Sect 5.2 - US System of Measurement

Objective 1: The Unit Conversion Factor

In this section, we will be working with the U.S. system of measurement and converting between various units. To convert from one unit to another unit, we will use unit conversion factors. To form a unit conversion factor, we start with a conversion fact (i.e., $1 \mathrm{ft}=12 \mathrm{in}$) and divide both sides by the value on one side of the conversion fact. If we use $1 \mathrm{ft}=12 \mathrm{in}$, we can divide both sides by 12 in to get:

$$
\begin{gathered}
\frac{1 \mathrm{ft}}{12 \mathrm{in}}=\frac{12 \mathrm{in}}{12 \mathrm{in}} \\
\frac{1 \mathrm{ft}}{12 \mathrm{in}}=1
\end{gathered}
$$

Notice that $\frac{1 \mathrm{ft}}{12 \mathrm{in}}$ is the same as one, so if we needed to convert 48 in into ft , we can multiply 48 in by this unit conversion factor. It does not change the value of 48 in since we are multiply by a form of one:

$$
48 \mathrm{in}=48 \mathrm{in} \bullet 1=\frac{48 \mathrm{in}}{1} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=\frac{48 \mathrm{iv}}{1} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{~N}}=\frac{48}{12} \mathrm{ft}=4 \mathrm{ft} .
$$

Notice that the inches divide out. We always set-up our unit conversion factors so that the units we are converting from divide out. So, if we had to convert from ft to in, we would use $\frac{12 \mathrm{in}}{1 \mathrm{ft}}$ so that the ft would divide out, leaving our answer in inches. Here are some common conversions within the U.S. system of measurement:

US System of Measurement

(fur - furlong, bu - bushel, psi - pounds per in ${ }^{2}$, atm - Earth's atmosphere)

Length	Time
$1 \mathrm{ft}=12 \mathrm{in}$	$1 \mathrm{~min}=60 \mathrm{sec}$
$1 \mathrm{yd}=3 \mathrm{ft}=36 \mathrm{in}$	$1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{sec}$
$1 \mathrm{mi}=5280 \mathrm{ft}=1760 \mathrm{yd}=8$ fur	1 day $=24 \mathrm{hr}$
$1 \mathrm{rod}=16 \frac{1}{2} \mathrm{ft}=5 \frac{1}{2} \mathrm{yd}$	1 year $=365$ days

Area	Volume
$1 \mathrm{ft}^{2}=144 \mathrm{in}^{2}$	$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}$
$1 \mathrm{yd}^{2}=9 \mathrm{ft}^{2}=1296 \mathrm{in}^{2}$	$1 \mathrm{gal}=231 \mathrm{in}^{3}$
$1 \mathrm{rod}^{2}=30.25 \mathrm{yd}^{2}$	$1 \mathrm{bu} \approx 2150.42 \mathrm{in}^{3} \approx 1.24446 \mathrm{ft}^{3}$
$1 \mathrm{acre}^{2}=160 \mathrm{rod}^{2}=4840 \mathrm{yd}^{2}$	$1 \mathrm{pt}=28.875 \mathrm{in}^{3}$
$1 \mathrm{acre}^{2}=43,560 \mathrm{ft}^{2}$	$1 \mathrm{yd}^{3}=27 \mathrm{ft}^{3}=46,656 \mathrm{in}^{3}$
$1 \mathrm{mi}^{2}=640$ acres	$1 \mathrm{fl} \mathrm{oz}^{0} \approx 1.805 \mathrm{in}^{3}$
	$1 \mathrm{ft}^{3} \approx 7.48052 \mathrm{gal}$
Liquid Capacity	Weight and Other
$1 \mathrm{c}=8 \mathrm{fl}$ oz	$1 \mathrm{lb}=16 \mathrm{oz}$
$1 \mathrm{pt}=2 \mathrm{c}$	1 ton $=2000 \mathrm{lb}$
$1 \mathrm{qt}=2 \mathrm{pt}=4 \mathrm{c}$	$1 \mathrm{~atm}=14.7 \mathrm{psi}$
$1 \mathrm{gal}=4 \mathrm{qt}$	

Convert each unit as indicated:

Ex. 1
 Solution:

Since $1 \mathrm{yd}=3 \mathrm{ft}$, we want to write our unit conversion factor with
1 yd on the bottom:
$10.5 \mathrm{yd}=\frac{10.5 \mathrm{yd}}{1} \bullet \frac{3 \mathrm{ft}}{1 \mathrm{yd}}=\frac{10.5 \mathrm{yd}}{1} \bullet \frac{3 \mathrm{ft}}{1 \mathrm{yd}}=\frac{31.5}{1} \mathrm{ft}=31.5 \mathrm{ft}$
Ex. 2 Convert 177408 in to \qquad mi.

