
RSA ClearTrust 4.7
Developer’s Guide

Last Revised: March 8, 2002 11:34

Contact Information

See our Web sites for regional Customer Support telephone and fax numbers.

Trademarks

ACE/Agent, ACE/Server, BSAFE, ClearTrust, JSAFE, Keon, RC2, RC4, RC5, RSA, SecurCare, SecurID, SoftID and WebID are registered
trademarks, and BCERT, Because Knowledge is Security, RC6, RSA Security, RSA Secured, SecurWorld, The Most Trusted Name in e-
Security, the RSA logo and the RSA Secured logo are trademarks of RSA Security Inc.

Other product and company names mentioned herein may be the trademarks of their respective owners.

License agreement

This software and the associated documentation are proprietary and confidential to RSA Security, are furnished under license, and may be
used and copied only in accordance with the terms of such license and with the inclusion of the copyright below. This software and any
copies thereof may not be provided or otherwise made available to any other person.

Note on encryption technologies

This product may contain encryption technology. Many countries prohibit or restrict the use, import, or export of encryption technologies,
and current use, import, and export regulations should be followed when exporting this product.

Distribution

Limit distribution of this document to trusted personnel.

© RSA Security 2002. All Rights Reserved.

First Printing: March 2002

P/N 3503A0

RSA Security, Inc.
www.rsasecurity.com

RSA Security Ireland Limited
www.rsasecurity.ie

www.rsasecurity.com
www.rsasecurity.ie

RSA ClearTrust Developer’s Guide
Contents
Preface... viii

About This Guide ... viii
Related Documentation .. ix

Document Conventions ... ix
Typographical Conventions ...x
Comment Icons ... xi

Getting Support and Service... xi

Chapter 1: Overview of the RSA ClearTrust APIs1
The RSA ClearTrust APIs ...1
The Administrative API ...2
The Runtime API ..4
The WAX API ...4
Coding Recommendations ...4

Multithreaded Programming ..5
Using the RSA ClearTrust API Efficiently..5

Chapter 2: Installing the RSA ClearTrust APIs ...7
Installing APIs on Windows..7
Installing APIs on Solaris ..9

Chapter 3: Administrative C API ..11
This Chapter ...11
Installing and Compiling..12

Location ...12
Sample Code ...12
Header Files ..12
API Libraries ..13
Building for UNIX...14
Building for Windows 2000 and NT...14

Initialization and Login Operations..15
Initialization ..15
Login ..16
Connecting With and Without SSL...17

The Functions of ct_commands.h...18
Functions For Loading Objects..18
Administrative Functions..18
Password Setting Functions..19
Deprecated Runtime-Type Functions ...19

Administrative Objects...20
Administrative Group (VBU) ..20
ii

RSA ClearTrust Developer’s Guide
Administrative User...24
Administrative Role...25
Password Policy ...27

Participants ...28
CT_EntityHdr Struct ...28
Groups..29
Users ..31
User Properties ...33
User Property Definitions ...33
Deprecated Structure: Realms..35

Policy Objects ..36
Basic Entitlements ...36
SmartRules ..40

Resources..42
Applications ..42
Application Functions ...44
Application URLs ..44
Web Servers ..45
Server Trees ..46

Searching ..47
Permissions ..52
Object Utilities...54
Error Codes ..54
Memory Management in the C API ...56

Memory Management when Getting API Objects..56
Memory Management when Modifying an API Object57
Memory Management when Creating API Objects..57

Sample Code ..60
AdminUser.c ...60

Chapter 4: Administrative Java API ...67
This Chapter ...67
Installing and Compiling..68

Compiling Applications ..68
APIServerProxy...69

APIServerProxy Method Reference..69
Connecting an APIServerProxy Client ...72
Disconnecting an APIServerProxy Client ..74
Connection Example ...74

Administration Objects ..78
Administrative Group..78
Administrative User...80
iii

RSA ClearTrust Developer’s Guide
Administrative Role...82
Password Policy ...85

Participants ...87
Groups..87
Users ..89
User Properties ...91
User Property Definitions ...91
Deprecated Interface: IRealm ..93

Policy Objects ..94
Basic Entitlements (Explicit Entitlements) ..94
SmartRules ..95

Resources..96
Applications ..96
Application Functions ...97
Application URLs ..99
Web Servers ..99
Server Trees ..101

