Navy machinery data, there are about 10 modes of interest in typical ma-

chinery. Modes from strong and direct couplings between machinery components and the

machinery attachment points dominate in the frequency response data while those from
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weak couplings do not have much contribution to the total response. The former are

termed “major” modes and the latter “minor” modes.

An ideal machinery test bed should possess both major modes and minor modes and

their couplings. A test bed thus designed is depicted in Figure 6.1, comprised of two

aluminum frames connected by two steel plates. A total of eleven oscillators are mounted

on the top and bottom frames. Each oscillator is comprised of block masses clamped

on both sides of a piece of spring steel plate, as shown in Figure 6.2. Since steel has

a very low loss factor, polymeric damping materials are attached to the steel plates to

match the damping property of machinery modes. The attachment point assumed to

mount machinery on its supporting structure is located at the bottom right corner of

the machinery test bed. The design goal is that machinery and its emulator possess, with

respect to the attachment point, the same dynamic properties in the horizontal and vertical

translational coordinate directions as well as the planar rotational coordinate direction.

Two DC motors with eccentric masses fixed on their shafts are mounted on the ma-

chinery test bed, as shown in Figure 6.2, one on the top frame and another on the bottom

frame. Their rotation speeds are tuned by control of supply voltages via potentiometers.

In the experiments, it is noted that these speeds experience drift around the desired val-

ues due to such factors as shaft friction, resistance change in the potentiometers due to

temperature change. It is possible to reduce this speed drift by using a feedback controller

with an encoder.

The fixed-base resonance frequencies of eleven oscillators can be selected to lie between

10 Hz and 80 Hz. In addition, the two motors when they are turned off contribute two

modes between 60 Hz and 70 Hz, which come from coupling between the mounting fixtures

and motor masses. The machinery test bed also possesses a structural mode arising from

the bending of the two steel plates connecting the top and bottom aluminum frames. Its

first fundamental frequency is 25.3 Hz. Therefore, there are 14 modes in total between 10

Hz and 80 Hz.

Its major dimension parameters are: length l=22 inches, width w=12 inches and depth
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h=4 inches. The total mass of the machinery test bed is mt = 6.120 kg.
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Figure 6.1: Side View of the Machinery Test Bed

6.2 Accelerance Acquisition System

The schematic accelerance measurement system, illustrated in Figure 6.3, consists of a

power amplifier, a shaker, transducers (including a force gauge and an accelerometer),

machinery under test, a signal conditioning amplifier and a dynamic signal analyzer. The

signal conditioning amplifier can convert the high impedance charge signals from the

impedance head to the voltage signals which are fed to the dynamic signal analyzer.

The amplitudes of those signals can also be amplified by setting appropriate gains. The

dynamic signal analyzer then can record and process the experimental data. Meanwhile,
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Figure 6.2: Oscillators and Unbalanced Motor (back view)

it also performs as a signal generator which provides the desired voltage to the shaker

through the power amplifier.

To achieve the desired force levels, a WilcoxonTM electromagnetic shaker F3 with

an impedance head Z602WA is used [93], together with power amplifier PA7F . There

are several types of input force widely used in dynamic testing, such as hammer impact,

stepped-sine, slow sinusoidal sweep and random force input. In order to improve the signal-

to-noise ratio (SNR) and obtain high quality data in a frequency range of interest, a slow

sinusoidal sweep is chosen in this study so that it is possible to obtain a good transfer

function model by model identification. Any nonlinearity effects can be minimized by

restricting the input voltage amplitude of the sweep.

The attachment point accelerance data should be measured either on a vibration table

or when the passive machinery is unconstrained, that is, suspended. The latter method

is used here and the machinery test bed is hung by soft strings to approximate free

boundary conditions as best as possible. Under this situation, the rigid body modes have

frequencies very close to 0 Hz. By maximizing the lengths of soft strings the frequency of
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Figure 6.3: Accelerance Data Acquisition Schematic

any pendulum modes can be made as low as possible.

By swinging the machinery, the pendulum mode was found to have a frequency of

0.5 Hz. In addition, the shaker exerts a moment on machinery because of the off-center

excitation, resulting in its planar rotation with respect to the hanging points on the

machinery. The frequency of this rotational mode was found to be 3.5 Hz.

By applying a slow sinusoidal sweep in force, the driving-point accelerance of the

passive machinery in the horizontal coordinate direction is obtained, as shown in Figure

6.4. Due to the restriction of the usable frequency range of the impedance head, the

accelerance data under 10 Hz is quite noisy. The mode at 0.5 Hz labeled P is due to the

pendulum effect and the mode at 3.5 Hz labeled R is due to the planar rotation of the

machinery. In emulator design, one does not need to consider the pendulum mode at 0.5

Hz. To facilitate comparison, however, the machinery and emulator should have the same

pendulum mode at 0.5 Hz. This requires the same hanging configuration for both.

The frequency range of interest in this design example is between 0 Hz and 80 Hz.

Within this range, excluding the pendulum mode at 0.5 Hz, there are eight major modes

and seven minor ones. Six of these seven major modes, labeled Bi (i = 1, 2, · · · , 6) in

Figure 6.4, are contributed by the six oscillators mounted on the bottom aluminum frame.

One suspension mode at 3.5 Hz labeled R is due to the planar rotation. The last major

mode labeled S arises from the bending of two steel plates connecting two aluminum
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frames. Five of seven minor modes, labeled Ti (i = 1, 2, · · · , 5), come from the oscillators

mounted on the top aluminum frame. The remaining two modes, labeled M1 and M2, are

contributed from the two motor masses which act as oscillators when they interact with

the fixtures through which they are mounted. By stiffening the mounting fixtures, these

two motors can be moved out of the upper limit of frequency, 80 Hz.

As seen in Figure 6.4, the contributions from major modes in the frequency response

are significant while those from minor modes are negligible. This is also true in the impulse

response of passive machinery while experiencing an impulse excitation at the attachment

point. Therefore, in the passive emulator design, only the major modes are included while

the minor modes are discarded. Design of a passive mechanical emulator is described

below.

6.3 Passive Mechanical Emulator

The design of a passive mechanical emulator involves three steps: identification of a real-

izable model from the accelerance data already obtained in Section 6.2; implementation of

this model with mechanical elements; and experimental comparison between the passive

machinery and its passive emulator.

6.3.1 Realizable Model Identification

Recall that there are seven major modes in the frequency range of interest after all rigid

body modes are excluded, which are matched according to mass matching requirements.

Moreover, one minor mode with its label T1, which is the most significant minor mode, is

intentionally included to show that if necessary, minor modes can also be realized. Con-

sequently, the passive mechanical emulator should possess nine modes in total. Since the

driving-point accelerance, as shown in Figure 6.4, approaches a constant at low frequen-

cies and also at high frequencies, a total of nine lumped masses are needed to design this

emulator.
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Figure 6.4: Driving-point Accelerance of Passive Machinery at its Attachment Point in
the Horizontal Coordinate Direction

To obtain a realizable model from experimental driving-point accelerance, one should

use the technique of direct estimation developed in Chapter 4. To ease passive mechanical

emulator design and fabrication, a parallel model realization is chosen as given by (5.19).

To avoid the pendulum mode and rotational mode effects, the cost function (5.26) is

defined in the frequency range 10 Hz to 80 Hz. The masses, dashpots and springs are

identified by the nonlinear model estimation technique discussed in Section 4.2, as listed

in Table 6.1. These oscillators are ordered from the lowest fixed-base resonance frequency

to the highest. Here, the fixed-base undamped resonance frequencies are calculated by

(5.23) and the loss factors are determined by (5.24). The lengths of spring steel plates of

the oscillators are determined by the method discussed in Appendix F. The attachment
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point driving-point accelerance of the identified realizable second order model matches

very well with that of the machinery, as depicted in Figure 6.5.

Table 6.1: Parameters of the Identified Realizable Second Order Model for the Passive
Mechanical Emulator

Apparent base mass m0= 2.3343kg
Number of
Oscillators

Mass
(kg)

Dashpot
(N ·s/m)

Spring
(×103

N/m)

Undamped Fixed-
base Resonance
Frequency (Hz)

Loss
Factor η
(×0.01)

Length
of Steel
Plates
(mm)

1 0.1016 0.0342 1.3321 18.2282 0.2939 47.5625
2 0.0559 0.0470 0.9832 21.1128 0.6338 53.8906
3 0.0470 0.0404 0.8602 21.5288 0.6355 56.8750
4 0.4420 0.8747 9.7547 23.6429 1.3322 18.2969
5 0.1115 0.1604 2.8132 25.2791 0.9057 34.1875
6 0.0962 0.1248 3.4265 30.0385 0.6874 31.1797
7 0.1512 0.5553 6.5083 33.0179 1.7703 22.6719
8 0.0959 0.3595 5.4320 37.8870 1.5747 24.8437

It can be found, however, that the resulting emulator structural mode from interaction

between the base frame and the additional mass falls within the frequency range of in-

terest. A continuous/lumped-parameter hybrid realizable model is therefore employed by

substituting the driving-point accelerance of the base structure of the passive mechanical

emulator Abase(ω) into (5.17) with (E.10). In this case, the structural mode of the passive

mechanical emulator can be matched with one of the modes of the passive machinery.

