Sect 5.3 – Metric System of Measurement

Objective 1: Understanding the Metric System

The rest of the world uses the metric system of measurement. It is important to understand how it works. The system starts with three base units and then uses prefixes to derive the remaining units. The meter, m, (\approx 39.4 inches) is the base unit for length, the liter, L, (slightly bigger than a quart) is the base unit for volume, and the gram, g, (about the weight of one raisin) is the base unit for weight. There are six common prefixes that we will study. They are listed in the table below:

Prefix	Meaning	Length	Weight	Volume
kilo-, k	1000 times	1 km = 1000 m	1 kg = 1000 g	1 kl = 1000 L
hecto-, h	100 times	1 hm = 100 m	1 hg = 100 g	1 hl = 100 L
deca-, da	10 times	1 dam = 10 m	1 dag = 10 g	1 dal = 10 L
deci-, d	1/10 times	1 dm = 0.1 m	1 dg = 0.1 g	1 dl = 0.1 L
centi-, c	1/100 times	1 cm = 0.01 m	1 cg = 0.01 g	1 cl = 0.01 L
milli-, m	1/1000 times	1 mm = 0.001 m	1 mg = 0.001 g	1 ml = 0.001 L

Objective 2: Converting using Unit Conversion Factors

We can us the same approach as the last section to convert within the metric system. Listed below are some common conversions.

Metric System:

(ha – hectares, Pa – Pascals)

Length	Weight/Mass
1 cm = 10 mm	1 g = 1000 mg
1 m = 100 cm = 1000 mm	1 kg = 1000 g
1 km = 1000 m	1 metric ton = 1000 kg
Area and Pressure	Volume
1 ha = 10,000 m ²	$1 \text{ cm}^3 = 1 \text{ mL} = 1 \text{ cc}$
1 kPa = 1000 Pa	1 L = 1000 cm ³ = 1000 mL

Convert each unit as indicated:

Ex. 1 Convert 0.35 ha to m².
Solution:
Since 1 ha = 10,000 m², then

$$\frac{0.35ha}{1} = \frac{0.35ha}{1} \cdot \frac{10000m^2}{ha} = 3500 m^2$$
.
Ex. 2 Convert 45,000 g to kg.
Since 1 kg = 1000 g, then
 $\frac{45000g}{1} = \frac{45000g}{1} \cdot \frac{1kg}{1000g} = 45 \text{ kg}$
Ex. 3 Convert $\frac{$302}{L}$ to $\frac{$}{cc}$.
Solution:
Since 1 cc = 1 mL and 1 L = 1000 mL, then
 $\frac{$302}{L} \cdot \frac{1L}{1000mL} = \frac{$0.302}{mL} = \frac{$0.302}{cc} \approx \frac{$0.30}{cc}$
Ex. 4 Convert $\frac{48cm}{sec}$ to $\frac{km}{hr}$.
Solution:
First, convert sec to hr:
 $\frac{48cm}{sec} = \frac{48cm}{sec} \cdot \frac{3600sec}{1hr} = \frac{172800cm}{hr}$
Now, convert cm to m:
 $\frac{172800cm}{hr} = \frac{172800cm}{hr} \cdot \frac{1m}{1000m} = \frac{1728m}{hr}$
Finally, convert m to km:
 $\frac{1728m}{hr} = \frac{1728m}{hr} \cdot \frac{1km}{1000m} = \frac{1.728km}{hr} \approx 1.7 \text{ kph}.$

Objective 3: Converting Using the Prefixes.