Utility Classes ..102
ISparseData ...102

Permissions ..103
Criteria ..105

Boolean Criterion ...105
Date Criterion ...105
Float Criterion ..106
Integer Criterion ...106

Searching ..106
Administrative Group Search...107
Application Search...107
Group Search ..107
Deprecated: Realm Search..108
User Property Definition Search..108
Web Server Search...108
User Search ...109

Examples ..110
User Example ...110
User Property Example ...113
Application Function Example ..120
SmartRule Example ...123
User Search Example ..127
iv

RSA ClearTrust Developer’s Guide
Chapter 5: Runtime C API ..131
This Chapter ...131
C Runtime API Overview ..131

Authentication ..132
Authorization ..132
SSO Token Manipulation ...133
User Property Retrieval...133

Installing and Compiling..134
Location ...134
Header Files ..134

Connecting a Runtime C API Client ..135
SSL and Non-SSL Connection Options ...136
Access to Tokens and User Properties..136
Connection Pool Functions and Keys ...138

Runtime C API Reference ...141
Client Keys..141
Authentication Types ..145
Runtime Functions ...149
Maps...151

Examples ..153
RSA SecurID Authentication Example ..153

Chapter 6: Runtime Java API ...157
This Chapter ...157
Overview ..158

What the Runtime API Does ..158
Runtime API Relies on Authorization Servers..160
Runtime API Calls Are Threadsafe...160
Runtime API vs. Administrative API ...160

Installing and Compiling..161
Compiling Applications ..161

Client Connection Options...162
Access to Tokens and User Properties..162
Connecting Over Authenticated SSL ..164
Connecting Over Anonymous SSL ...166
Connecting Without SSL ..166

Packages ...167
Interfaces ..167

Interface RuntimeAPI..167
Interface UserConstants ..169
Interface TokenKeys ...169
Interface AuthTypes ..169
v

RSA ClearTrust Developer’s Guide
Interface ResourceConstants ..170
Interface ResultConstants ...170
Interface CredentialConstants ..170

Runtime API Classes ..171
Class APIFactory ...171
Class ServerDescriptor..171

Examples ..172
Runtime API Example Without SSL ..172
Runtime API Example With SSL..177
RSA SecurID Authentication Example ..183

Chapter 7: Administrative and Runtime DCOM API...........................189
Requirements ...189
Installing the DCOM API ..190
Using the DCOM API ..194

Instantiating and Connecting..194
Getting Objects...195
Making RSA ClearTrust API Calls ...195

Classes in the sirrus.api.com Package..196
SecurantDCOMFactory ..196
AuthTypesClass ...196
ResourceConstantsClass ...196
ResultConstantsClass ..197
UserConstantsClass ...197
UserPropertyTypesClass...197

DCOM API Example Code ...198
DCOM Runtime API example ...198
ASP page, create user ..200
ASP page, get users list...201

Chapter 8: Web Agent Extension API ...203
Overview ..203
Extending the Web Server Agent ...204
How an Agent Processes a URI Request ..205
Agent Phase Handlers...207

Path Check Handler ...207
Session Handler..207
Pre-Authentication Handler..208
Authentication Handler ...208
Authorization Handler...209
Cookie Handler ..210
vi

RSA ClearTrust Developer’s Guide
Writing a WAX Program ...212
Overview ...212
WAX API Headers ..212
WAX API Libraries...213
Registering a WAX Program ...213
Writing a WAX Method ...213
Registering a WAX Method...214
Invoking a WAX Authentication Method ..215
Compiling and Linking a WAX Program ..215

WAX Examples...218
Cookie Data Example..218
Custom Authentication Example...221
Custom Error Pages Example ..224

WAX API Reference ..227
The ct_wax_init Initialization Method ...227
ct_extension_init ..228
Hash Table Functions ..228
Memory Management ...228
Printing Status and Debug Information ..229
Request Data ...229
Status Handler ..231
Loading Parameter Settings..233
Using WAX Programs with Virtual Host-Enabled Servers233

Chapter 9: Customizing Your Web Environment.................................235
Personalizing the Environment ...235

Creating Personalized Content...236
RSA ClearTrust Environment Variables ...236

Details ..237
Contents of the RSA ClearTrust Cookie ...239

Changing the Cookie Name ...239
Writing ASP and JSP Pages ..240

RSA ClearTrust Parameter Names..240
Password Changer Example ...240

HTTP Header Parameters ..253

Index ..255
vii

RSA ClearTrust Developer’s Guide
Preface

This Developer’s Guide provides a complete overview of the RSA ClearTrust®
application programming interfaces (APIs). This guide explains the RSA ClearTrust
API libraries, and provides references and usage examples.

