Sect 5.3 - Metric System of Measurement

Objective 1: Understanding the Metric System
The rest of the world uses the metric system of measurement. It is important to understand how it works. The system starts with three base units and then uses prefixes to derive the remaining units. The meter, m, (≈ 39.4 inches) is the base unit for length, the liter, L, (slightly bigger than a quart) is the base unit for volume, and the gram, g , (about the weight of one raisin) is the base unit for weight. There are six common prefixes that we will study. They are listed in the table below:

Prefix	Meaning	Length	Weight	Volume
kilo-, \mathbf{k}	1000 times	$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{kl}=1000 \mathrm{~L}$
hecto-, h	1000 times	$1 \mathrm{hm}=100 \mathrm{~m}$	$1 \mathrm{hg}=100 \mathrm{~g}$	$1 \mathrm{hl}=100 \mathrm{~L}$
deca-, da	10 times	$1 \mathrm{dam}=10 \mathrm{~m}$	$1 \mathrm{dag}=10 \mathrm{~g}$	$1 \mathrm{dal}=10 \mathrm{~L}$
deci-, \mathbf{d}	11,10 times	$1 \mathrm{dm}=0.1 \mathrm{~m}$	$1 \mathrm{dg}=0.1 \mathrm{~g}$	$1 \mathrm{dl}=0.1 \mathrm{~L}$
centi-, \mathbf{c}	$1 / 100$ times	$1 \mathrm{~cm}=0.01 \mathrm{~m}$	$1 \mathrm{cg}=0.01 \mathrm{~g}$	$1 \mathrm{cl}=0.01 \mathrm{~L}$
milli-, \mathbf{m}	$1 / 1000$ times	$1 \mathrm{~mm}=0.001 \mathrm{~m}$	$1 \mathrm{mg}=0.001 \mathrm{~g}$	$1 \mathrm{ml}=0.001 \mathrm{~L}$

Objective 2: Converting using Unit Conversion Factors
We can us the same approach as the last section to convert within the metric system. Listed below are some common conversions.

Metric System:

(ha - hectares, Pa - Pascals)

Length	Weight/Mass
$1 \mathrm{~cm}=10 \mathrm{~mm}$	$1 \mathrm{~g}=1000 \mathrm{mg}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$
$1 \mathrm{~km}=1000 \mathrm{~m}$	1 metric ton $=1000 \mathrm{~kg}$
Area and Pressure	Volume
$1 \mathrm{ha}=10,000 \mathrm{~m}^{2}$	$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}=1 \mathrm{cc}$
$1 \mathrm{kPa}=1000 \mathrm{~Pa}$	$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}=1000 \mathrm{~mL}$

Convert each unit as indicated:

Ex. $1 \quad$ Convert 0.35 ha to m^{2}.

Solution:

Since 1 ha $=10,000 \mathrm{~m}^{2}$, then
$\frac{0.35 \mathrm{ha}}{1}=\frac{0.35 \mathrm{ha}}{1} \cdot \frac{10000 \mathrm{~m}^{2}}{\mathrm{ha}}=3500 \mathrm{~m}^{2}$.
Ex. 2 Convert 45,000 g to kg.
Solution:
Since $1 \mathrm{~kg}=1000 \mathrm{~g}$, then

$$
\frac{45000 \mathrm{~g}}{1}=\frac{45000 \mathrm{~g}}{1} \bullet \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=45 \mathrm{~kg}
$$

Ex. 3 Convert $\frac{\$ 302}{\mathrm{~L}}$ to $\frac{\$}{\mathrm{cc}}$.
Solution:
Since $1 \mathrm{cc}=1 \mathrm{~mL}$ and $1 \mathrm{~L}=1000 \mathrm{~mL}$, then

$$
\frac{\$ 302}{\mathrm{~L}} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=\frac{\$ 0.302}{\mathrm{~mL}}=\frac{\$ 0.302}{\mathrm{cc}} \approx \frac{\$ 0.30}{\mathrm{cc}}
$$

