Sect 9.3 - Cylinders and Spheres

Objective 1: Understanding Cylinders, Volume and Surface Area.
A Cylinder is a solid figure having congruent circles as bases that are parallel and having sides if folded out flat would form a parallelogram. The perpendicular distance between the bases is called the height or altitude. If the sides of the cylinder are perpendicular to the base, then the cylinder is a right cylinder. We can think of a cylinder as a type of prism. Its base is a circle so the perimeter of the base is $2 \pi r$ and the area of the base is πr^{2}. The lateral surface area is $\mathrm{Ch}=2 \pi r h$, and the volume is $\mathrm{Bh}=\pi r^{2} h$ Thus, the volume for a cylinder is $\mathrm{V}=\mathrm{Bh}=\pi \mathrm{r}^{2} \mathrm{~h}$. Since the two bases are circles, the total surface area is the lateral surface area plus the sum of the areas of the two circles.

Properties of Right Cylinders:

Let $C=$ the circumference of the base
$r=$ the radius of the base
$B=$ the area of the base
$\mathrm{h}=$ the height of the cylinder
Then

1) Area of the base: $\quad B=\pi r^{2}$
2) Lateral surface area: $L=C h=2 \pi r h$
3) Total surface area: $S A=L+2 B=2 \pi r h+2 \pi r^{2}$
4) Volume: $\quad V=B h=\pi r^{2} h$

B

Find a) the lateral surface area, b) the surface area, and c) the volume of the following. Round your answers to three significant digits:
Ex. 1

6.5 ft
Ex. 2
6.1 yd

Solution:
Since the diameter is 12 cm , then the radius is $12 / 2=6 \mathrm{~cm}$ The height is 8 cm .

$$
\begin{aligned}
& \mathrm{C}=2 \pi r=2 \pi(6)=12 \pi \\
&=37.699 \ldots \mathrm{~cm} \\
& \mathrm{~B}= \pi r^{2}=\pi(6)^{2}=36 \pi \\
&=113.097 \ldots \mathrm{~cm}^{2} \\
& \text { a) } \quad \mathrm{L}=\mathrm{Ch}=(37.699 \ldots)(8) \\
&=301.592 \ldots \approx 302 \mathrm{~cm}^{2} \\
& \text { b) } \quad \mathrm{SA}=\mathrm{L}+2 \mathrm{~B} \\
&=301.592 \ldots+2(113.097 \ldots) \\
&=301.592 \ldots+226.194 \ldots \\
&=527.787 \ldots \approx 528 \mathrm{~cm}^{2} \\
& \text { c) } \quad \mathrm{V}=\mathrm{Bh}=(113.097 \ldots)(8) \\
&=904.77 \ldots \approx 905 \mathrm{~cm}^{3}
\end{aligned}
$$

Solution:
This is a cylinder lying on its side.
Thus, radius is 6.5 ft and the height is $6.1 \mathrm{yd}=6.1 \mathrm{yd}(3 \mathrm{ft} / \mathrm{yd})=18.3 \mathrm{ft}$.
$C=2 \pi r=2 \pi(6.5)=13 \pi$ $=40.84 \ldots \mathrm{ft}$
$B=\pi(6.5)^{2}=42.25 \pi$ $=132.73 \ldots \mathrm{ft}^{2}$
a) $\mathrm{L}=\mathrm{Ch}=(40.84 \ldots)(18.3)$
$=747.38 \ldots \approx 747 \mathrm{ft}^{2}$
b) $S A=L+2 B$
$=747.38 \ldots+2(132.73 \ldots)$
$=747.38 \ldots+265.46 \ldots$
$=1012.84 \ldots \approx 1010 \mathrm{ft}^{2}$
c) $\quad \mathrm{V}=\mathrm{Bh}=(132.73 \ldots)(18.3)$ $=2429.000 \ldots \approx 2430 \mathrm{ft}^{3}$

Ex. 3 How many cubic yards of concrete will need to be poured to create a column with a diameter of 8 ft and a height of 22 ft ? If one gallon of red paint can cover $130 \mathrm{ft}^{2}$ of the column, how many gallons of paint will be need to cover the top and the sides of the column? Round all answers to the nearest whole number.
Solution:
a) The radius is half of the diameter, so $r=8 / 2=4 \mathrm{ft}$. First, let's calculate the volume:
$\mathrm{V}=\mathrm{Bh}=\pi \mathrm{r}^{2} \mathrm{~h}=\pi(4)^{2}(22)=\pi(16)(22)=352 \pi \approx 1105.8 . . . \mathrm{ft}^{3}$ Now, convert the answer into cubic yards:

$$
\frac{1105.8 \ldots \mathrm{ft}^{3}}{1} \cdot \frac{1 \mathrm{yd}^{3}}{27 \mathrm{ft}^{3}}=40.95 \ldots \approx 41 \mathrm{yd}^{3}
$$

Forty-one cubic yards of concrete will be needed to pour the column.
b) The lateral surface area is $L=2 \pi r h=2 \pi(4)(22)=176 \pi$ $\approx 552.9 \ldots \mathrm{ft}^{2}$
The area of the top is $B=\pi r^{2}=\pi(4)^{2}=16 \pi \approx 50.26 \ldots \mathrm{ft}^{2}$
The area to be covered then is $L+B=552.9 \ldots+50.26 \ldots$
$=603.18 \ldots \mathrm{ft}^{2}$
$1 \mathrm{gal}=130 \mathrm{ft}^{2}$, so $603.18 \mathrm{ft}^{2}\left(1 \mathrm{gal} / 130 \mathrm{ft}^{2}\right)=4.63 \ldots \approx 5$ gallons .
So, 5 gallons of paint will be needed to cover the column.

