Sect 4.4 - Percent Problems

Objective 1: Understanding the basic percent proportion.
Recall the following example from a previous section:

a) What percent of the figure is shaded?

Solution:

a) Since 6 out of eight slices are shaded, then the fraction that is shaded is $\frac{6}{8}=\frac{3}{4}$. To find the percent, we need to find the numerator of the fraction that has a denominator of 100:
$\frac{3}{4}=\frac{p}{100} \quad$ (cross multiply)
$300=4 p \quad$ (divide by 4)
$\mathrm{p}=75 \%$.
So, 75% of the pie is shaded.
Since $\frac{6}{8}$ reduces $\frac{3}{4}$, we can look at the figure as having 3 out of 4 parts shaded:

Notice that the part shaded (amount) over the whole (base) was equal to the percent over 100:

$$
\frac{\text { Amount (part) }}{\text { Base (whole) }} \quad \frac{3}{4}=\frac{p}{100} \quad \frac{\text { Percent }}{100}
$$

Since the amount (part) is a percent of the base (whole), this gives us a way to set-up and solve percent problems.

The percent proportion:

In the equation amount is a percent of the base, we can put the
quantities into the proportion:

$$
\frac{\text { amount }}{\text { base }}=\frac{\text { percent }}{100}
$$

Then, we can cross multiply and solve.
The amount is always associated with the word "is", the base with the word "of" and the percent is always over 100, so the following is a helpful way to remember how to set-up the proportion:

$$
\begin{aligned}
& \text { "is" } \\
& \text { "of" } \frac{\text { amount }}{\text { base }}=\frac{\text { percent }}{100} \text { " } 100 \text { " }
\end{aligned}
$$

Keep in mind the "is" over "of" goes alphabetically, so the "is" is on top and the "of" is on the bottom.

Solve the following using the percent proportion:

Ex. $1 \quad$ What is 65% of 820 ?
Solution:
The base (whole) is 820 , the percent is 65%, so we are looking for the amount (part):

$$
\begin{aligned}
& \text { "is" } \frac{A}{820}=\frac{65}{100} \\
& \text { "\%" } \\
& \frac{\mathrm{A}}{820}=\frac{65}{100} \quad \text { (cross multiply) } \\
& \text { A•100 }=820 \bullet 65 \text { (simplify) } \\
& 100 \mathrm{~A}=53300 \quad \text { (divide by 100) } \\
& \frac{100 A}{100}=\frac{53300}{100} \\
& A=533 \text {. }
\end{aligned}
$$

Ex. $2 \quad$ What is 35% of 95 ?
Solution:
The base (whole) is 95 , the percent is 35%, so we are looking for the amount (part):

$$
\begin{array}{ll}
\text { "is" } \\
\text { "of" } & \frac{\mathrm{A}}{95}=\frac{35}{100}
\end{array}
$$

$$
\frac{A}{95}=\frac{35}{100} \quad \text { (cross multiply) }
$$

$$
\begin{array}{ll}
A \bullet 100=95 \bullet 35 & \text { (simplify) } \\
100 A=3325 & \text { (divide by 100) } \\
\frac{100 A}{100}=\frac{3325}{100} \\
A=33.25
\end{array}
$$

Ex. $3 \quad 2280$ is 38% of what?
Solution:
The amount (part) is 2280 , the percent is 38%, so we are looking for the base (whole):

$$
\begin{aligned}
& \begin{array}{ll}
\text { "is" } \\
\text { "of" } & \frac{2280}{B}=\frac{38}{100} \quad \text { "\%" }
\end{array} \\
& \frac{2280}{B}=\frac{38}{100} \quad \text { (cross multiply) } \\
& 2280 \cdot 100=\mathrm{B} \cdot(38) \\
& 228000=38 \mathrm{~B} \\
& \frac{228000}{38}=\frac{38 B}{38} \\
& B=6000 \text {. }
\end{aligned}
$$

Ex. $4 \quad 250 \%$ of what is $200 ?$
Solution:
The amount (part) is 200, the percent is 250%, so we are looking for the base (whole):

$$
\begin{aligned}
& \text { "is" } \frac{200}{B}=\frac{250}{100} \quad \text { " } 100 \text { " } \\
& \frac{200}{B}=\frac{250}{100} \quad \text { (cross multiply) } \\
& 200 \cdot 100=\mathrm{B} \cdot 250 \quad \text { (simplify) } \\
& 20000=250 B \\
& \underline{20000}=\underline{250 B} \\
& 250250 \\
& B=80 \text {. }
\end{aligned}
$$