Ex. 4 Convert $\frac{48 \mathrm{~cm}}{\mathrm{sec}}$ to $\frac{\mathrm{km}}{\mathrm{hr}}$.
Solution:
First, convert sec to hr:

$$
\frac{48 \mathrm{~cm}}{\mathrm{sec}}=\frac{48 \mathrm{~cm}}{\mathrm{sec}} \cdot \frac{3600 \mathrm{sec}}{1 \mathrm{hr}}=\frac{172800 \mathrm{~cm}}{\mathrm{hr}}
$$

Now, convert cm to m:

$$
\frac{172800 \mathrm{~cm}}{\mathrm{hr}}=\frac{172800 \mathrm{~cm}}{\mathrm{hr}} \bullet \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=\frac{1728 \mathrm{~m}}{\mathrm{hr}}
$$

Finally, convert m to km :

$$
\frac{1728 \mathrm{~m}}{\mathrm{hr}}=\frac{1728 \mathrm{~m}}{\mathrm{hr}} \cdot \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=\frac{1.728 \mathrm{~km}}{\mathrm{hr}} \approx 1.7 \mathrm{kph} .
$$

Objective 3: Converting Using the Prefixes.
To convert within the metric system, we list our prefixes from largest to smallest, mark the prefix we are converting from and count how many times we have to move to get to the prefix we are converting to. The number of times and the direction tells us how to move the decimal point in the number to get our answer. Here is what our prefix chart looks like:
k $\mathrm{h} \quad$ da $\underset{\substack{\text { liters } \\ \text { meters }}}{\text { grams }} \quad \mathrm{d} \quad \mathrm{c} \quad \mathrm{m}$

Let's try some examples:

Convert the following:

Ex. $5 \quad$ Convert 56 m to \qquad cm .
Solution:
We start from the base unit and move over two places to the right: $k \quad h \quad d a$ meters d m
$56 \mathrm{~m}=56.00=5,600 \mathrm{~cm}$.
meters
grams
liters
d
m

Ex. $9 \quad$ Convert $\frac{\$ 25}{\mathrm{~kg}}$ to $\frac{\$}{\mathrm{dag}}$.
Solution:
We start from k and move two places to the right:
$\underbrace{\mathrm{k}}_{\text {So, } 1 \mathrm{~kg}=1.00}=100 \mathrm{dag}$ grams da c m
Thus, $\frac{\$ 25}{\mathrm{~kg}}=\frac{\$ 25}{100 \mathrm{dag}}=\frac{\$ 0.25}{\mathrm{dag}}$
Objective 4: Converting between the US and Metric Systems.
In this day and age, the metric system is virtually worldwide. Though there was a strong drive in the 1970's for the U.S. to adopt the metric system, the U.S. never made the transition. Thus, the U.S. is the only major country that does not use the metric system. Since the metric system is accepted in the rest of the world, it is important that we have the ability to convert between the two systems. Here are some useful conversions:

Conversions between the Metric to US Systems:

Length	Weight/Mass
$1 \mathrm{in}=2.54 \mathrm{~cm}$	$1 \mathrm{oz} \approx 28.35 \mathrm{~g}$
$1 \mathrm{ft}=30.48 \mathrm{~cm}=0.3048 \mathrm{~m}$	$1 \mathrm{lb} \approx 0.4536 \mathrm{~kg}=453.6 \mathrm{~g}$
$1 \mathrm{yd}=0.9144 \mathrm{~m}$	$1 \mathrm{~T} \approx 907.2 \mathrm{~kg}=0.9072$ metric T
$1 \mathrm{mi}=1.609344 \mathrm{~km}$	
Area	Volume
$1 \mathrm{in}^{2} \approx 6.4516 \mathrm{~cm}^{2}$	$1 \mathrm{in}^{3} \approx 16.3871 \mathrm{~cm}^{3}$
$1 \mathrm{ft}^{2} \approx 0.09290 \mathrm{~m}^{2}$	$1 \mathrm{ft}^{3} \approx 0.0283168 \mathrm{~m}^{3}$
$1 \mathrm{yd}^{2} \approx 0.8361 \mathrm{~m}^{2}$	$1 \mathrm{ft}^{3} \approx 28.3168 \mathrm{~L}$
	$1 \mathrm{yd}^{3} \approx 0.7646 \mathrm{~m}^{3}$
	$1 \mathrm{fl} \mathrm{oz} \approx 29.574 \mathrm{~cm}^{3}$
	$1 \mathrm{qt} \approx 0.94635 \mathrm{~L}$
	$1 \mathrm{gal} \approx 3.7854 \mathrm{~L}$
Temperature	Pressure
$\mathrm{F}=1.8 \mathrm{C}+32^{\circ}$	$1 \mathrm{psi} \approx 6895 \mathrm{~Pa}=6.895 \mathrm{kPa}$
$\mathrm{C}=\frac{5 \mathrm{~F}-160^{\circ}}{9}$	$1 \mathrm{psf} \approx 47.88 \mathrm{~Pa}=0.04788 \mathrm{kPa}$
	$1 \mathrm{~atm} \approx 101.33 \mathrm{kPa}$