About This Guide
This guide describes the RSA ClearTrust application programming interfaces (APIs).
The intended audience of this document is Java and C programmers, Web developers,
or systems engineers responsible for developing custom software applications that
interact with the RSA ClearTrust system. This guide assumes that you are proficient in
either the C or Java programming language.

This guide contains the following chapters:

• Chapter 1, “Overview of the RSA ClearTrust APIs”. This chapter provides
diagrams and outlines of the APIs.

• Chapter 2, “Installing the RSA ClearTrust APIs”. This chapter shows how to
install the APIs from the RSA ClearTrust product CD.

• Chapter 3, “Administrative C API”. This chapter describes the C version of the
RSA ClearTrust Administrative API, showing how to develop security
administrator applications that create/update user accounts and set the access rules
enforced by the RSA ClearTrust system.

• Chapter 4, “Administrative Java API”. This chapter describes the Java version of
the RSA ClearTrust Administrative API, showing how to develop security
administrator applications in Java.

• Chapter 5, “Runtime C API”. This chapter explains how to build client
applications in C that can perform authentication, authorization, and other
functions using the runtime functionality of the RSA ClearTrust Authorization
Servers.

• Chapter 6, “Runtime Java API”. This chapter explains how to build client
applications in Java that can perform authentication, authorization, and other
functions using the runtime functionality of the RSA ClearTrust Authorization
Servers.

• Chapter 7, “Administrative and Runtime DCOM API”. This chapter explains the
RSA ClearTrust DCOM API. This API allows ASP pages to use the
administrative and runtime features of the RSA ClearTrust API. The
RSA ClearTrust DCOM API is implemented by accessing the RSA ClearTrust
Java API via a bridge layer.

• Chapter 8, “Web Agent Extension API”. This chapter explains how to extend and
customize the functionality of the RSA ClearTrust Web Server Agents. An
extension you write using this API is called a Web Agent Extension (or “WAX”
for short).
Preface: About This Guide viii

RSA ClearTrust Developer’s Guide
• Chapter 9, “Customizing Your Web Environment”. This chapter provides
information about various customizations and personalizations that you can
implement in your RSA ClearTrust-protected Web servers. Many of these are
provided as samples to get you started developing and creating your own
customized and personalized forms and Web server applications.

Related Documentation
For more information about the RSA ClearTrust product, refer to the following guides
in this 4.7 documentation set:

• Overview Guide. This guide provides a comprehensive overview of the system
components, supported platforms, and features of RSA ClearTrust.

• Installation and Configuration Guide. This guide provides instructions for
installing and configuring the RSA ClearTrust Servers, Data Adapters, Web
Server Agents and the Entitlements Manager Web-based administration tool on
your chosen operating system. This guide also contains detailed descriptions of
the different configuration options, features and production environment
considerations.

• Administrator’s Guide. This guide provides information for your Security
Administrators on how to administer users and security policy in RSA ClearTrust.
There are instructions for administering users, resources and security policy in the
RSA ClearTrust Entitlements Manager Web-based administration tool. For more
information about using the Entitlements Manager, you can also refer to the
online help files.

Document Conventions
These document conventions are used consistently throughout RSA ClearTrust’s
documentation to help you identify certain types of information.
ix Preface: Document Conventions

RSA ClearTrust Developer’s Guide
Typographical Conventions

Convention Meaning Example

San-serif bold User interface elements such as
buttons, menus choices, window
names, dialog boxes, field names
and so on will appear in san-serif
bold text.

Select File Print.

Click Save.

SAN-SERIF BOLD
UPPERCASE

Keyboard keys, including letters
and numbers as well as Tab, CTRL,
ALT, and so on, will appear in
san-serif bold uppercase text.

Press CTRL+ALT+DELETE

Italics New terms, emphasized words or
book titles will appear in italics.

See the Administration Guide for
more information about using the
Entitlements Manager.

UPPERCASE Environment variables, SQL
commands, logical operators,
device names, acronyms, registry
settings, system commands, and so
on will appear in all uppercase
letters.

SELECT object_name FROM
user_objects

Mount your CD-ROM drive.

