Sect 7.2 - Adding \& Subtracting Algebraic

Expressions

Objective 1: Understanding Numerical Coefficient
The numerical coefficient of a term is the numerical (constant) factor of a term. In $-6 x y$, the numerical coefficient is -6 . Let's try some examples:

Determine the numerical coefficient of the indicated term:
Ex. 1a $\quad-0.3 a^{2}+4.2 b^{2} ; 1^{\text {st }}$ term Ex. $1 b-0.3 a^{2}+4.2 b^{2} ; 2^{\text {nd }}$ term
Ex. 1c $\quad 14 x-17 y+6 ; 2^{\text {nd }}$ term
Ex. 1d $9 x^{2}-4 x y-y^{3} ; 3^{\text {rd }}$ term
Ex. 1e $\quad \frac{19}{6} y^{2}+y-7 ; 2^{\text {nd }}$ term
Ex. $1 f \quad-\frac{7 a^{4} b^{5} \mathrm{c}}{8 x^{2} y} ; 1^{\text {st }}$ term
Ex. $1 \mathrm{~g} \quad 9 x^{2}-7 x y+8 ; 3^{\text {rd }}$ term

Solution:

a) The numerical coefficient of $-0.3 \mathrm{a}^{2}$ is -0.3 .
b) The numerical coefficient of $4.2 b^{2}$ is 4.2 .
c) The numerical coefficient of $-17 y$ is -17 .
d) The numerical coefficient of $-y^{3}$ is -1 .
e) The numerical coefficient of y is 1 .
f) The numerical coefficient of $-\frac{7 a^{4} b^{5} c}{8 x^{2} y}$ is $-\frac{7}{8}$.
g) The numerical coefficient of 8 is 8 .

Objective 2: Understanding How to Combine Like Terms
In terms of simplifying variable expressions, we first need to examine what happens in the real world when you combine items:

Simplify the following:

Ex. 2a $\quad 3$ apples +4 apples \quad Ex. $2 b \quad 3$ apples +4 oranges
Solution:
a) 3 apples +4 apples $=7$ apples.
b) 3 apples +4 oranges $=3$ apples +4 oranges.

In example 2a, we are able to add the items together since the units (apples) are the same whereas in example 2 b , we cannot put the items together since the units (apples and oranges) are not the same. It would
not make any sense to say 7 appleoranges for the answer to 2 b since there is no such thing as an appleorange (or at least, scientists have not invented one yet!). This same idea applies to algebra:

Simplify the following:

Ex. 3a $\quad 3 x^{2}+4 x^{2}$
Ex. 3b $\quad 3 x^{2}+4 y$

Solution:

a) Instead of having apples, we have x^{2}, so $3 x^{2}+4 x^{2}=7 x^{2}$.
b) This is exactly like adding apples and oranges so, $3 x^{2}+4 y=3 x^{2}+4 y$. It cannot be simplified any further.
In example 3a, we are able to add the items together since the "units" $\left(x^{2}\right)$ are the same whereas in example 3b, we cannot since the "units" (x^{2} and y) are different. When terms have exactly the same "units", they are called like terms. Here is a more precise definition:
Terms with exactly the same variables with exactly the same corresponding exponents are called like terms. Only like terms can be combined by combining their numerical coefficients.

Simplify the following:

Ex. $4 \quad-3 x+5+7 x-3$
Solution:
We have two sets of like terms; the first pair is $-3 x$ and $7 x$ and the second pair is 5 and -3 . We will combine each pair by adding their numerical coefficients:
$-3 x+5+7 x-3=-3 x+7 x+5-3=4 x+2$
Ex. 5

$$
0.8 x^{2}-6 x y+1.2 y^{2}-1.9 x^{2}-7 x y+3.4 y^{2}
$$

Solution:
First identify are sets of like terms and then combine:

$$
\begin{aligned}
& \mathbf{0 . 8 x ^ { 2 } - 6 x y + 1 . 2 y ^ { 2 } - 1 . 9 x ^ { 2 } - 7 x y + 3 . 4 y ^ { 2 }} \\
& =0.8 x^{2}-1.9 x^{2}-6 x y-7 x y+1.2 y^{2}+3.4 y^{2} \\
& =-1.1 x^{2}-13 x y+4.6 y^{2} .
\end{aligned}
$$

Ex. 6

$$
-\frac{4}{3} x+\frac{2}{3} x y^{2}-\frac{13}{8} x^{2}-\frac{5}{6} x+\frac{9}{7} x^{2} y
$$

Solution:
Since $-\frac{4}{3} x$ and $-\frac{5}{6} x$ are the only like terms, they are the only ones
that can be combined. Note that $\frac{2}{3} x y^{2}$ and $\frac{9}{7} x^{2} y$ are not like terms since the corresponding exponents are not the same (the power of x in $\frac{2}{3} x y^{2}$ is one whereas the power of x in $\frac{9}{7} x^{2} y$ is two.
Since $-\frac{4}{3}-\frac{5}{6}=-\frac{13}{6}$, then
$-\frac{4}{3} x+\frac{2}{3} x y^{2}-\frac{13}{8} x^{2}-\frac{5}{6} x+\frac{9}{7} x^{2} y=-\frac{13}{6} x+\frac{2}{3} x y^{2}-\frac{13}{8} x^{2}+\frac{9}{7} x^{2} y$.