We will use the same techniques of constructing a unit conversion factor to convert between the two systems.

Convert the following:

Ex. 10 Convert 45 mi to \qquad km.
Solution:
Since $1 \mathrm{mi}=1.609344 \mathrm{~km}$, then
$45 \mathrm{mi} \approx \frac{45 \mathrm{mi}}{1} \cdot \frac{1.609344 \mathrm{~km}}{1 \mathrm{mi}}=72.42048 \mathrm{~km} \approx 72 \mathrm{~km}$.
Ex. 11
Convert 6501 g to \qquad lb.

Solution:

Since $1 \mathrm{lb} \approx 453.6 \mathrm{~g}$, then
$6501 \mathrm{~g} \approx \frac{6501 \mathrm{~g}}{1} \cdot \frac{1 \mathrm{lb}}{453.6 \mathrm{~g}}=14.33201 \ldots \mathrm{lb} \approx 14.33 \mathrm{lb}$.
Ex. 12
Convert 84 qt to \qquad L
Solution:
Since $1 \mathrm{qt} \approx 0.94635 \mathrm{~L}$, then
$84 \mathrm{qt} \approx \frac{84 \mathrm{qt}}{1} \bullet \frac{0.94635 \mathrm{~L}}{1 \mathrm{qt}}=79.4934 \mathrm{~L} \approx 79 \mathrm{~L}$.
Ex. 13
Convert 12,192 cm to \qquad ft

Solution:

Since $1 \mathrm{ft}=30.48 \mathrm{~cm}$, then
$12192 \mathrm{~cm}=\frac{12192 \mathrm{~cm}}{1} \cdot \frac{1 \mathrm{ft}}{30.48 \mathrm{~cm}}=400 \mathrm{ft}$.
Ex. 14
Convert 4760 ml to \qquad c.

Solution:

There is no direct conversion between milliliters and cups so we will need to convert this in several steps. If we look at the chart, we see that $1 \mathrm{qt} \approx 0.946 \mathrm{~L}$. In order to use this conversion, we will need to first convert the ml to L :

$$
\begin{aligned}
& (\mathrm{ml} \rightarrow \mathrm{~L}) \quad \mathrm{k} \quad \mathrm{~h} \quad \text { da } \quad \text { liters } \underbrace{}_{\text {So, } 4760 \mathrm{ml}=4760}=4.760 \mathrm{~L} \text { or } 4.760 \mathrm{~L} \\
& (\mathrm{~L} \rightarrow \mathrm{qt}) \quad \text { Now, convert from liters to quarts: } \\
& \text { Since } 1 \mathrm{qt} \approx 0.94635 \mathrm{~L} \text {, then }
\end{aligned}
$$

$$
4.760 \mathrm{~L} \approx \frac{4.76 \mathrm{~L}}{1} \cdot \frac{1 \mathrm{qt}}{0.94635 \mathrm{~L}}=5.02985 \ldots \mathrm{qt}
$$