Courier Code examples, files, directories,
class names, commands,
parameters and on-screen computer
output will appear in courier font.

Edit the aserver.conf file in
the \conf directory.

Courier bold Typed input, as opposed to
on-screen computer output, will
appear in bold courier font.

Enter the hostname of your Web
server here:

web1.rsa.com

<italics> Italicized text contained within the
less than (<) and greater than (>)
symbols denotes information to be
determined by the reader.
Substitute the appropriate name,
directory, or other specific
information.

print <filename>

<ct_home>/cleartrust/conf

[] Text contained within square
brackets denotes optional
information.

reject [-d] <filename>

| Text separated by the pipe symbol
denotes an either/or relationship.

true|false

$ Bourne, Bourne Again or Korn
shell prompt for UNIX commands

$

Preface: Document Conventions x

RSA ClearTrust Developer’s Guide
Comment Icons
Comment icons identify particular types of information, as the following table
describes.

Getting Support and Service

% C shell prompt for UNIX
commands

%

Super user or root prompt for
UNIX commands

#

Convention Meaning Example

Icon Alert Labels Description

Warning:
Important:

Identifies paragraphs that contain vital
instructions, cautions or critical information.

Note:
Tip:

Identifies paragraphs that contain notes, RSA
recommendations or other helpful product
information.

SecurCare® Online www.rsasecurity.com/support/securcare

General Technical Support Information www.rsasecurity.com/support
xi Preface: Getting Support and Service

www.rsasecurity.com/support/securcare
www.rsasecurity.com/support

RSA ClearTrust Developer’s Guide
1 Overview of the RSA ClearTrust APIs

The RSA ClearTrust APIs
The APIs give you programmatic access to the RSA ClearTrust Servers at all levels.
There are three sets of API libraries available with RSA ClearTrust:

• The Administrative API allows you to develop security administrator
applications that create/update user accounts and set the access rules enforced by
the RSA ClearTrust software. Administrative API calls will perform read/write
operations on the Entitlements Database via the Entitlements Server (called the
“API Server” when accessed by an API client). There are Java, C, and DCOM
versions of the Administrative API.

• The Runtime API allows you to use the RSA ClearTrust system to provide user
authentication and authorization for applications or services that are not covered
by the RSA ClearTrust system out of the box. For example, if you have a
custom-built application that needs to control user access to itself, it can use the
Runtime API to check users’ permissions in the RSA ClearTrust system. The
Runtime API has read-only access to the Entitlements Database. There are Java,
C, and DCOM versions of the Runtime API. The Administrative and Runtime
APIs maybe used together in a single client program, if needed.

• The Web Agent Extensions (WAX) allow you to augment or override steps in the
RSA ClearTrust authentication and authorization process. By adding WAXes, you
can, for example, check a custom database for a user’s authorization status.
WAXes must be written in C.

Additional interface points allow you to customize your RSA ClearTrust Web
environment.
Overview: The RSA ClearTrust APIs 1

RSA ClearTrust Developer’s Guide
The Administrative API
This section provides an overview of the Administrative API objects and describes the
common elements of both platforms (C and Java).

The RSA ClearTrust Administrative API enables application developers to implement
custom functionality—typically in the area of security policy administration such as
batch importing of users from a proprietary database—into the back-end
RSA ClearTrust Servers.

The primary advantage of the RSA ClearTrust system as a security system is in its
flexibility and extensibility. The RSA ClearTrust system provides a powerful turn-key
solution for securing proprietary applications on Web Servers.

To facilitate the development of these applications, RSA Security provides versions of
the RSA ClearTrust APIs for Java, C, and DCOM. C++ applications can use the C
API, and Visual C++ applications also have the option of using the object oriented
DCOM API.

The following figure illustrates the object model of the RSA ClearTrust API and the
relationships between the objects.