To convert within the metric system, we list our prefixes from largest to smallest, mark the prefix we are converting from and count how many times we have to move to get to the prefix we are converting to. The number of times and the direction tells us how to move the decimal point in the number to get our answer. Here is what our prefix chart looks like:

k	h	da	grams liters meters	d	С	m
Let's	try some e>	amples:				
<u>Conv</u>	vert the foll	<u>owing:</u>				
Ex. 5	Conv Solution: We start fro k h 56 m = 56.	pert 56 m to om the base ur da meters 00 = 5,600 cm	_ cm. hit and move of d c 	over two m	places to the r	ight:
Ex. 6	Conv Solution: We start fro k h 67.3 dg = 0	pert 67.3 dg to com the d prefix da grams 067.3 = 0.0673	hg. and move the d c hg.	ree plac m	es to the left:	
Ex. 7	Conv Solution: We start from $k \xrightarrow{h}$ 0.0645 km	pert 0.0645 km om the k prefix da meters = 00645 = 645	to dm. and move for d c 5 dm.	ur place: m	s to the right:	
Ex. 8	Conv Solution: The unit co move three k h	rert 565 cc to _ is the same as places to the da liters	L. s mL, so we s left:	etart fron	າ the prefix m a	nd

565 cc = 565 mL = 565 = 0.565 L.

Ex. 9 Convert $\frac{\$25}{kg}$ to $\frac{\$}{dag}$. Solution: We start from k and move two places to the right: k h da grams d c m So, 1 kg = 1.00 = 100 dag Thus, $\frac{\$25}{kg} = \frac{\$25}{100dag} = \frac{\$0.25}{dag}$

Objective 4: Converting between the US and Metric Systems.

In this day and age, the metric system is virtually worldwide. Though there was a strong drive in the 1970's for the U.S. to adopt the metric system, the U.S. never made the transition. Thus, the U.S. is the only major country that does not use the metric system. Since the metric system is accepted in the rest of the world, it is important that we have the ability to convert between the two systems. Here are some useful conversions:

Conversions between the Metric to US Systems:

Length	Weight/Mass		
1 in = 2.54 cm 1 ft = 30.48 cm = 0.3048 m 1 yd = 0.9144 m 1 mi = 1.609344 km	1 oz ≈ 28.35 g 1 lb ≈ 0.4536 kg = 453.6 g 1 T ≈ 907.2 kg = 0.9072 metric T		
Area	Volume		
1 in ² ≈ 6.4516 cm ² 1 ft ² ≈ 0.09290 m ² 1 yd ² ≈ 0.8361 m ²	1 in ³ ≈ 16.3871 cm ³ 1 ft ³ ≈ 0.0283168 m ³ 1 ft ³ ≈ 28.3168 L 1 yd ³ ≈ 0.7646 m ³ 1 fl oz ≈ 29.574 cm ³ 1 qt ≈ 0.94635 L 1 gal ≈ 3.7854 L		
Temperature	Pressure		
F = $1.8C + 32^{\circ}$ C = $\frac{5F - 160^{\circ}}{9}$	1 psi ≈ 6895 Pa = 6.895 kPa 1 psf ≈ 47.88 Pa = 0.04788 kPa 1 atm ≈ 101.33 kPa		

We will use the same techniques of constructing a unit conversion factor to convert between the two systems.

Convert the following:

Ex. 10 Convert 45 mi to km. Solution: Since 1 mi = 1.609344 km, then 45 mi $\approx \frac{45 \text{mi}}{1} \bullet \frac{1.609344 \text{km}}{1 \text{mi}} = 72.42048 \text{ km} \approx 72 \text{ km}.$ Ex. 11 Convert 6501 g to lb. Solution: Since 1 lb \approx 453.6 g, then 6501 g $\approx \frac{6501g}{1} \bullet \frac{11b}{453.6g} = 14.33201...$ lb ≈ 14.33 lb. Convert 84 gt to L Ex. 12 Solution: Since 1 qt ≈ 0.94635 L, then 84 qt $\approx \frac{.84 \text{ qt}}{.1} \cdot \frac{0.94635 \text{ L}}{.1 \text{ qt}} = 79.4934 \text{ L} \approx 79 \text{ L}.$ Ex. 13 Convert 12,192 cm to ft Solution: Since 1 ft = 30.48 cm, then $12192 \text{ cm} = \frac{12192 \text{ cm}}{1} \bullet \frac{1 \text{ ft}}{30.48 \text{ cm}} = 400 \text{ ft}.$ Ex. 14 Convert 4760 ml to c. Solution: There is no direct conversion between milliliters and cups so we will need to convert this in several steps. If we look at the chart, we see that 1 gt \approx 0.946 L. In order to use this conversion, we will need to first convert the ml to L: liters d c r $(ml \rightarrow L)$ k h da m So, 4760 ml = 4760 = 4.760 L or 4.760 L $\cup \cup \cup$ $(L \rightarrow qt)$ Now, convert from liters to quarts: Since 1 at \approx 0.94635 L, then