Solution:
First use 12 in $=1 \mathrm{ft}$ to convert the inches to feet:
177408 in $=\frac{177408 \mathrm{in}}{1} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=\frac{177408 \mathrm{ft}}{12}=14,784 \mathrm{ft}$
Now, use $5280 \mathrm{ft}=1$ mi to convert $14,784 \mathrm{ft}$ into mi:
$14,784 \mathrm{ft}=\frac{14784 \mathrm{ft}}{1} \cdot \frac{1 \mathrm{mi}}{5280 \mathrm{ft}}=\frac{14784}{5280} \mathrm{mi}=2.8 \mathrm{mi}$.
Ex. 3
Convert 4.8 ton to \qquad lb.
Solution:
Use 1 ton $=2000 \mathrm{lb}$ to convert the tons to lbs:
4.8 ton $=\frac{4.8 \text { ton }}{1} \cdot \frac{2000 \mathrm{lb}}{1 \text { ton }}=9600 \mathrm{lb}$.

Ex. $4 \quad$ Convert $\frac{\$ 9.12}{\mathrm{lb}}$ to $\frac{\$}{\mathrm{oz}}$
Solution:
Use $1 \mathrm{lb}=16 \mathrm{oz}$ to convert the lb to oz. When writing the unit conversion factor, the 1 lb goes on top so that the lbs divide out:
$\frac{\$ 9.12}{\mathrm{lb}}=\frac{\$ 9.12}{\mathrm{lb}} \cdot \frac{1 \mathrm{bb}}{16 \mathrm{oz}}=\frac{\$ 9.12}{16 \mathrm{oz}}=\frac{\$ 0.57}{\mathrm{oz}}$.
Ex. 5 Convert 85 qt to \qquad gal
Solution:
Use $4 \mathrm{qt}=1 \mathrm{gal}$ to convert the qt to gal:
$85 \mathrm{qt}=\frac{85 \mathrm{qt}}{1} \cdot \frac{1 \mathrm{gal}}{4 \mathrm{qt}}=\frac{85}{4} \mathrm{gal}=21.25 \mathrm{gal} \approx 21 \mathrm{gal}$.

Objective 2: Converting Compound Units

Compound units are made of two or more simple units. Example \#4, is example of a compound unit since we are converting from $\$$ per lb to \$ per oz. Let's try some conversions with compound units

Ex. $6 \quad$ Convert $\frac{\$ 2.45}{\mathrm{pt}}$ to $\frac{\$}{\mathrm{floz}}$.
Solution:
First, use $1 \mathrm{pt}=2 \mathrm{c}$ to convert pt to c :

$$
\frac{\$ 2.45}{\mathrm{pt}}=\frac{\$ 2.45}{\mathrm{pt}} \cdot \frac{1 \mathrm{pt}}{2 \mathrm{c}}=\frac{\$ 2.45}{2 \mathrm{c}}=\frac{\$ 1.225}{\mathrm{c}} .
$$

Now, use $1 \mathrm{c}=8 \mathrm{fl} \mathrm{oz}$ to convert c to floz.

$$
\frac{\$ 1.225}{c}=\frac{\$ 1.225}{c} \cdot \frac{1 c}{8 \text { floz }}=\frac{\$ 1.225}{8 \text { floz }}=\frac{\$ 0.153125}{\text { floz }} \approx \frac{\$ 0.15}{\text { floz }} .
$$

Ex. $7 \quad$ Convert $\frac{\$ 9.27}{\mathrm{yd}^{2}}$ to $\frac{\$}{\mathrm{ft}^{2}}$.

Solution:

Use $9 \mathrm{ft}^{2}=1 \mathrm{yd}^{2}$ to convert ft^{2} to $\mathrm{yd}^{2}: \frac{\$ 9.27}{\mathrm{yd}^{2}} \bullet \frac{\mathrm{yd}^{2}}{9 \mathrm{ft}^{2}}=\frac{\$ 9.27}{9 \mathrm{ft}^{2}}=\frac{\$ 1.03}{\mathrm{ft}^{2}}$.
Ex. $8 \quad$ Convert $\frac{3.0 \mathrm{bu}}{\text { acre }}$ to $\frac{\mathrm{in}^{3}}{\mathrm{ft}^{2}}$
Solution:
First, use 1 bu $=2150.42$ in 3 to convert bu to in ${ }^{3}$:

$$
\frac{3.0 \mathrm{bu}}{\text { acre }}=\frac{3.0 \mathrm{bu}}{\text { acre }} \cdot \frac{2150.42 \mathrm{in}^{3}}{\text { bu }}=\frac{6451.26 \mathrm{in}^{3}}{\text { acre }} .
$$