Figure 1.1 RSA ClearTrust APIs and System Architecture

ClearTrust
Policy Data

Native
User/Group

 Data

Data Server

ClearTrust
Data Adapter

Authorization Server

DispatcherKey Server

Web Server

ClearTrust
Agent

Runtime API

Administrative
API Clients

Entitlements Server

Administrative API

Runtime API
Client s

RSA ClearTrust Servers

D
A

L
D

riv
er

s
D

AL
D

riv
er

s

WAX API
Client s

Web Server's
API

HTTP / HTTPS
2 Overview: The Administrative API

RSA ClearTrust Developer’s Guide
Figure 1.2 RSA ClearTrust Object Model

Administration

Search Objects
(IAPIObjectSearch)

ResourcesPolicyParticipants

User Property
Definition

(IUserPropertyDefinition)

Group
(IGroup)

User
(IUser)

Password

Application
(IApplication)

URI
(IApplicationURL)

Basic Entitlement
(IExplicitEntitlement)

Smart Rule
(ISmartRule)

User Property
(IUserProperty)

Application
Function

(IApplicationFunction
)

Server Tree
(IServerTree)

Web Server
(IWebServer)

Admin Group
(VBU)

(IAdministrativeGroup)

Password Policy
(IPasswordPolicy)

Admin Role
(IAdministrator)

Admin User
(IAdministrativeUser)

Criterion
(AbstractCriterion)

Searchable

Ownable

Permissionable

Key

has; dot denotes owner

uses; dot denotes user

 (I...) name of base interface
Overview: The Administrative API 3

RSA ClearTrust Developer’s Guide
The Runtime API
The RSA ClearTrust Runtime API enables trusted client applications to gain full
access to the runtime functionality of the RSA ClearTrust Authorization Servers. This
functionality consists of two main pieces: authentication of users, and authorization of
users to resources. A defining characteristic of both of these tasks is that they are
read-only; that is, they perform queries on the existing state of the data in the
RSA ClearTrust Servers, but do not involve changing or adding data. Both the C and
Java versions of the Runtime API provide access to this runtime functionality in the
same highly available manner as is enjoyed by the RSA ClearTrust Web Server
Agents, incorporating internal connection pools and failover logic.

The WAX API
The RSA ClearTrust® Web Server Agents provide the RSA ClearTrust Web Agent
Extension API (the “WAX API”), which allows developers to extend and customize
the functionality of any RSA ClearTrust Agent. For example, your extensions may
perform custom authentication or manipulate dynamic, user-specific content.

Unlike the RSA ClearTrust Administrative API, the RSA ClearTrust Web Agent
Extension API does not modify the RSA ClearTrust database, rather it controls the
behavior of the RSA ClearTrust Agent during the authentication and authorization
processing. An extension you write using this API is called a Web Agent Extension
(or “WAX” for short).

For example, you could extend the functionality of the RSA ClearTrust Web Server
Agent in the following ways.

• Create an extension directing the Web server to a custom HTML file for different
return codes from the RSA ClearTrust Authorization Server.

• Create an extension providing custom logging.

• Create an extension providing custom authentication of users.

• Create an extension integrating the RSA ClearTrust Agent with proprietary Web
Server Agents or third-party Agents.

Coding Recommendations
RSA ClearTrust recommends certain coding practices for optimal use of the APIs.
This section presents recommendations for supporting multi-threaded programs and
for using the APIs efficiently.
4 Overview: The Runtime API

RSA ClearTrust Developer’s Guide
Multithreaded Programming
The RSA ClearTrust APIs support connections from multithreaded programs, such as
Microsoft Transaction Server.

C API
The C API supports two sets of functions. One set operates on a single connection, the
other provides a context that can be used to operate on multiple connections. Both sets
of functions are thread-safe, however, using the context functions for multiple
connections provides for increased flexibility and performance.

The context-enabled functions take all the same arguments as the non-context-enabled
versions, except that each context-enabled function (denoted by the “ctxt_” in its
function name) additionally takes ct_context as its first argument, to enable the
RSA ClearTrust API Server to track the client connections. (The original C API uses a
default context that will not conflict with any of the contexts that are exposed as
ct_contexts.) For example, there are two functions for saving an administrative
group: ct_save_admin_group() and ctxt_save_admin_group().

Java API
The Java API does not support the notion of a context. Multiple instances of the API
can be run against the server proxy.

Using the RSA ClearTrust API Efficiently
When you are developing an application with the RSA ClearTrust API, you can do the
following to increase performance:

• connect only once

• minimize the number of API calls

• use the user and user property functions

The following subsections describe these strategies in further detail.