$$4.760 \text{ L} \approx \frac{4.76 \text{ L}}{1} \bullet \frac{1 \text{ qt}}{0.94635 \text{ L}} = 5.02985...\text{ qt}$$

To minimize the error, we will round off at the end of the problem. ($qt \rightarrow c$) Finally, convert from quarts to cups:

Since 1 qt = 4 c, then
5.02985... qt =
$$\frac{5.02985... qt}{1} \cdot \frac{4c}{1qt}$$
 = 20.1194 ... c ≈ 20.1 c.

Convert
$$\frac{92.0 \text{ floz}}{\text{yd}^2}$$
 to $\frac{\text{mL}}{\text{m}^2}$.

Solution:

(fl oz \rightarrow mL (cm³)) First, convert from fl ounces to cu centimeters: Since 1 fl oz \approx 29.574 cm³, then 92.0 floz 92.0 floz 29.574 cm³ 2720.808 cm³ 2720.808 ml

$$\frac{92.0\,\text{floz}}{\text{yd}^2} \approx \frac{92.0\,\text{floz}}{\text{yd}^2} \bullet \frac{29.574\,\text{cm}^3}{1\,\text{floz}} = \frac{2720.808\,\text{cm}^3}{\text{yd}^2} = \frac{2720.808\,\text{mL}}{\text{yd}^2}$$

 $(yd^2 \rightarrow m^2)$ Now, convert the square yards to square meters: Since 1 $yd^2 \approx 0.836$ 1m², then

$$\frac{2720.808 \text{ mL}}{\text{yd}^2} \bullet \frac{1 \text{yd}^2}{0.8361 \text{m}^2} = \frac{3254.16577...\text{mL}}{\text{m}^2} \approx \frac{3250 \text{mL}}{\text{m}^2}$$

Ex. 16 Convert
$$\frac{\$8.93}{kg}$$
 to $\frac{\$}{oz}$.

Solution:

(kg \rightarrow lb) First, convert from kilograms to pounds: Since 1 lb = 0.4536 kg, then $\frac{\$8.93}{\text{kg}} \approx \frac{\$8.93}{\text{kg}} \bullet \frac{0.4536\text{kg}}{1\text{lb}} = \frac{\$4.050648}{\text{lb}}.$

(lb \rightarrow oz) Now, convert the pounds to ounces: Since 16 oz = 1 lb, then $\frac{$4.050648}{lb} \bullet \frac{1lb}{16oz} = \frac{$0.2531655}{oz} \approx \frac{$0.25}{oz}.$

Ex. 17 Convert 50°F to <u>C</u>. Solution: Plug 50° in for F in the formula $C = \frac{5F-160^{\circ}}{9}$ and solve: $C = \frac{5(50^{\circ})-160^{\circ}}{9} = \frac{250^{\circ}-160^{\circ}}{9}$ $= \frac{90^{\circ}}{9} = 10^{\circ} C.$ Ex. 18 Convert 81.0°C to <u>F</u>. Solution: Plug 81° in for C in the formula F = 1.8C + 32° and solve: F = 1.8(81.0°) + 32° $= 145.8^{\circ} + 32^{\circ} \approx 178^{\circ} F.$