Now, use 1 acre $=43,560 \mathrm{ft}^{2}$ to convert acre to ft^{2} :

$$
\frac{6451.26 \mathrm{in}^{3}}{\text { acre }} \cdot \frac{1 \mathrm{acre}}{43,560 \mathrm{ft}^{2}}=0.14810 \ldots \frac{\mathrm{in}^{3}}{\mathrm{ft}^{2}} \approx \frac{0.15 \mathrm{in}^{3}}{\mathrm{ft}^{2}} .
$$

We always wait until the end to round to the appropriate significant digits.

$$
\text { Ex. } 9 \quad \text { Convert } \frac{6.6 \mathrm{ft}}{\mathrm{sec}} \text { into } \frac{\mathrm{mi}}{\mathrm{hr}} .
$$

Solution:
First, use $1 \mathrm{hr}=3600 \mathrm{sec}$ to convert the sec to hr :
$\frac{6.6 \mathrm{ft}}{\mathrm{sec}} \bullet \frac{3600 \mathrm{sec}}{\mathrm{hr}}=\frac{23760 \mathrm{ft}}{\mathrm{hr}}$
Now, use $1 \mathrm{mi}=5280 \mathrm{ft}$ to convert the ft to mi :

$$
\frac{23760 \mathrm{ft}}{\mathrm{hr}} \cdot \frac{1 \mathrm{mi}}{5280 \mathrm{ft}}=\frac{4.5 \mathrm{mi}}{\mathrm{hr}}=4.5 \mathrm{mph} .
$$

Solve the following:

Ex. 10 The pressure in a sealed chamber is1.323 ton per sq ft. How does that compare to the Earth's atmosphere?
Solution:
We want to convert $\frac{\text { ton }}{\mathrm{ft}^{2}}$ to atm. In examining our chart, we see that
$1 \mathrm{~atm}=14.7 \mathrm{psi}\left(\frac{\mathrm{lb}}{\mathrm{in}^{2}}\right)$ so we will need to first convert from $\frac{\text { ton }}{\mathrm{ft}^{2}}$ to $\frac{\mathrm{lb}}{\mathrm{in}^{2}}$.
Since 1 ton $=2000 \mathrm{lb}$, then:
$\frac{1.323 \text { ton }}{\mathrm{ft}^{2}}=\frac{1.323 \mathrm{ton}}{\mathrm{ft}^{2}} \cdot \frac{2000 \mathrm{lb}}{\text { ton }}=\frac{2646 \mathrm{lb}}{\mathrm{ft}^{2}}$
But, $1 \mathrm{ft}^{2}=144 \mathrm{in}^{2}$, so
$\frac{2646 \mathrm{lb}}{\mathrm{ft}^{2}}=\frac{2646 \mathrm{lb}}{\mathrm{ft}^{2}} \cdot \frac{1 \mathrm{ft}^{2}}{144 \mathrm{in}^{2}}=\frac{18.375 \mathrm{lb}}{\mathrm{in}^{2}}$ or 18.375 psi
Now, we can use $1 \mathrm{~atm}=14.7$ psi to convert:
$18.375 \mathrm{psi}=\frac{18.375 \mathrm{psi}}{1} \cdot \frac{1 \mathrm{~atm}}{14.7 \mathrm{psi}}=1.25 \mathrm{~atm}$.
Thus, the pressure in the chamber is 1.25 times the Earth's atmosphere.

Objective 3 Understanding Lumber Measurement
The amount of volume of lumber is measured in board feet. One board foot (bf) is a piece of wood that has an area of 1 square foot and a thickness of 1 inch. If a board is less than 1 inch thick, we round the thickness to 1 inch.

1 bf = thickness in inches \times length in feet \times width in feet

Solve the following:

Ex. 11 A carpenter purchases 28 boards of lumber measuring $\frac{7}{8}$ in by 12 ft by 4 in . How many board feet did she buy? Solution:
Before we calculate the board feet, the width needs to be converted into feet:
4 in $=\frac{4 \text { in }}{1} \cdot \frac{1 \mathrm{ft}}{12 \text { in }}=\frac{1}{3} \mathrm{ft}$
Since the thickness is less than an inch, we will round it to 1 inch.
Thus, the number of board feet for each piece is:
1 in $\bullet \frac{1}{3} \mathrm{ft} \bullet 12 \mathrm{ft}=4 \mathrm{bf}$
Since there were 28 boards, then the total board feet is

$$
28 \bullet 4 \text { bf }=112 \text { bf }
$$

So, the carpenter bought 112 bf.