Connect Only Once
The RSA ClearTrust API uses a persistent connection to the server; once you connect
to the API Server you need not set up the connection again until the connection is lost.
The API Server enforces administrative security by ensuring that an API Client cannot
be used to change the RSA ClearTrust database maliciously. Because the connection
involves some overhead cost, it is more efficient to connect just once rather than
connecting every time you wish to modify the database.
Overview: Coding Recommendations 5

RSA ClearTrust Developer’s Guide
Minimize the Number of API Calls
Every API call made involves network communication. To perform a sequence of API
calls, first decide if the number of API calls can be reduced to just a few. For instance,
to retrieve a group of objects, it is more efficient to use the getByRange or
getByNames function than to retrieve each object individually.

Incorrect Usage Example
The following example shows inefficient code for displaying the names of a group of
users. The problem with this code is that using the size() function within the FOR
loop causes a remote command to occur on the server, which will be very slow. Also
note that the getByIndex(i) call requires a network call to the server, further slowing
down the program.

Correct Usage Example
The following example shows the correct way to display the names of a group of
users. This code acquires all users in just two function calls, so it is very efficient. An
array is returned, and then the length of the array is used to drive the counter for the
loop. (Always work off the length of the returned array; since it’s possible to receive
fewer objects than requested.) References to user data are then made to array, which is
in local storage, so this is much faster than retrieving data from the server.

Use the User and User Property Functions
To retrieve a user and all of its properties, use the get_user_and_ properties
function in C and the getUserAndProperties call in Java. This is more efficient than
retrieving a user and each of its properties one at a time.

ISparseData theUsers = myServerProxy.getUsers();
for (i =0;i <theUsers.size();i++)
{
// Each getByIndex call causes a
// remote command on the server.
IUser aUser = (IUser) theUsers.getByIndex(i);
System.out.println(“User[“+ i + “] = “+aUser.getName());

}

ISparseData theUsers = myServerProxy.getUsers();
int numOfUsers = theUsers.size();
IAPIObject [] userArray =

theUsers.getByRange(0, numOfUsers-1);
for (i =0;i <userArray.length;i++)
{
IUser aUser = (IUser) userArray[i];
System.out.println("User[" + i + "] = " +

aUser.getName());
}

6 Overview: Coding Recommendations

RSA ClearTrust Developer’s Guide
2 Installing the RSA ClearTrust APIs
This chapter provides instructions for installing the RSA ClearTrust APIs on Windows
and on Solaris. See:

• “Installing APIs on Windows” below, or

• “Installing APIs on Solaris” on page 9.

Installing APIs on Windows
When installing the RSA ClearTrust APIs on Windows, an InstallShield® program
will guide you through the installation.

1. Insert your installation CD into the CD-ROM drive and navigate to
\Windows\ct_servers.

2. Double-click the Setup.exe icon to launch the InstallShield® program.

3. In the Welcome dialog, click Next to begin the installation.

4. In the Select Region dialog, select your geographical region and click Next.

5. In the License Agreement dialog, click Yes to accept the license agreement and
continue with the installation.

6. In the Choose Destination Location dialog, select an installation location for the
RSA ClearTrust software, and click Next. The default is
C:\Program Files\RSA\ClearTrust.

7. In the Setup Type dialog, select the Custom type of installation and click Next.

Note: The API files are available only from the Custom installation option.
Installing the RSA ClearTrust APIs: Installing APIs on Windows 7

RSA ClearTrust Developer’s Guide
8. In the Select Components dialog, click the check boxes for the ClearTrust API
components and any other components you wish to install. In most cases, you will
install all components. If you need additional information on installation options,
see the RSA ClearTrust Installation and Configuration Guide.

Figure 2.1 The Select Components dialog

9. If you are also installing the RSA ClearTrust servers, enter the following
information in the Dispatcher Configuration dialog and click Next to configure
your Dispatcher Server:

• RSA ClearTrust Administrator e-mail address.

• Authorization Server list port. Default is 5608

• Authorization Server registration port. Default is 5607

10. If you are also installing the RSA ClearTrust servers, enter information about your
primary LDAP directory server in the LDAP Server Connection Information
dialog and click Next.

• LDAP Server Hostname: This is the fully qualified hostname or IP address
of your LDAP directory server machine. This writes to the
cleartrust.data.ldap.directory.<iplanet>.hostname parameter in your
conf\ldap.conf file.

• LDAP Server Port: This is the default port number that RSA ClearTrust will
use to make a connection to the LDAP directory. This writes to the
cleartrust.data.ldap.directory.<iplanet>.port parameter in your
conf\ldap.conf file. The default LDAP port is 389. The default LDAPS port
is 636.