Ex. $5 \quad$ What percent of 54 is 45 ?
Solution:
The amount (part) is 45 , the base (whole) is 54 , so we are looking for the percent:

$$
\begin{array}{lll}
\text { "is" } & \frac{45}{54}=\frac{p}{100} & \text { "\%" } \\
\text { "of" } & \text { "100" } \\
& \frac{45}{54}=\frac{p}{100} & \text { (cross multiply) }
\end{array}
$$

$$
45 \cdot 100=54 \bullet p \quad \text { (simplify) }
$$

$$
4500=54 p \quad \text { (divide by } 54)
$$

$$
\frac{4500}{54}=\frac{54 p}{54}
$$

$$
p=83 . \overline{3} \% \text { or } 83 \frac{1}{3} \%
$$

Ex. $6 \quad 200$ is what percent of 500?
Solution:
The amount (part) is 200 , the base (whole) is 500 , so we are looking for the percent:

$$
\begin{array}{lll}
\text { "is" } & \frac{200}{500}=\frac{p}{100} & \text { "\%" } \\
\text { "of" } & \text { "100" } \\
& \frac{200}{500}=\frac{p}{100} & \text { (cross multiply) } \\
& 200 \bullet 100=500 \bullet p & \text { (simplify) } \\
20000=500 \mathrm{p} & \text { (divide by } 50 \\
\frac{20000}{500}=\frac{500 p}{500} & \\
p=40 \%
\end{array}
$$

Objective 2: Solving applications using the percent proportion.
The key to solve applications with percents is distilling the problem down into a simple sentence like the sentences we solved in section 6.4. We will start by identifying the amount, the percent, and the base and filling in the basic sentence: Amount is a Percent of the Base Afterwards, we will set-up the percent proportion and solve the problem.

Solve the following:

Ex. 7 The profits from Sink Stopper Plumbing Company fell by $\$ 13,950$ or 45% this year. What profit did they turn last year?
Solution:
The drop in profits $(\$ 13,950)$ is 45% of last year's profit. Thus, $\$ 13,950$ is 45% of last year's profit
So, we are looking for the base:

$$
\begin{array}{lll}
\frac{\text { "is" }}{\text { "of" }} & \frac{13950}{B}=\frac{45}{100} & \frac{\text { "\%" }}{100} \quad \text { (cross multiply) } \\
13950(100)=B(45) & \\
45 B=1395000 & \text { (divide by 45) } \\
B=31000 &
\end{array}
$$

Therefore, last year's profit was $\$ 31,000$.
Ex. 8 Katz's Catering Service needs 48 pounds of fresh mixed greens to make salads for a banquet. Since the catering service will lose some of the fresh mixed to spoilage, they order 60 pounds of mixed greens. What percent of the greens is the Catering Service expecting to lose to spoilage?
Solution:
The amount lost to spoilage is $60-48=12$ pounds.
The amount spoiled (12 lb) is $\mathrm{p} \%$ of the order $(60 \mathrm{lb})$. Thus,
12 is $\mathrm{P} \%$ of 60
Hence, we are looking for the percent:

$$
\begin{array}{ll}
\frac{\text { "is" }}{\text { "of" }} \frac{12}{60}=\frac{\mathrm{P}}{100} & \frac{\text { "\%" }}{100} \\
12(100)=60 \mathrm{P} & \text { (cr } \\
1200=60 \mathrm{P} & \text { (divide by } 60 \text {) } \\
P=20 \% &
\end{array}
$$

So, 20% of the mixed greens will be lost to spoilage.
Ex. 9 The Great Wall Building Company submits a bid of \$12,560,000 on the repair of a bridge. If 35% of the bid includes material costs, how much of the bid was for material costs?