Objective 2: Understanding Spheres, Volume, and Surface Area.
A Sphere is the set of all points in three dimensions that are the same distance from the center point of the sphere. $1^{\text {st }}$ Circle

If you look at a softball or a baseball, you can see that it is "roughly covered by four circles." Thus, the surface area is $4 \pi r^{2}$.

Properties of Spheres:

Let $r=$ the radius of the sphere
Then

1) Total surface area: $S A=4 \pi r^{2}$
2) Volume: $\quad V=\frac{4}{3} \pi r^{3}$

Find a) the surface area, and b) the volume of the following. Round your answers to three significant digits:

Ex. 4

Solution:
$\mathrm{r}=\frac{3}{8} \div 2=\frac{3}{16} \mathrm{ft}$
a) $S A=4 \pi r^{2}=4 \pi\left(\frac{3}{16}\right)^{2}$
$=4 \pi \frac{9}{256}=\frac{9}{64} \pi$
$=0.4417 \ldots \approx 0.442 \mathrm{ft}^{2}$

Ex. 5

Solution:

$$
r=16.6 \mathrm{~mm}
$$

a) $\quad \mathrm{SA}=4 \pi r^{2}=4 \pi(16.6)^{2}$
$=4 \pi(275.56)=1102.24 \pi$
$=3462.789 \ldots \approx 3460 \mathrm{~mm}^{2}$
b) $\quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(\frac{3}{16}\right)^{3}$
b) $\quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(16.6)^{3}$
$=\frac{4}{3} \pi(0.0065917 \ldots)$
$=\frac{4}{3} \pi(4574.296)$
$=0.0087890625 \pi$
= 6099.06...ा
$=0.02761 \ldots \approx 0.0276 \mathrm{ft}^{3}$

$$
=19160.7 \ldots \approx 19,200 \mathrm{~mm}^{3}
$$

Ex. 6 How many gallons of water can be store in a spherical tank 192 inches in diameter? If water weighs $62.4 \mathrm{lb} / \mathrm{ft}^{3}$ and the steel used to make the tank weighs $130.6 \mathrm{lb} / \mathrm{ft}^{2}$, how much does the tank weigh when it is full? Round to four significant digits.
Solution:
a) Since the diameter is 192 inches, the radius is $192 / 2=96$ in.

Now, plug in to find the volume:
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(96)^{3}=\frac{4}{3} \pi(884736)=1179648 \pi$
$=3705973.4 \ldots \mathrm{in}^{3}$.
But, 1 gal $=231 \mathrm{in}^{3}$, so
$3705973.4 \ldots \mathrm{in}^{3}=\frac{3705973.4 \ldots \mathrm{in}^{3}}{1} \bullet \frac{1 \mathrm{gal}}{231 \mathrm{in}^{3}}=16043.17 \ldots$
$\approx 16040 \mathrm{gal}$
The tank will hold 16,040 gallons of water.
b) First, find the weight of the water. From above, the volume of the tank was $3705973.4 \ldots$ in 3. We will convert this to ft^{3}.
$3705973.4 \ldots \mathrm{in}^{3}=\frac{3705973.4 \ldots \mathrm{in}^{3}}{1} \cdot \frac{1 \mathrm{ft}^{3}}{1728 \mathrm{in}^{3}}=2144.6 \ldots \mathrm{ft}^{3}$
The water weighs $62.4 \mathrm{lb} / \mathrm{ft}^{3}$. Multiplying, we get:
$2144.6 \ldots \mathrm{ft}^{3}\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)=133826.82 \ldots \mathrm{lb}$
Now, find the weight of the steel:
SA $=4 \pi r^{2}=4 \pi(96)^{2}=4 \pi(9216)=36864 \pi=115811.6 \ldots$ in 2
We will convert this to ft^{2} :
115811.6... $\mathrm{in}^{2}=\frac{115811.6 \ldots \mathrm{in}^{2}}{1} \bullet \frac{1 \mathrm{ft}^{2}}{144 \mathrm{in}^{2}}=804.24 \ldots \mathrm{ft}^{2}$

The steel weighs $130.6 \mathrm{lb} / \mathrm{ft}^{2}$. Multiplying, we get:
$\left(804.24 \ldots \mathrm{ft}^{2}\right)\left(130.6 \mathrm{lb} / \mathrm{ft}^{2}\right)=105034.7 \ldots \mathrm{lb}$
Adding the two results together, we get:
133826.82... lb + 105034.7... lb = 238861.57... lb $\approx 238,900 \mathrm{lb}$

When the tank is full, it will weigh $238,900 \mathrm{lb}$.

Ex. $7 \quad$ Farmer Joyce is constructing the silo pictured below. How many bushels of grain will she be able to store in the silo? (round to the nearest hundred bushel).

Solution:

The volume of the figure is equal to the volume of the cylinder plus the volume of the half-sphere or hemisphere. The radius for both the hemisphere and the cylinder is $10 \div 2=5 \mathrm{ft}$:

$V=\pi r^{2} h$
$=\quad \pi(5)^{2}(30)$

$$
=\pi(25)(30)+\frac{4}{3} \pi(125) \div 2=750 \pi+(83.3 \ldots) \pi
$$

$$
=2356.194 \ldots+261.79 \ldots=2617.993 \ldots \mathrm{ft}^{3}
$$

But, 1 bu $\approx 1.24446 \mathrm{ft}^{3}$, so

$$
2617.993 \ldots \mathrm{ft}^{3} \approx \frac{2617.993 \ldots \mathrm{ft}^{3}}{1} \cdot \frac{1 \mathrm{bu}}{1.24446 \mathrm{ft}^{3}}=2103.7 \ldots \approx 2100 \mathrm{bu}
$$

The silo will hold 2100 bushels.