There are two ways to do this matching. First, the structural mode of the passive

mechanical emulator is used to match any one of the passive machinery modes. Alterna-

tively, this structural mode is matched with the passive machinery mode possessing the

closest mass. It would be expected that the second approach can perform better.

Using the first approach, the structural mode of the passive mechanical emulator is

required to match the highest frequency major mode B6 of the passive machinery in

Figure 6.4. The eighth oscillator in Table 6.1 is thus removed and replaced by the base

structure of the passive mechanical emulator. The total model of the passive mechanical
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emulator is obtained according to (5.17) with the driving-point accelerance of the base

structure given by (E.10). Since other modes have been matched very well, to reduce

computational time, the width and effective loss factor of the two identical aluminum

vertical bars in Figure 5.1 can be identified with the specified thickness of the vertical

bars t = 0.25 inches and the parameters of other oscillators fixed according to Table 6.1.

The identified width is 0.590 inches and the effective loss factor of the two vertical bars is

0.0191. The comparison between the passive machinery and the identified continuous and

lumped-parameter realizable model is carried out in Figure 6.6. Good agreement between

the passive machinery and its hybrid realizable model is achieved again. In the frequency

range between 45 Hz to 80 Hz, the amplitude of the identified realizable model is slightly

higher than that of the passive machinery.

To obtain a better realizable model incorporating the structural mode of the passive

mechanical emulator, the second matching approach was also implemented. By simple

estimation, the structural mode of the passive mechanical emulator has a mass closest

to the fifth oscillator in Table 6.1, which comes from the structural mode of the passive

machinery S in Figure 6.4. The fifth oscillator in Table 6.1 is thus removed and replaced

by the base structure of the passive mechanical emulator. Following the same procedure as

used in the first approach, the width of the two identical aluminum vertical bars in Figure

5.1 is identified as 0.451 inches and the identified effective loss factor of the two vertical

bars is 0.00923, with the previously specified thickness of the vertical bars t = 0.25 inches

and the parameters of other oscillators fixed according to Table 6.1. Comparison between

the passive machinery and the newly identified continuous/lumped-parameter realizable

model is carried out in Figure 6.6. Here, the structural mode of the passive mechanical

emulator S2 has been matched with the structural mode of the passive machinery S. Very

good agreement between the passive machinery and its hybrid realizable model is achieved

and the magnitude difference between 45 Hz and 80 Hz is significantly improved.
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Figure 6.5: Comparison between the Passive Machinery and its Realizable Second Order
Model

6.3.2 Design and Implementation of Passive Emulators

Two passive emulators for the machinery model of Figure 6.1, were designed and imple-

mented according to the two identified hybrid realizable models in Figure 6.6 and Figure

6.7, respectively. The emulators, one of which is shown in Figure 6.6, are physical realiza-

tions of the passive emulator model in Figure 5.1. To make the effects of the pendulum

mode and planar rotational mode comparable between the passive machinery and its em-

ulator, the same hanging configuration during testing should be used. To this end, two

horizontal aluminum bars used only for hanging testings, as shown in Figure 6.8. In the

actual application of passive emulation, these two horizontal bars are not necessary. In
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Figure 6.6: Comparison between the Passive Machinery and its Continuous and Lumped-
parameter Hybrid Realizable Model: Realizable Model I

addition, the emulating shaker is turned off.

The identified hybrid realizable models, obtained in Subsection 6.3.1, can be used to

solve for the parameters associated with the base structure. The base structure includes

the base frame, the round rod, the two identical vertical bars, the additional mass and the

mounting fixtures in Figure 5.1. The base frame plus the round rod made of steel, seven

mounting fixtures made of aluminum and the emulating shaker have a total mass mb =

1.931 kg. Therefore, the additional mass ma = 2.918 kg, which is calculated according

to (5.13). The location of the mass center of the additional mass then is determined

as la = 8.81 inches by using (5.14). The distribution of mass in the passive mechanical

emulator is determined according to (5.15). Only the dimensions of the components with
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Figure 6.7: Comparison between the Passive Machinery and its Continuous and Lumped-
parameter Hybrid Realizable Model: Realizable Model II.

large moments of inertia are carefully designed.

Due to the idealization during modeling of the emulator’s structural mode in Subsec-

tion 5.1.3, the two identical vertical bars made of aluminum should not be milled to their

desired width for the first run, but to a slightly greater value. Subsequently, one needs to

carefully remove thin layers of material until the structural mode S2 of the passive emula-

tor matches with the structural mode of the passive machinery S. A number of polymeric

free damping layers or constrained damping layers should be applied, determined accord-

ing to the desired loss factor and relations in (5.30) and (5.31) on the side surfaces of the

vertical bars.

For the first emulator, the average actual width of the two identical vertical bars
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Figure 6.8: Example Passive Mechanical Emulator

is 0.604 inches. Thus, compared to the desired width t = 0.590 inches as obtained in

Subsection 6.3.1, the error between the actual width and the desired one is only 2.37%.

For the second passive mechanical emulator, the average actual width of the two iden-

tical vertical bars is 0.449 inches. Thus, compared to the desired width t = 0.451 inches

as obtained in Subsection 6.3.1, the error between the actual width and the desired one is

only −0.42%, where the negative sign means that the actual width is less than the desired

one.

6.3.3 Performance Evaluation of the Passive Mechanical Emulators

The driving-point accelerance of the first passive emulator is compared to that of the

passive machinery, as shown in Figure 6.9. The machinery and emulator do not match

well, especially at modes B5 and B6. This discrepancy mainly arises from the matching
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between the structural mode of the passive mechanical emulator and the highest frequency

major mode of the passive machinery despite their relatively large difference in mass.

The second emulator whose structural mode is matched with that of the passive ma-

chinery reproduces the driving-point accelerance well in the frequency range 0 Hz to 80

Hz, with some discrepancy in the small region around the modes B3 and S, as depicted in

Figure 6.10. The amplitudes around these two modes are lower than desired, which may

be attributed to two factors. The first factor is that damping in the emulator may exceed

the desired value. The extra damping may arise due to the many screw joints between

components. To reduce damping, connections between elements may be carried out by

welding. Another factor may be an asymmetrical effect due to fabrication error in the two

vertical bars connecting the additional mass and the aluminum base frame.

A passive mechanical emulator having a good agreement with its corresponding passive

machinery provides the basis for active emulation. An active mechanical emulator was

designed and implemented for the second passive emulator model with attachment point

driving-point accelerance shown in Figure 6.10.

6.4 Design of an Active Mechanical Emulator

In active emulator design, a passive emulator is modified by adding an emulating shaker

to reproduce the acceleration at the machinery attachment points due to machinery op-

eration. This design step involves several important issues, including selection of the

emulating shaker, selection of its mounting location, identification of the transfer function

of the voltage applied to the shaker and the force that it generates, and finally design and

implementation of the feedforward/feedback controller for the emulating shaker.

6.4.1 Selection of the Emulating Shaker and its Mounting Location

The emulating shaker and its mounting location is selected according to the principles

discussed in Subsection 5.2.1. The mounting location of the shaker is selected on the
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Figure 6.9: Driving-point Accelerance Comparison between Passive Machinery and its
Passive Mechanical Emulator: Passive Mechanical Emulator I

aluminum base frame, as shown in Figure 6.8. A WilcoxonTM Model F5B/Z11 shaker, a

reaction-type permanent magnet electromagnetic shaker, is used to reproduce the operat-

ing effect of the machinery. Its operating frequency ranges from 10 Hz to 10,000 Hz. The

impedance head Z11 includes an accelerometer with charge sensitivity of 0.36 pC/(m/s2)

and a force gage with charge sensitivity of 56 pC/N . The total weight of this shaker with

the impedance head is 0.170 kg. The relation of the output force versus frequency and

other detailed specifications can be found in [94].
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Figure 6.10: Driving-point Accelerance Comparison between Passive Machinery and its
Passive Emulator: Passive Mechanical Emulator II

6.4.2 Transfer Accelerance from the Emulating Shaker to the Attach-

ment Point

The transfer accelerance Atf (s) from the emulating shaker location to the attachment

point was measured over a frequency range 1 Hz to 80 Hz, as shown in Figure 6.11,

containing the two frequencies generated during machinery operation.