Solution:

The material cost is 35% of the bid $(\$ 12,560,000)$. Thus, The material cost is 35% of 12560000
So, we are looking for the amount:

$$
\frac{\text { "is" }}{\text { "of" }} \quad \frac{A}{12560000}=\frac{35}{100} \quad \frac{\text { "\%" }}{100} \quad \text { (cross multiply) }
$$

$$
\begin{aligned}
& 100 A=12560000(35) \\
& 100 A=439600000 \\
& A=4396000
\end{aligned}
$$

Hence, the material cost was $\$ 4,396,000$.
Ex. 10 The volumetric efficiency of a certain engine is 87.3% meaning that the actual airflow is 87.3% of the theoretic airflow. If the actual airflow is 239.4 cfm (cubic feet per minute), what is the theoretic airflow of this engine (to the nearest tenth)?
Solution:
The actual airflow (239.4 cfm) is 87.3% of the theoretic airflow. Thus, 239.4 is 87.3% of the theoretic airflow

So, we are looking for the base:

$$
\frac{\text { "is" }}{\text { "of" }} \quad \frac{239.4}{\mathrm{~B}}=\frac{87.3}{100} \quad \frac{\text { "\%" }}{100} \quad \text { (cross multiply) }
$$

$$
239.4(100)=b(87.3)
$$

$$
87.3 \mathrm{~B}=23940 \quad \text { (divide by 87.3) }
$$

$$
B=274.226 \ldots \approx 274.2
$$

Hence, the theoretic airflow is 274.2 cfm.
Ex. 11 An electrician needs to install a fuse for a new motor with a current of 65 amperes. If the fuse must be rated at 180% of the motor current, what size fuse will the electrician need?

Solution:

The fuse size is 180% of the motor current (65 amp). Thus, The fuse size is 180% of 65
So, we are looking for the amount:

$\frac{\text { "is" }}{\text { "of" }}$	$\frac{A}{65}=\frac{180}{100}$	$\frac{\text { "\%" }}{100}$	(cross multiply)
$100 A=65(180)$			
$100 A=11700$	(divide by 100)		
$A=117$			

Hence, the fuse size needs to be 117 amperes.
Ex. 12 If six ounces of pure acid is mixed with thirty-four ounces of water, what is the percent concentration of acid in the resulting solution?

Solution:

The total amount of the resulting solution is $6 \mathrm{oz}+34 \mathrm{oz}=40 \mathrm{oz}$. The amount of acid (6 oz) is P\% of the total solution (40 oz). Hence,

6 is $\mathrm{P} \%$ of 40
Thus, we are looking for the percent:
$\begin{array}{ll}\text { "is" } & \frac{6}{40}=\frac{P}{100} \quad \frac{\text { "\%" }}{100} \quad \text { (cross multiply) }\end{array}$
$6(100)=40 \mathrm{P}$
$40 \mathrm{P}=600 \quad$ (divide by 40)
$P=15 \%$
So, the solution is 15% acid.
Ex. 13 Juanita made a down payment of $\$ 36,480$ on the purchase of new home. If this was 24% of the cost of the new home, find the cost of the new home.
Solution:
The money down ($\$ 36,480$) is 24% of the cost of the house. Thus, 36480 is 24% of the cost of the house
So, we are looking for the base:

$$
\frac{\text { "is" }}{\text { "of" }} \quad \frac{36480}{\mathrm{~B}}=\frac{24}{100} \quad \frac{\text { "\%" }}{100} \quad \text { (cross multiply) }
$$

$36480(100)=b(24)$
$24 \mathrm{~B}=3648000 \quad$ (divide by 24)
$B=152000$
Hence, the cost of the house was $\$ 152,000$.
Ex. 14 Out of 4000 microchips produced, 72 microchips were found to be defective. What percent of the chips produce were defective?
Solution:
The defective chips (72 chips) is $\mathrm{P} \%$ of the total (4000 chips). Hence, 72 is $\mathrm{P} \%$ of 4000
Thus, we are looking for the percent:

$$
\begin{array}{lll}
\frac{\text { "is" }}{\text { "of" }} \quad \frac{72}{4000}=\frac{P}{100} & \frac{\text { "\%" }}{100} \quad \text { (cross multiply) } \\
72(100)=4000 \mathrm{P} & \\
4000 \mathrm{P}=7200 & \text { (divide by } 4000 \text {) } \\
P=1.8 \% &
\end{array}
$$

So, 1.8% of the chips produced were defective.