Ex. $7 \quad 5 x^{2}-6 x y+y^{2}+5 y$

Solution:

There are no like terms. This expression cannot be simplified any further. Our answer is $5 x^{2}-6 x y+y^{2}+5 y$.

Objective 3: Understanding and Applying the Distributive Property.
Let's look at an example that illustrates the distributive property.

Find the following:

Ex. $8 \quad 7(3+5)$

Solution:

Normally, we would add the three and the five together first and then multiply:
$7(3+5)=7(8)=56$
But, the distributive property says that we can multiply the 3 and 5 both by seven first and then add the results:
$7(3+5)=7 \bullet 3+7 \bullet 5=21+35=56$.
Notice that we get the same result either way. This is an extremely important property in mathematics.

Distributive Property

If a, b, c, and d are real numbers, then

$$
a(b+c+d)=a \bullet b+a \cdot c+a \cdot d \text { and } a(b-c-d)=a \bullet b-a \bullet c-a \bullet d
$$

Let's see how this applied in algebra.

Simplify:

Ex. $9 \quad 7(3 x+5)$
Solution:
Here, we cannot combine the $3 x$ with the 5 since they are not like terms, but we can use the distributive property:

$$
7(3 x+5)=7 \cdot 3 x+7 \cdot 5=21 x+35
$$

Ex. $10-2.2(3 q-4)$
Solution:

$$
-2.2(3 q-4)=-2.2 \cdot 3 q-(-2.2) \cdot 4=-6.6 q-(-8.8)=-6.6 q+8.8
$$

Ex. $11 \quad(2 x-4 y+5)(5)$
Solution:

$$
(2 x-4 y+5)(5)=2 x(5)-4 y(5)+5(5)=10 x-20 y+25
$$

Ex. $12-4(-3 \mathrm{x}+6-2 \mathrm{y})$
Solution:
$-4(-3 x+6-2 y)=-4(-3 x)+(-4) \cdot 6-(-4) \cdot 2 y$
$=12 x+(-24)+8 y$, but, in algebra, we want to use the least number of symbols possible to express our answer, so we will rewrite the answer as $12 x-24+8 y$.

Ex. $13 \quad r(3 r-4)$
Solution:

$$
\overline{r(3 r-4)}=r \cdot 3 r-r \cdot 4=3 r^{2}-4 r
$$

Ex. $14-\frac{4}{7}\left(28 x^{2}-35 x\right)$
Solution:

$$
\begin{aligned}
& -\frac{4}{7}\left(28 x^{2}-35 x\right)=\left(-\frac{4}{7}\right)\left(28 x^{2}\right)-\left(-\frac{4}{7}\right)(35 x) \\
& =-16 x^{2}+20 x
\end{aligned}
$$

Ex. $15 \quad-\left(-11+3 p-p^{2}\right)$
Solution:
$-\left(-11+3 p-p^{2}\right)=-1\left(-11+3 p-p^{2}\right)$
$=(-1)(-11)+(-1)(3 p)-(-1)\left(p^{2}\right)=11+(-3 p)-\left(-p^{2}\right)$
$=11-3 p+p^{2}$

Ex. $16 \quad 4.1(3 x-2)-5.2(2 x+8)$
Solution:
Distribute first and then combine like terms (multiplication comes before adding and subtracting):
$4.1(3 x-2)-5.2(2 x+8)=4.1(3 x)-4.1(2)-5.2(2 x)+-5.2(8)$
$=12.3 x-8.2-10.4 x-41.6=12.3 x-10.4 x-8.2-41.6$
$=1.9 x-49.8$
Ex. $17 \quad y(3 y-8)-2\left(y^{2}+6\right)$
Solution:
Distribute first and then combine like terms:

$$
\begin{aligned}
& y(3 y-8)-2\left(y^{2}+6\right)=y(3 y-8)-2\left(y^{2}+6\right) \\
& =y(3 y)-y(8)-2\left(y^{2}\right)+(-2)(6)=3 y^{2}-8 y-2 y^{2}-12 \\
& =1 y^{2}-8 y-12=y^{2}-8 y-12
\end{aligned}
$$

Ex. $18 \quad \frac{2}{3}\left(5 x-\frac{9}{2}\right)-\frac{3}{13}\left(39 x+\frac{1}{7}\right)$
Solution:
Distribute first and then combine like terms:

$$
\begin{aligned}
& \frac{2}{3}\left(5 x-\frac{9}{2}\right)-\frac{3}{13}\left(39 x+\frac{1}{7}\right)=\frac{2}{3}(5 x)-\frac{2}{3}\left(\frac{9}{2}\right)-\frac{3}{13}(39 x)-\frac{3}{13}\left(\frac{1}{7}\right) \\
& =\frac{10 x}{3}-3-9 x-\frac{3}{91}=\frac{10 x}{3}-9 x-3-\frac{3}{91} \\
& =-\frac{17}{3} x-\frac{276}{91}
\end{aligned}
$$