When reproducing the acceleration at the attachment point of active machinery, the

values of the transfer accelerance Atf should be read out at the two machinery frequencies.

These values are used to calculate the desired forces by (5.33).
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Figure 6.11: The Transfer Accelerance from the Acceleration Pickup Location to the
Mounting Location of the Emulating Shaker

6.4.3 Identification of the Transfer Function V (s)/F (s)

Recall that a feedforward/feedback controller is used to drive the emulating shaker, dis-

cussed in Subsection 5.2.2. After mounting the emulating shaker at the chosen location,

transfer function V (s)/F (s) can be obtained by a slow sinusoidal sweep, as shown in Figure

6.12. Due to the limit of the usable frequency range of the impedance head WilcoxonTM

Z11 (10 Hz to 10 kHz), the data below 10 Hz are quite noisy and not reliable. Therefore,

during model identification, the cost function is defined with data from 10 Hz to 80 Hz.

By looking at its slopes in the low and high frequency ranges, it is enough to use a
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second order transfer function to capture its major dynamics, which is defined as follows

V (s)
F (s)

= − a2s
2 + a1s + a0

s2 + 2a4s + (a2
4 + a2

3)
(6.1)

Here, the coefficients ai (i = 0, 1, 2, 3, 4) in the numerator and denominator are forced

to be positive so that the transfer function to be obtained is a stable and minimum phase

one. The pair of poles are −a4 + a3j and −a4 − a3j, where j =
√
−1.

In order to match the transfer function with the experimental data between 10 Hz and
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80 Hz, the cost function is defined as the following weighted sum

J =

∑i=n
i=0

∣∣∣∣ 1
ye(fi)

∣∣∣∣2∑i=n
i=0 |ye(fi)|2

i=n∑
i=0

|ye(fi)− ym(fi)|2 +
i=n∑
i=0

∣∣∣∣ 1
ye(fi)

− 1
ym(fi)

∣∣∣∣2 (6.2)

where ye(fi) and ym(fi) are the experimental data points and the frequency responses of

the model (6.1) at the frequencies fi’s, and n is the number of data points.

With the above cost function, the transfer function (6.1) is identified as

V (s)
F (s)

= − 2.007s2 + 226.5s + 86670
s2 + 1.3153× 10−9s + 355.00

(6.3)

In the above model, the pair of conjugate complex poles of V (s)/F (s) are approxi-

mately 18.8413j and −18.8413j, corresponding to a mode at 3 Hz. The frequency compo-

nent corresponding to this pair of poles has a large amplitude and persists in the response

of the transfer function due to a sinusoidal force input. Since it is undesirable to drive

the emulating shaker with a large voltage, this frequency component should be attenuated

quickly by introducing more damping. The cost function (6.2) however can not introduce

more damping to the 3 Hz mode in that this mode locates outside of the frequency range

of interest, In the identified model (6.3), damping thus is added by manually increasing

the coefficient a4. Since damping often has a localized effect around the modes in an os-

cillatory system, increasing damping does not cause much change in the frequency range

between 10 Hz and 80 Hz even though the amplitude around this mode is significantly

reduced. The frequency of the mode corresponding to the pair of poles does not shift.

From the transfer function (6.3), the following transfer function is obtained by choosing

the coefficient a4 = 10.

V (s)
F (s)

= −2.007s2 + 226.5s + 86670
s2 + 20s + 455

(6.4)

Compared to the experimental data, as depicted in Figure 6.12, very good agreement
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is achieved in the frequency range between 10 Hz and 80 Hz except around 25 Hz. This

transfer function (6.4) is used in the feedforward/feedback controller for the emulating

shaker discussed below.

6.4.4 Implementation of the Feedforward/feedback Controller

Implementation of the schematic for the feedforward/feedback controller in Figure 5.10

includes the software and hardware, shown in Figure 6.13. The former includes MAT-

LAB/SIMULINK r©, Real Time Workshop, WINCON 3.1, Visual Studio C++ 6.0, Real

Time Extension RTX TM 5.0 and Windows 2000. The latter includes a MultiQ-3 TM

16-bit AD/DA board (analog-to-digital converters and digital-to-analog converters), the

impedance head Z11 and the emulating shaker F5B.

The 16-bit AD/DA board MultiQ-3
TM

with 8 input channels and 8 output channels is

used to acquire force and acceleration data, and control the emulating shaker [95]. Since

real-time data acquisition and control is required, Real-time Extension RTX
TM

5.0 is used

to add real-time capabilities to Window 2000 [96]. The controller model of the feedfor-

ward/feedback controller is implemented in MATLAB/SIMULINK r© [97]. This model is

converted to real-time C code by MATLAB/Real-Time Workshop r©, which is a software

package for generating C code for models from SIMULINK r©. This C code is compiled

and linked by Visual C++ and downloaded to the WINCON 3.1 client. WINCON 3.1,

comprised of a client and a server, is a real time Windows 2000 based application software

that runs code generated by SIMULINK r© using Real Time Workshop [98]. Finally, the

real-time controller code can be run on the WINCON 3.1 client and real time control of

the emulating shaker is achieved.

The force generated by the emulating shaker is measured by the first input AD channel

and the acceleration at the attachment point of the active mechanical emulator by the

second input AD channel. The desired force and the measured force are compared and

their error is fed to the feedforward/feedback controller. The corrected voltage to the

emulating shaker obtained by the controller is output to the emulating shaker through
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one DA output channel.
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Figure 6.13: Implementation of the Feedforward/feedback Controller for Active Emulation

6.4.5 Performance Evaluation of the Active Emulator

Three experiments were carried out to verify whether the active emulator can generate

the same acceleration at the attachment point as does the active machinery. In the first

experiment, the emulator and machinery were compared when they only act as vibration

sources. The second experiment compares the emulator and machinery when an impulsive

force is also applied at the machinery attachment point. The last one compares the

emulator and machinery when a force input composed of 5 sinusoids is applied at the

attachment point.

In most cases, machinery operates at a frequency higher than the first several lowest

fundamental frequencies. When it is started, however, its operating frequency has to pass

by these frequencies. Two unbalanced motors thus are chosen to operate at two different

frequencies with one between the modes of the machinery and another higher than the

modes of the machinery. As discussed in Subsection 6.1, the rotation speeds of the two DC

motors have some drift around the desired values. In each experiment below, therefore,

the actual rotation speeds must be obtained from the data.

Experiment 1: Active Machinery as a Vibration Source

This experiment is carried out to verify whether the active emulator can reproduce

the attachment point acceleration of active machinery. In this experiment, no external
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excitations are applied.

Two unbalanced motors on the machinery test bed are operated at frequencies of 37.70

Hz and 44.38 Hz, respectively, and the attachment point acceleration data is collected.

The magnitudes of forces which the emulating shaker needs to generate are calculated

according to (5.33) in Table 6.2. Here the magnitudes of the transfer accelerance Atf (s)

are read out at the two motor frequencies from Figure 6.11. When machinery is running

in steady state, the acceleration data at its attachment point can be measured. The

magnitudes of the frequency components of active machinery then can be obtained by

Fast Fourier Transformation (FFT) of the measured acceleration data.

The SIMULINK r© model for the feedforward/feedback controller and the data acquisi-

tion of the attachment point acceleration is shown in Figure H.1 of Appendix H. The time

domain profile comparison of the attachment point accelerations between the machinery

and its emulator is shown in Figure 6.14. By FFT, the frequency domain comparison is

shown in Figure 6.15. The actual magnitudes at 37.70 Hz and 44.38 Hz have 0.0341 m/s2

and 0.0393 m/s2, respectively. Compared to their desired values, their relative errors are

−4.75% and −3.2%, where the negative sign means the actual value is less than the de-

sired. According to these comparisons, it can be concluded that the active emulator can

generate approximately the same kind of acceleration at the attachment point as active

machinery.

Table 6.2: Calculation of Desired Force for the Emulating Shaker, Experiment 1
Frequency f (Hz) 37.70 44.38
Magnitude of Transfer Accelerance Atf (s)(kg−1) 0.0572 0.378
Magnitude of Attachment Point Acceleration a(s) (m/s2) 0.0358 0.0406
Force Magnitude F (s) (N) 0.625 0.108

Experiment 2: Active Machinery with an Impulsive Force Applied at the

Attachment Point
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Figure 6.14: Comparison between the Active Machinery and Active Emulator

This test is adopted to see how well the active emulator performs when a transient

input force is applied at the attachment point. The advantage of using an impulsive force

is that it can simultaneously excite all modes within the frequency range of interest.