To minimize the error, we will round off at the end of the problem.
(qt $\rightarrow \mathrm{c}$) Finally, convert from quarts to cups:
Since $1 \mathrm{qt}=4 \mathrm{c}$, then
$5.02985 \ldots$ qt $=\frac{5.02985 \ldots \mathrm{qt}}{1} \bullet \frac{4 \mathrm{c}}{1 \mathrm{qt}}=20.1194 \ldots \mathrm{c} \approx 20.1 \mathrm{c}$.
Ex. 15

$$
\text { Convert } \frac{92.0 \mathrm{floz}}{\mathrm{yd}^{2}} \text { to } \frac{\mathrm{mL}}{\mathrm{~m}^{2}} \text {. }
$$

Solution:
(fl oz $\rightarrow \mathrm{mL}\left(\mathrm{cm}^{3}\right)$) First, convert from fl ounces to cu centimeters:
Since $1 \mathrm{fl} \mathrm{oz} \approx 29.574 \mathrm{~cm}^{3}$, then
$\frac{92.0 \mathrm{floz}}{\mathrm{yd}^{2}} \approx \frac{92.0 \mathrm{floz}}{\mathrm{yd}^{2}} \cdot \frac{29.574 \mathrm{~cm}^{3}}{1 \mathrm{floz}}=\frac{2720.808 \mathrm{~cm}^{3}}{\mathrm{yd}^{2}}=\frac{2720.808 \mathrm{~mL}}{\mathrm{yd}^{2}}$
$\left(y d^{2} \rightarrow m^{2}\right)$ Now, convert the square yards to square meters:
Since $1 \mathrm{yd}^{2} \approx 0.8361 \mathrm{~m}^{2}$, then

$$
\frac{2720.808 \mathrm{~mL}}{\mathrm{yd}^{2}} \cdot \frac{1 \mathrm{yd}^{2}}{0.8361 \mathrm{~m}^{2}}=\frac{3254.16577 \ldots \mathrm{~mL}}{\mathrm{~m}^{2}} \approx \frac{3250 \mathrm{~mL}}{\mathrm{~m}^{2}} .
$$

Ex. $16 \quad$ Convert $\frac{\$ 8.93}{\mathrm{~kg}}$ to $\frac{\$}{\mathrm{oz}}$.
Solution:
($\mathrm{kg} \rightarrow \mathrm{lb}$) First, convert from kilograms to pounds:
Since $1 \mathrm{lb}=0.4536 \mathrm{~kg}$, then

$$
\frac{\$ 8.93}{\mathrm{~kg}} \approx \frac{\$ 8.93}{\mathrm{~kg}} \bullet \frac{0.4536 \mathrm{~kg}}{1 \mathrm{lb}}=\frac{\$ 4.050648}{\mathrm{lb}} .
$$

($\mathrm{lb} \rightarrow \mathrm{oz}$) Now, convert the pounds to ounces:
Since $16 \mathrm{oz}=1 \mathrm{lb}$, then

$$
\frac{\$ 4.050648}{\mathrm{lb}} \cdot \frac{1 \mathrm{bb}}{16 \mathrm{oz}}=\frac{\$ 0.2531655}{\mathrm{oz}} \approx \frac{\$ 0.25}{\mathrm{oz}} .
$$

Ex. 17 Convert $50^{\circ} \mathrm{F}$ to ___ C .

Solution:
Plug 50° in for F in the formula
$C=\frac{5 \mathrm{~F}-160^{\circ}}{9}$ and solve:
$C=\frac{5\left(50^{\circ}\right)-160^{\circ}}{9}=\frac{250^{\circ}-160^{\circ}}{9}$
$=\frac{90^{\circ}}{9}=10^{\circ} \mathrm{C}$.

Ex. 18 Convert $81.0^{\circ} \mathrm{C}$ to __ F . Solution:
Plug 81° in for C in the
formula $F=1.8 \mathrm{C}+32^{\circ}$ and
solve: $F=1.8\left(81.0^{\circ}\right)+32^{\circ}$
$=145.8^{\circ}+32^{\circ} \approx 178^{\circ} \mathrm{F}$.