To produce this force, a WilcoxonTM shaker Model F3/Z602WA is mounted at the

attachment point of the active machinery. The attachment point acceleration of the active

machinery is measured while the shaker is driven by a periodic impulse voltage with an

amplitude of 0.1 Volts, a period of 10 seconds and an impulse width of 0.1 second.

Due to drift in the machinery motors, the forces that the emulating shaker should

generate are recalculated in Table 6.3. Here, the magnitudes of the transfer accelerance

Atf (s) are read out at the two frequencies of the unbalanced motors in Figure 6.11. The

magnitudes of the frequency components in the machinery attachment point acceleration

are similarly obtained. The external excitation shaker F3/Z602WA is mounted at the

attachment point of the active emulator and driven by the same impulse voltage.
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Figure 6.15: Comparison between Active Machinery and Active Emulator, Linear Scale

Table 6.3: Calculation of the Desired Force for the Emulating Shaker, Experiment 2
Frequency f (Hz) 37.69 43.63
Magnitude of Transfer Accelerance Atf (s) (kg−1) 0.0618 0.440
Magnitude of Attachment Point Acceleration a(s) (m/s2) 0.0217 0.042
Force Magnitude F (s) (N) 0.352 0.0955

The SIMULINK r© model for the feedforward/feedback controller and data acquisition

of the attachment point acceleration is shown in Figure H.2 of Appendix H. Comparisons

between the attachment point accelerations of the machinery and emulator are shown in

Figure 6.16 and Figure 6.18. In order to see clearly how the active mechanical emulator

performs, a comparison of the impulse response just before and after the impulse excitation

is shown in Figure 6.17. The actual magnitudes at 37.69 Hz and 43.63 Hz are 0.0210 m/s2

and 0.0416 m/s2, respectively, with their relative errors of −3.23% and −0.95%. Good

agreement between the machinery and its emulator is achieved except for some magnitude
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difference between 24 Hz and 26.5 Hz, and between 34.5 Hz and 36.5 Hz. This difference

is attributed to the magnitude difference between the passive machinery and its passive

mechanical emulator, as shown in Figure 6.10. If a passive mechanical emulator possessing

better agreement with the machinery can be obtained, the magnitude difference in Figure

6.18 can be improved.
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Figure 6.16: Time Domain Comparison between the Active Machinery and Active Emu-
lator, Experiment 2

Experiment 3: Active Machinery with Periodic External Forcing

As discussed in Chapter 1, machinery and its supporting structure exchange vibration

energy at their interface. This test is adopted to verify how the active emulator performs

when the active machinery also is experiencing an external input force composed of several

harmonic frequencies. In this test, five harmonic frequencies were selected. The magni-

tudes and frequencies of these five sinusoids are listed in Table 6.4. The same WilcoxonTM
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Figure 6.17: Time Domain Close-up Comparison between the Active Machinery and Active
Emulator, Experiment 2

shaker Model F3/Z602WA as used in the second test was mounted at the attachment

point of the active machinery and driven by the sum of these voltages. The attachment

point acceleration data was then collected.

For active emulation, the magnitudes of forces that the emulating shaker needs to

generate are determined in Table 6.5. Here the magnitudes of the transfer accelerance

Table 6.4: Magnitudes and Frequencies of Five Sinusoids, Experiment 3
Frequency (Hz) 20 28 32 40 50
Magnitude (Volts) 0.0037 0.0075 0.0025 0.005 0.0063

Atf (s) are read out at the machinery operating frequencies in Figure 6.11. The magnitudes

of the two frequency components in the attachment point acceleration of active machinery

are obtained by FFT.

The SIMULINK r© model for the feedforward/feedback controller and the data ac-
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Figure 6.18: Frequency Domain Comparison between the Active Machinery and Active
Emulator, Experiment 2

quisition for the attachment point acceleration is shown in Figure H.3 of Appendix H.

The acceleration data at the attachment point of the active emulator is collected while

the same F3 shaker is mounted on the active emulator and excited by the same voltage

as used in collecting machinery acceleration data. Comparisons between the attachment

point accelerations of active machinery and its active mechanical emulator are shown in

Figure 6.19 and Figure 6.20. The actual magnitudes at 37.88 Hz and 44.25 Hz are 0.0352

m/s2 and 0.0179 m/s2, respectively, yielding relative errors of 6.67% and 1.13%. The

magnitude comparison between the active machinery and its active emulator at the five

excitation frequencies appears in Table 6.6, where the negative sign means that the for-

mer is greater than the latter. The magnitude errors associated with these frequencies can

mainly be attributed to the driving-point accelerance error between the passive machinery

and the passive mechanical emulator in Figure 6.10.

160



According to these comparisons, one can also conclude that the agreement between

active machinery and its active emulator is very good in the frequency range of interest.

Table 6.5: Calculation of Desired Force for the Emulating Shaker, Experiment 3
Frequency f (Hz) 37.88 44.25
Magnitude of Transfer Accelerance Atf (s) (kg−1) 0.0485 0.382
Magnitude of Attachment Point Acceleration a(s) (m/s2) 0.0330 0.0177
Force magnitude F (s) (N) 0.680 0.0465
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Figure 6.19: Time Domain Comparison of Active Machinery and Active Emulator, Ex-
periment 3
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Table 6.6: Acceleration Magnitude for the Active Machinery and its Active Emulator at
the Five Excitation Frequencies, Experiment 3

Frequency (Hz) 20 28 32 40 50
Machinery Acceleration Mag-
nitude (m/s2)

2.81×10−3 0.0347 0.0164 0.385 0.0854

Emulator Acceleration Magni-
tude (m/s2)

2.66×10−3 0.0316 0.0148 0.381 0.0926

Relative Acceleration Error −5.34% −8.93% −9.76% −1.04% 8.43%
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Figure 6.20: Frequency Domain Comparison of the Active Machinery and Active Emula-
tor, Experiment 3
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Chapter 7

Conclusions

The future cannot be predicted, but futures can be invented. It is our ability

to invent the future which gives us hope and makes us who we are.

Dennis Gabor (1900-1979), Nobel Prize Winner in Physics, 1971

This dissertation has developed a mechanical realization theory for designing elec-

tromechanical dynamic systems possessing specified input-output properties. Although

this research was initially motivated by machinery emulation, this theory can also be ap-

plied to the design of electromechanical filters and the design of vibration absorbers. A

two-step realization process has been developed to obtain passive mechanical systems in

the first step and to modify them into active ones in the subsequent step by incorporating

active elements like shakers under closed loop control. With particular application to ma-

chinery emulation, the former are designed to emulate machinery when it is not operating,

and the latter are used to reproduce the machinery motions at its foundation attachment

points due to its operation. This dissertation distinguishes itself from prior work in the

following aspects:

1. Multiple foundation attachment points are considered.

2. Many modes are considered for each coordinate direction.
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3. Multiple coordinate directions can be accommodated.

4. Damping, both structural damping and general viscous damping, is incorporated in

design and implementation.

5. Dynamics of interaction between the active elements and mechanical emulators are

accounted for in active emulation.

The major contributions of this dissertation work are summarized as follows:

1. Two techniques have been developed to obtain realizable models for the design of

passive mechanical systems with the specified input-output dynamic properties.

(a) The first technique involves searching for realizable models in the parameterized

space of congruent coordinate transformations, each of which is related to a

specific second order model. Each congruent coordinate transformation has

been decomposed as a product of four components so that all components can

be found in sequential order. The first component is used to mass normalize

the given second order model. The second component, which is an orthogonal

matrix, is applied to align the input and output influence vectors (or matrices)

with the specified vector forms. QR factorization has been used to obtain

this component. The third component, which is also an orthogonal matrix,

has been parameterized by a finite set of free parameters, so that realizable

models can be achieved by searching in this parameterized space. Under special

circumstances, this component can be obtained by well known algorithms in

matrix computation. Finally, the last component is obtained by solving the

null space vector of the damping and stiffness matrices and scaling this null

space vector properly.

(b) The second technique involves estimating realizable models, which can include

both distributed and lumped mechanical elements, directly from experimental

machinery data. This technique is based on an idea of optimization design.
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To achieve good agreement at both resonance and antiresonance frequencies, a

cost function was defined as a weighted sum of the error between the machinery

accelerance experimental data and the corresponding accelerance of the speci-

fied model, and the error between the machinery dynamic mass experimental

data and the corresponding dynamic mass of the specified model.

2. A design methodology for passive and active mechanical emulators has been devel-

oped.

(a) For the design of passive mechanical emulators, two design goals are satisfied,

including matching of mass and moment of inertia between machinery and

its passive mechanical emulator, and accelerance matching within a frequency

range of interest. To meet these goals, a modular passive mechanical emulator

configuration has been designed, based on a parallel stiffness realization. For

emulating lightly damped machinery, this model has good performance without

adding damping couplings between oscillators. For emulating highly damped

machinery with strong damping coupling between modes, damping couplings

between oscillators can be easily added.

(b) Active mechanical emulators have been designed to reproduce the desired level

of vibration at the foundation attachment points associated with machinery

operation by adding active elements to passive emulators.

A feedforward/feedback controller following the desired force has been designed

and implemented with MATLAB/SIMULINK r©. The dynamics between in-

teraction of the emulating shaker and the passive mechanical emulator has

been incorporated in the controller to overcome the shortcoming of a pure PD

controller for mechanical systems with many modes.

3. Experimental evaluation of these techniques and design methodology has been suc-

cessfully carried out through the design of a passive/active mechanical emulator for
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a machinery test bed, which undergoes planar motion and has one attachment point.

The implemented passive mechanical emulator has the following features:

(a) In the vertical coordinate direction, it has the same total mass as the machinery.

(b) In the rotational coordinate direction, it possesses the same moment of inertia

with respect to its attachment point.

(c) In the horizontal coordinate direction, it matches the apparent mass associated

with the rigid body mode as well as the accelerance within the frequency range

of interest.

The active mechanical emulator has been evaluated under a variety of testing con-

ditions and good agreement has been achieved for all cases. Both numerical and

experimental results have demonstrated that the techniques for both passive and

active emulation are effective.

4. A comprehensive software design toolbox based on MATLABTM for passive and

active mechanical emulators has been developed.

There are several future directions for this dissertation work as stated briefly below:

1. Design and implementation of MIMO mechanical emulators for machinery with mul-

tiple attachment points and multiple coordinate directions.

2. Applications of this dissertation work in the design of electromechanical filters and

vibration absorbers.

3. Applications of the idea of active mechanical emulators in active vibration control

for structures.
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Appendix A

State Space Realizations

This appendix presents three well known state space models with useful properties.

1. Modal Realization

ẋm = Amxm + Bmu

y = Cmxm + Dmu (A.1)

where Am = diag(

 σ1 ω1

−ω1 σ1

 ,

 σ2 ω2

−ω2 σ2

 , ...,

 σn ωn

−ωn σn

), ωi’s are damped

frequencies and n is the number of modes.

2. McMillan Normal Form Realization [10]

ẋm = Amxm + Bmu

y = Cmxm + Dmu (A.2)

where

Am = diag(

 0 1

−ω2
n1 −2ζ1ωn1

 ,

 0 1

−ω2
n2 −2ζ2ωn2

 , ...,

 0 1

−ω2
nn −2ζnωnn

) and

ζi’s are modal damping ratios.
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3. Balanced Realization [11]

A state space model

ẋb = Axb + Bu

y = Cxb + Du (A.3)

is a balanced realization if A is asymptotically stable and the following two Lyapunov

equations hold

AΣ + ΣAT + BBT = 0

AT Σ + ΣA + CT C = 0 (A.4)

where Σ =



σ1

σ2

. . .

σn


is both the controllability and the observability

gramian. Here, Hankel singular values of the transfer function, σi, are ordered in

nondecreasing order, i.e., σ1 > σ2 > · · · > σn, and σi is the index of controllability

and observability of a state variable. If σi is greater than σj , this means the i′th

state variable is more controllable and observable than the j′th state variable. The

contribution of i′th state variable to the output is larger than that of j′th state

variable. Balanced model reduction that is based on this balanced realization is

carried out by removing states associated with small Hankel singular values [36].
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Appendix B

Approximation of

Nonproportionally Damped

Mechanical Systems: An Example

In this appendix, an example is presented for which approximation by proportional damp-

ing introduces significant error. This result is typical for heavily damped systems. The

example, shown in Figure B.1, is given by

Mẍ + Cẋ + Kx = Fu

y = Hẍ (B.1)

where the mass, damping and stiffness matrices are given by

M =



1.0000 0 0 0

0 0.2500 0 0

0 0 0.1800 0

0 0 0 0.3000
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C =



1.6000 −0.2400 −0.8000 −0.5600

−0.2400 1.2400 −1.0000 0

−0.8000 −1.0000 1.8000 0

−0.5600 0 0 0.5600



K =



16000 −2400 −8000 −5600

−2400 2400 0 0

−8000 0 8000 0

−5600 0 0 5600


F = HT =

[
1 0 0 0

]T

(B.2)

F

x
m =10

m =0.251

m =0.182

m =0.33

c =0.82
k =80002

c =0.241 k =24001 c =0.563 k =56003

c =1.04

Figure B.1: Nonproportionally Damped Mechanical System

If the dashpot connecting masses m1 and m2 is removed, resulting in the approximate

model in Figure B.2, the new damping matrix is proportional to the stiffness matrix, given

by

Ca = 0.0001K (B.3)

The frequency responses of the two models are compared in Figure B.3, showing that

the approximate model has large errors around the modes of the oscillators associated with

masses m1 and m2, labeled O1 and O2. It also introduces some error around the mode

of the third oscillator from which no dashpot was removed. This example shows that

approximation of vibratory mechanical systems by proportionally damped ones causes

significant error, especially for highly damped mechanical systems if dashpots associated
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with nonproportional damping are removed. In contrast, the error due to approximation

may be modest for mechanical systems without strong damping coupling between modes,

as shown in Figure B.4, when c4 is changed to 0.1N · s/m in Figure B.1.

F

x
m =10

m =0.251

m =0.182

m =0.33

c =0.82
k =80002

c =0.241 k =24001 c =0.563 k =56003

Figure B.2: Approximation of a Nonproportionally Damped Mechanical System by a
Proportionally Damped One.

171



0 10 20 30 40 50 60 70 80

−30

−20

−10

0

10

20

30

Frequency, Hz

D
riv

in
g−

po
in

t A
cc

el
er

an
ce

 (u
ni

t: 
kg

−1
), 

dB
(0

dB
=1

kg
−1

)

Original Model
Approximate Model

O
1
 

O
3
 

O
2
 

Figure B.3: Approximation of a Nonparallel Model by a Parallel Model: Strong Damping
Coupling between Modes.
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Figure B.4: Approximation of a Nonparallel Model by a Parallel Model: Weak Damping
Coupling between Modes.
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Appendix C

QR Factorization

This appendix defines QR factorization (or decomposition) and then applies it to a matrix

with orthogonal columns.

Theorem 1. (QR Factorization)[67]

If A ∈ Rn×m and n ≥ m, there is an orthogonal matrix Q ∈ Rn×n and an upper triangular

matrix R ∈ Rn×m such that A = QR.

A detailed description of QR factorization can be found in [67].

The following theorem applies QR factorization to a matrix with orthogonal columns,

such as arises from the MIMO input and output influence matrices.

Theorem 2. If Fz =
[

fz1 fz2 · · · fzm

]
∈ Rn×m, where fzi (i = 1, 2, · · · ,m) are the

column vectors which are perpendicular to each other, that is, fT
zi

fzj = 0 for i 6= j, then

its QR factorization has the following form

Fz = QR (C.1)

where

R =
[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm ||em

]
(C.2)
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Proof. Suppose the QR factorization of the matrix Fz is given by

Fz = QR (C.3)

where Q is an orthogonal matrix and R is an upper triangular matrix.

Premultiplying Q on both sides of the above equation yields

R = QT Fz = QT

[
fz1 fz2 · · · fzm

]
=

[
QT fz1 QT fz2 · · · QT fzm

]
(C.4)

Since R is an upper triangular matrix,

QT fz1 = ||fz1 ||e1 (C.5)

Because of the perpendicularity of the columns of R, the first element of the second

column vector QT fz2 has to be zero. Thus, QT fz2 has to be equal to ||fz2 ||e2, that is,

QT fz2 = ||fz2 ||e2 (C.6)

Following the same reasoning, it can be proved that

QT fzi = ||fzi ||ei for i = 3, 4, · · · ,m (C.7)

Therefore, the upper triangular matrix has to be of the form

R =
[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm ||em

]
(C.8)
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Appendix D

Properties of the Orthogonal

Transformation Re

As discussed in Chapter 3, the orthogonal component Re in the orthogonal transformation

R for a four-mass SISO driving-point mechanical system can be expressed as

Re(θ1, θ2, θ3) = Rθ1Rθ2Rθ3 (D.1)

Because of periodicity of the cosine and sine functions, the range for each angle is from

0 to 2π. This orthogonal transformation has the following set of properties.

1. Property 1

Re

(π

2
+ α,

π

2
, α

)
=



1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0


for any α.

This property means that all second order models along the line
(π

2
+ α,

π

2
, α

)
in

the angle space are the same. They are related to the original second order model

by the permutation matrix Re

(π

2
+ α,

π

2
, α

)
.
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2. Property 2

Re

(π

2
+ α + β,

π

2
, α

)
=



1 0 0 0

0 −sinβ 0 cosβ

0 cosβ 0 sinβ

0 0 1 0


.

This is a generalization of Property 1. It implies that all second order models along

the line
(π

2
+ α + β,

π

2
, α

)
are identical to each other.

3. Property 3

Re(θ1, θ2, θ3) = Re(θ1 + π, π− θ2, π + θ3) or equivalently Re(θ1,
π

2
+ α, θ3) = R(θ1 +

π,
π

2
− α, π + θ3).

This property implies that all second order models repeat with a period of π along

the θ1 and θ3 axes and have a mirror symmetry with respect to the θ2 =
π

2
plane.

This also means that the second order model at θ1 = π, θ2 = π and θ3 = π is the

same as that at θ1 = 0, θ2 = 0 and θ3 = 0.

Let
[

θ1 θ2 θ3

]T

=
[

π

2
+ α1

π

2
+ α2 α3

]T

, then the following identity can

be obtained

Re

(π

2
+ α1,

π

2
+ α2, α3

)
= Re

(
3π

2
+ α1,

π

2
− α2, α3 + π

)
This implies that all the second order models around

(π

2
,
π

2
, 0

)
are equivalent to

those around
(

3π

2
,
π

2
, π

)
.

In addition, let
[

θ1 θ2 θ3

]T

=
[

3π

2
+ α1 α2

π

2
+ α3

]T

, then the following

identity can be obtained

Re

(
3π

2
+ α1, α2,

π

2
+ α3

)
= Re

(
π

2
+ α1, π − α2,

3π

2
+ α3

)
This implies that all the second order models around

(
3π

2
, 0,

π

2

)
are equivalent to

those around
(

π

2
, π,

3π

2

)
.
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4. Property 4

Re

(π

2
+ α1,

π

2
+ α2, α3

)
= Re

(π

2
,
π

2
, 0

)
Re (θ1, θ2, θ3)

This property means that the second order models around
(π

2
,
π

2
, 0

)
are related to

those around the origin by congruent transformations with a permutation matrix

Re

(π

2
,
π

2
, 0

)
.

5. Property 5

Re

(
π

2
+ α1, π − α2,

3π

2
+ α3

)
= Re

(
π

2
, π,

3π

2

)
Re (θ1, θ2, θ3)

This property means that the second order models around
(

π

2
, π,

3π

2

)
are related

to those around the origin by congruent transformations with a permutation matrix

Re

(
π

2
, π,

3π

2

)
.

Using these properties, the number of the realizable regions from exhaustive search in

the solution space may be reduced to a single realizable region. Similar properties may be

derived for systems with more masses.
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Appendix E

Modeling the Base Structure of

the Passive Mechanical Emulator

The base structure considered here is defined as the structure after removing all oscillators

in Figure 5.1, which can be idealized as an elastic beam connecting two lumped masses

at its two ends, as depicted in Figure E.1. The notation of all parameters in the figure is

defined in Table E.1.

There are two methods for modeling this base structure. The first one is based on

the Euler-Bernoulli continuous beam model while the second one uses a Finite Element

Analysis (FEA) beam model. Both methods are presented below.

E.1 Euler-Bernoulli Beam Model

Following a consistent set of sign conventions for the internal forces and moments, the

base structure of the passive mechanical emulator can be modeled by the Euler-Bernoulli

beam model as

EbIb
∂4y

∂x4
+ ρAbÿ = 0 (E.1)
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with the following four boundary conditions

(1) mb(ÿ − bb
∂ÿ
∂x

) + EbIb
∂3y
∂x3 = F at x = 0 (Force balance)

(2) LCb

∂ÿ
∂x

+ EbIbbb
∂3y
∂x3 − EbIb

∂2y
∂x2 = 0 at x = 0 (Moment Balance)

(3) ma(ÿ + ba
∂ÿ
∂x

)− EbIb
∂3y
∂x3 = 0 at x = Lb (Force balance)

(4) LCa

∂ÿ
∂x

+ EbIbba
∂3y
∂x3 + EbIb

∂2y
∂x2 = 0 at x = Lb (Moment balance)

(E.2)

Table E.1: Parameters of the Base Structure in the Passive Mechanical Emulator
Notation Explanation
Eb Young’s modulus of the beam material
Eb0 Elastic (or storage) modulus, a real number
ρb Density of the beam material
Ib Area moment of inertia
Lb Length of the beam
y Deflection of the beam
Ab Area of the cross section of the beam
mb Mass of the base frame, round rod and mounting fixtures in Figure

5.1
ma Mass of the additional mass in Figure 5.1
bb Distance from the mass center of the mass mb to one end of the beam
ba Distance from the mass center of the mass ma to another end of the

beam
ICb

Moment of inertia of the mass mb with respect to its mass center Cb

ICa Moment of inertia of the mass ma with respect to its mass center Ca

ηb Effective loss factor of the beam with damping treatments

To incorporate damping in the model, a complex Young’s modulus of the beam should

be used, which can be expressed as

Eb = Eb0(1 + iηb) (E.3)

After the Laplace transformation of (E.1) and the four boundary conditions (E.2), the
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Figure E.1: Modeling the Base Structure of the Machinery Emulator

following set of equations in the frequency domain is obtained by substituting s = jω

EbIb
∂4y

∂x4
− ρbAbω

2y = 0 (E.4)

with the following four boundary conditions

(1) −mbω
2(y − bb

∂y
∂x

) + EbIb
∂3y
∂x3 = F at x = 0 (Force balance)

(2) −LCb
ω2 ∂y

∂x
+ EbIbbb

∂3y
∂x3 − EbIb

∂2y
∂x2 = 0 at x = 0 (Moment Balance)

(3) −maω
2(y + ba

∂y
∂x

)− EbIb
∂3y
∂x3 = 0 at x = Lb (Force balance)

(4) −LCaω
2 ∂y
∂x

+ EbIbba
∂3y
∂x3 + EbIb

∂2y
∂x2 = 0 at x = Lb (Moment balance)

(E.5)

Denote αb = (ρbAbω
2

EbIb
)

1
4 . In general, the solution to the Euler-Bernoulli beam model

can be expressed as [9].

y(x, ω) = c1sinαbx + c2cosαbx + c3sinhαbx + c4coshαbx (E.6)

where four unknown ω dependent coefficients ci (i = 1, 2, 3, 4) can be solved with the

above four boundary conditions.
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Derivatives of (E.6) are given by the following equations

∂y(x, ω)
∂x

= αb(c1cosαbx− c2sinαbx + c3coshαbx + c4sinhαbx)
∂2y(x, ω)

∂x2
= α2

b(−c1sinαbx− c2cosαbx + c3sinhαbx + c4coshαbx)
∂3y(x, ω)

∂x3
= α3

b(−c1cosαbx + c2sinαbx + c3coshαbx + c4sinhαbx)

(E.7)

Substituting y(x, ω) in (E.6) and its derivatives into the four boundary conditions,

yields 

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44





c1

c2

c3

c4


=



F (ω)

0

0

0


(E.8)

where the elements in the matrix A(ω) are given by

a11 = bbmbω
2αb − EbIbα

3
b

a12 = −mbω
2

a13 = mbbbω
2αb + EbIbα

3
b

a14 = −mbω
2

a21 = −LCb
ω2αb − EbIbbbα

3
b

a22 = EbIbα
2
b

a23 = −LCb
ω2αb + EbIbbbα

3
b

a24 = −EbIbα
2
b

a31 = −maω
2sin(αbLb)−maω

2baαbcos(αbLb) + EbIbα
3
bcos(αbLb)

a32 = −maω
2cos(αbLb) + maω

2baαbsin(αbLb)− EbIbα
3
bsin(αbLb)

a33 = −maω
2sinh(αbLb)−maω

2baαbcosh(αbLb)− EbIbα
3
bcosh(αbLb)

a34 = −maω
2cosh(αbLb)−maω

2baαbsinh(αbLb)− EbIbα
3
bsinh(αbLb)
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a41 = −LCaω
2αbcos(αbLb)− EbIbbaα

3
bcos(αbLb)− EbIbα

2
bsin(αbLb)

a42 = LCaω
2αbsin(αbLb) + EbIbbaα

3
bsin(αbLb)− EbIbα

2
bcos(αbLb)

a43 = −LCaω
2αbcosh(αbLb) + EbIbbaα

3
bcosh(αbLb) + EbIbα

2
bsinh(αbLb)

a44 = −LCaω
2αbsinh(αbLb) + EbIbbaα

3
bsinh(αbLb) + EbIbα

2
bcosh(αbLb)

Equation (E.8) can be solved for the coefficients ci at each frequency point. After

obtaining these coefficients, the driving-point accelerance at the center of the mass mb can

be determined by

Ab(ω) = −
ω2

[
y − bb

∂y
∂x

]
x=0

F
(E.9)

which can be further simplified as follows

Ab(ω) = −ω2 [c2 + c4 − bb(c1 + c3)αb] , (E.10)

which is the driving-point accelerance of the base structure of the passive mechanical

emulator in Figure 5.1.

If the frequency of the structural mode is higher than the upper limit of the frequency

range of interest, the base structure of the passive mechanical emulator in Figure 5.1 can

be considered a rigid body. Otherwise, the structural mode of the base structure can be

used to match one of the machinery modes in two ways, as discussed in Subsection 5.1.1.

The base structure can also be modeled according to the FEA beam model, which is

discussed below.

E.2 FEA Beam Model

Another modeling method for the base structure of the passive mechanical emulator in

Figure 5.1 is based on an FEA beam model. When only the planar motion of a beam is
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concerned as depicted in Figure E.2, the displacement vector can be chosen as follows

qi =
[

ui yi αi

]T

(i=1, 2) (E.11)

By choosing a proper set of shape functions, the mass matrix and stiffness matrix of

this beam model can be obtained as follows [99]

Mb = ρbAbLb



1
3

0 0
1
6

0 0

0
13
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11
210

Lb 0
9
70
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420

Lb

0
11
210

Lb
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105
L2
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13
420
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140
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1
6

0 0
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13
420
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210
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0 − 13
420
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140

L2
b 0 − 11

210
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1
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L2
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(E.12)

Kb =



EbAb

Lb
0 0 −EbAb

Lb
0 0

0
12EbIb

L3
b

6EbIb

L2
b

0 −12EbIb

L3
b

6EbIb

L2
b

0
6EbIb

L2
b

4EbIb

Lb
0 −6EbIb

L2
b

2EbIb

Lb

−EbAb

Lb
0 0

EbAb

Lb
0 0

0 −12EbIb

L3
b

−6EbIb

L2
b

0
12EbIb

L3
b

−6EbIb

L2
b

0
6EbIb

L2
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0 −6EbIb

L2
b

4EbIb
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(E.13)

a1 u1

y2y1

u2

a2

Figure E.2: FEA Beam Model
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The mass matrix due to the lumped masses at both ends of the beam is given by

Mm = diag(
[

mb mb ICb
ma ma ICa

]
) (E.14)

Therefore, the total mass matrix of the base structure is given by

M = Mm + Mb (E.15)

Thus, the driving-point accelerance can be obtained from the following second order

model

Mẍ + Kbx = Fu

y = Hẍ (E.16)

where x =
[

qT
1 qT

2

]
, F =

[
0 1 0 0 0 0

]T

and H =
[

0 1 −bb 0 0 0

]
.
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Appendix F

Building Single-mode Oscillators

from Distributed Mechanical

Elements

While building oscillators in a passive mechanical emulator, lumped-parameter masses

and springs are realized by rectangular steel blocks and thin spring steel plates with

appropriate lengths between their mass centers and mounting fixtures, respectively. From

the theoretical viewpoint, there are an infinite number of modes in each oscillator. In

practice, however, it is enough to only consider the first oscillator mode of the bending

of the spring steel plate with a mass at its tip. In this appendix, the conditions under

which this experimental oscillator can well approximate a lumped-parameter oscillator are

investigated.

F.1 Modeling an Oscillator from Distributed Elements

Each oscillator built from distributed elements in Figure 5.1 can be idealized by the model

shown in Figure F.1. The force from the round rod F is exerted at one end of the beam

O and the oscillator mass mo is attached at the other end of the beam. The notation is
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defined in Table F.1. The block mass is attached at the end of a spring steel beam x = Lo.

At x = 0, an input force F is applied. Since the oscillators are perpendicularly fixed to

a far heavier base frame, the slope of the beam at x = 0 can approximately be taken as

zero. Consequently, this oscillator model can be imagined as one in which the oscillator

vibrates with its left end sliding in a prismatic or translational joint. A mathematical

model for this oscillator with consideration of the effect of the moment of inertia of the

oscillator mass and geometric dimension of the oscillator mass will be obtained below since

the dimension of the oscillator mass is comparable to the length of the beam.

Table F.1: Notation for Parameters in the Oscillator Model
Notation Explanation
Eo Complex Young’s modulus of the beam material with damping treat-

ments, Eo = Eo0(1 + jηo)
Eo0 Elastic (or storage) modulus, a real number
ρo Density of the beam material
Io Area moment of inertia of the cross section of the beam
y Deflection of the beam
Ao Area of the cross section of the beam
mo Oscillator mass
bo Distance from the mass center of the mass mo to one end of the beam
Lo Length of the beam in the oscillator
ICo Moment of inertia of the oscillator mass mo with respect to its mass

center Co

ηo Effective loss factor of the beam with damping treatments

O

L b

C

M, IC

y

x

E, IF

Figure F.1: Oscillator Model
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The oscillator can be modeled by the Euler-Bernoulli beam model, given by

EoIo
∂4y

∂x4
+ ρoAoÿ = 0 (F.1)

with the following four boundary conditions

(1) −EoIo
∂3y
∂x3 + F = 0 at x = 0 (Force balance)

(2) ∂y
∂x

= 0 at x = 0 (Zero slope)

(3) m(ÿ + b
∂ÿ
∂x

)− EoIo
∂3y
∂x3 = 0 at x = Lo (Force balance)

(4) ICo

∂ÿ
∂x

+ EoIobo
∂3y
∂x3 + EoIo

∂2y
∂x2 = 0 at x = Lo (Moment balance)

(F.2)

After the Laplace transformation of (F.1) and the four boundary conditions, the fol-

lowing equation in the frequency domain can be obtained by substituting s = jω

EoIo
∂4y

∂x4
− ρoAoω

2y = 0 (F.3)

with the following four boundary conditions

(1) −EoIo
∂3y
∂x3 + F = 0 at x = 0 (Force balance)

(2) ∂y
∂x

= 0 at x = 0 (Zero slope)

(3) −mω2(y + b
∂y
∂x

)− EoIo
∂3y
∂x3 = 0 at x = Lo (Force balance)

(4) −ICoω
2 ∂y
∂x

+ EoIobo
∂3y
∂x3 + EoIo

∂2y
∂x2 = 0 at x = Lo (Moment balance)

(F.4)

Denote α = (
ρoAoω

2

EoIo
)

1
4 . In general, the solution to (F.3) can be expressed

y(x, ω) = A1sinαx + A2cosαx + A3sinhαx + A4coshαx, (F.5)

where Ai (i = 1, 2, 3, 4) are four unknown coefficients dependent on ω.

It is desired to obtain the oscillator driving-point accelerance at x = 0, given by the
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following equation

Ao(ω) =
ω2y(0, ω)

F (ω)
(F.6)

After substituting (F.5) and its derivatives (E.7) into the four boundary conditions, the

following set of linear algebraic equations with four unknown coefficients Ai (i = 1, 2, 3, 4)

can be obtained



−a1α 0 −a1α 0

0 a1 0 −a1

a2 a3 a4 a5

a6 a7 a8 a9





A1

A2

A3

A4


=



F (ω)

0

0

0


(F.7)

where the elements in the 4× 4 matrix are given by

a1 = EoIoα
2

a2 = mω2[sin(αLo) + boαcos(αLo)]− EoIoα
3cos(αLo)

a3 = mω2(cos(αLo)− boαsin(αLo)] + EoIoα
3sin(αLo)

a4 = mω2[sinh(αLo) + boαcosh(αLo)] + EoIoα
3cosh(αLo)

a5 = mω2[cosh(αLo) + boαsinh(αLo)] + EoIoα
3sinh(αLo)

a6 = −ICoαω2cos(αLo)− EoIoα
2[sin(αLo) + boαcos(αLo)]

a7 = ICoαω2sin(αLo)− EoIoα
2[sinh(αLo) + boαcosh(αLo)]

a8 = −ICoαω2cosh(αLo) + EoIoα
2[sinh(αLo) + boαcosh(αLo)]

a9 = −ICoαω2sinh(αLo) + EoIoα
2[cosh(αLo) + boαsinh(αLo)]

Subsequently, the coefficients Ai (i = 1, 2, 3, 4) can be obtained by solving (F.7), given
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by

A1 = − 1
2a1α

F (ω)

A2 = −a9(a2 − a4)− a5(a6 − a8)
2a1α(a5a7 − a3a9)

F (ω)

A3 =
1

2a1α
F (ω)

A4 =
a7(a2 − a4)− a3(a6 − a8)

2a1α(a5a7 − a3a9)
F (ω)

The driving-point accelerance of the oscillator at the mounting point O thus is given

by

Ao(ω) = −ω2y(0, ω)
F (ω)

=
ω2[(a2 − a4)(a9 − a7) + (a6 − a8)(a3 − a5)]

2αa1(a5a7 − a3a9)
(F.8)

The characteristic equation of the oscillator is obtained as follows

a5a7 − a3a9 = 0 (F.9)

which can be solved by any nonlinear zero finding technique.

F.2 Distributed-parameter versus Lumped-parameter Os-

cillator

Given a lumped-parameter oscillator, this section addresses how to determine the length

and loss factor of the beam, as shown in Figure F.2. If the cross section and Young’s

modulus of the beam are given, the length of the beam is the only parameter required to

determine the stiffness. Since the fixed-base resonance frequency of an oscillator is not a

simple function of the length of the beam, a nonlinear optimization technique [77] is used

to determine the length of the beam Lo and loss factor of the beam η0. In order to get
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good matching at the resonance and anti-resonance, the objective function is defined as

J =

∑i=n
i=0

1
|At(ωi)|2∑i=n

i=0 |Ãt(ωi)|2

i=n∑
i=0

|At(ωi)− Ãt(ωi)|2 +
i=n∑
i=0

∣∣∣∣ 1
At(ωi)

− 1
Ãt(ωi)

∣∣∣∣2 (F.10)

where At(ωi) and Ãt(ωi) are the attachment point driving-point accelerance of the base

frame mounted with a continuous oscillator and the driving-point accelerance of the same

base frame mounted with a lumped-parameter oscillator at the frequency point ωi. The

accelerances At and Ãt can be obtained according to (5.17).

m
b m

b m
a

F
F

m
o

k
o

c
o

L
o

Figure F.2: Lumped-parameter and Distributed-parameter Oscillators
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Appendix G

Analytical Model for Free-layer

Damping Treatments

An analytical model for estimation of the modal loss factor associated with the free-layer

damping treatments is discussed in this appendix. It is assumed that the structure under

the free-layer damping treatments is a thin beam. The analytical expression for estimation

of the modal loss factor is given by the following Oberst equation [100]

η =
eh(3 + 6h + 4h2 + 2eh3 + e2h4)

(1 + eh)(1 + 4eh + 6eh2 + 4eh3 + e2h4)
η2 (G.1)

where η is the effective modal loss factor of the beam with free-layer damping layers, η2

is the loss factor of the damping material, e = E2/E1 is the ratio of the Young’s modulus

E2 of the damping material to the Young’s modulus E1 of the thin beam, and h = h2/h1

is the ratio of the thickness of the damping layer h2 to the thickness of the thin beam h1.

The Oberst equation does not include the damping of the beam material. Since vibra-

tion energy is dissipated by both the damping layers and the beam material, the Oberst

equation may be modified as follows

η = η0 +
eh(3 + 6h + 4h2 + 2eh3 + e2h4)

(1 + eh)(1 + 4eh + 6eh2 + 4eh3 + e2h4)
η2 (G.2)
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where η0 is the modal loss factor of the beam before the damping treatments.

Denote the thickness of each free damping layer as h0. Substituting the thickness of

n free damping layers nh0 into (G.2), the relation between the effective modal loss factor

and the number of damping layers is given by

η = η0 +
eh

[
3 + 6nh0 + 4(nh0)2 + 2e(nh0)3 + e2(nh0)4

]
(1 + enh0) [1 + 4enh0 + 6e(nh0)2 + 4e(nh0)3 + e2(nh0)4]

η2 (G.3)

Since a ratio of two polynomials can be expressed as a MacLaurin series, it would be

expected that a polynomial of the number of layers n can be used to model the relation

between the effective loss factor and the number of free damping layers.
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Appendix H

MATLAB/SIMULINK r© Models

for Active Emulation

This appendix includes three SIMULINK r© models used in comparison experiments for

active emulation. In these models, the gain Ka is determined by the sensitivity of the

accelerometer in the impedance head Z602WA and the set gain of the signal conditioner.

The gain Kf is dependent on the sensitivity of the force gage in the impedance head Z11

and the gain set in the signal conditioner. The gains of the PD controller are carefully

tuned such that the error between the actual force and desired force is small and the whole

dynamic systems are stable. Saturation blocks are used to avoid overloading the emulating

shaker F5B. Several virtual oscilloscopes are used to visually monitor accelerations and

forces in real time.

The first SIMULINK r© model consisting of two separate functional modules, as shown

in Figure H.1, is used for the first comparison experiment discussed in Subsection 6.4.5.

The top module is designed to measure the attachment point acceleration. The bottom

module is the implementation of the feedforward/feedback controller in Figure 5.10. This

model provides the basis for the other two experiments.

For the second comparison experiment in Subsection 6.4.5, a new SIMULINK r© model
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is obtained by adding a third module at the right top corner, as depicted in Figure H.2.

The added module applies a periodic impulse voltage to the F3 shaker so that the F3

shaker can exert an impulse force excitation on the active mechanical emulator.

The last SIMULINK r© model designed for the third comparison experiment in Sub-

section 6.4.5 is achieved by replacing the impulsive force module with one that can output

a sum of five sinusoids to the F3 shaker. This model is depicted in Figure H.3.

195



Vo
lta

ge
 V

1

Vo
lta

ge
 V

0+
V1

Vo
lta

ge
 V

0

nu
m

(s
)

s 
 +

20
s+

45
5

2 V(
s)

/F
(s

) 2

nu
m

(s
)

s 
 +

20
s+

45
5

2 V(
s)

/F
(s

) 1

Tr
an

sp
or

t
D

el
ay

2

Tr
an

sp
or

t
D

el
ay

1

Tr
an

sp
or

t
D

el
ay

Sa
tu

ra
tio

n1

Sa
tu

ra
tio

n

1

O
n/

O
ff

Sw
itc

h 
2

1

O
n/

O
ff

Sw
itc

h 
1

-K
- Kp

1/
.5

6

Kf
: F

or
ce

 G
ag

e 
G

ai
n 

&
Si

gn
al

 C
on

di
tio

ne
r

-K
- Kd

-K
-

Ka
: A

cc
el

er
om

et
er

 G
ai

n 
&

Si
gn

al
 C

on
di

tio
ne

r

Q
ua

ns
er

 C
on

su
lti

ng
M

Q
3 

AD
C

Fo
ud

at
io

n 
Ac

ce
le

ra
tio

n 
In

pu
t

Q
ua

ns
er

 C
on

su
lti

ng
M

Q
3 

AD
C

Fo
rc

e 
In

pu
t

D
es

ire
d 

Fo
rc

e
vs

 A
ct

ua
l F

or
ce

D
es

ire
d 

Fo
rc

e
C

om
po

ne
nt

 2

D
es

ire
d 

Fo
rc

e
C

om
po

ne
nt

 1
du

/d
t

D
er

iv
at

iv
e

Q
ua

ns
er

 C
on

su
lti

ng
M

Q
3 

D
AC

An
al

og
 O

ut
pu

t t
o 

th
e 

Em
ul

at
in

g 
Sh

ak
er

bu
tte

r

An
al

og
Fi

lte
r D

es
ig

n2

Ac
tu

al
 F

or
ce

Ac
ce

le
ra

tio
n 

at
Fo

un
da

tio
n

Figure H.1: SIMULINK r© Model of Attachment Point Acceleration Measurement and
Feedforward/feedback Controller, Experiment 1
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Figure H.2: SIMULINK r© Model of Attachment Point Acceleration Measurement and
Feedforward/feedback Controller, Experiment 2
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Figure H.3: SIMULINK r© Model of Attachment Point Acceleration Measurement and
Feedforward/feedback Controller, Experiment 3
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