11. If you are also installing the RSA ClearTrust servers, enter the following
information in the LDAP Configuration dialog and click Next to configure your
LDAP Data Store:
8 Installing the RSA ClearTrust APIs: Installing APIs on Windows

RSA ClearTrust Developer’s Guide
• LDAP Bind DN: When connecting to the LDAP server, this is the bind DN
(the directory manager logon name) that will be used. This writes to the
cleartrust.data.ldap.directory.<iplanet>.binddn parameter in your
conf\ldap.conf file.

• LDAP Password: When connecting to the LDAP server, this is the password
for the administrator’s account listed above. This writes to the
cleartrust.data.ldap.directory.<iplanet>.password parameter in your
conf\ldap.conf file.

12. The installation program displays a progress bar indicating the files currently
being installed. When the process is complete, click Finish to complete the
installation program.

After the RSA ClearTrust installation is finished, you may turn to the “Installation”
section in any of the API chapters of this book for an explanation of the files and
directories that make up the API.

Installing APIs on Solaris
When installing the RSA ClearTrust APIs, the installer will prompt you for
environment variables and other required information before installing the packages.
These instructions assume you are logged in on the console of the machine, running
OpenWindows or CDE, and have an open shell (either via cmdtool, xterm, or CDE
terminal).

1. Logon as user root.

2. Mount your CD-ROM drive and go to /Solaris/api

3. Install the RSA ClearTrust APIs package with a pkgadd command:

4. At the first prompt, type all to install all packages.

5. At the next prompt, accept the displayed license agreement.

6. Follow the prompts for directory information, entering information as required:

• Installation Base Directory. In a typical installation you should accept the
default value of /opt

• RSA ClearTrust package root. Default is /opt/ctrust/api. RSA Security
recommends accepting the default.

If the installation succeeds, it will display the following:

Installation of <RSActapi> was successful.

After the RSA ClearTrust installation is finished, you may turn to the “Installation”
section in any of the API chapters of this book for an explanation of the files and
directories that make up the API.

pkgadd -d ./RSActapi-4.7-solaris-sparc.pkg
Installing the RSA ClearTrust APIs: Installing APIs on Solaris 9

RSA ClearTrust Developer’s Guide
10 Installing the RSA ClearTrust APIs: Installing APIs on Solaris

RSA ClearTrust Developer’s Guide
3 Administrative C API
This chapter describes the C version of the RSA ClearTrust Administrative API. The
Administrative API allows you to develop security administrator applications that
create/update user accounts and user groups and set the access policies enforced by the
RSA ClearTrust system. The Administrative API uses the Entitlements Server (called
the “API Server” when accessed by an API client) to write to the user, policy and
administrator data stores on your configured LDAP directory server.

The C API contains two sets of functions: one set requires a context parameter while
the other set does not. This chapter only describes the non-context version of the C
functions.

This chapter contains brief overviews of each function. For more detailed
descriptions, including the input/output parameters and return values of each function,
see the API header files. You can find the header files in your RSA ClearTrust
installation in the directory <CT_HOME>/api/admin-c/include.

This Chapter
This chapter consists of:

• Compilation instructions starting with “Installing and Compiling” on page 12.

• Instructions for connecting an Administrative API client, in “Initialization and
Login Operations” on page 15.

• Reference information on the C API structures and methods:

• “The Functions of ct_commands.h” on page 18.

• “Administrative Objects” on page 20.

• “Participants” on page 28.

• “Policy Objects” on page 36.

• “Resources” on page 42.

• “Searching” on page 47.

• “Permissions” on page 52.

• “Object Utilities” on page 54.

• “Error Codes” on page 54.

• “Memory Management in the C API” on page 56.

• Example programs in “Sample Code” starting on page 60. The source code for
these API example programs is installed in

<CT_HOME>/api/admin-c/example
Administrative C API: This Chapter 11

RSA ClearTrust Developer’s Guide
Installing and Compiling
This section explains the installed components that make up the API and provides
guidelines for building applications. For instructions on installing the APIs, see
Chapter 2, “Installing the RSA ClearTrust APIs”.

Location
The files you need to build and run Administrative API applications can only be
installed when the RSA ClearTrust Servers are installed. In order to install the API,
make sure you choose the Custom install type and then select all of the API
components to install them. See the Installation and Configuration Guide for details.

The C Administrative API files are located in <CT_HOME>/api/admin-c. In addition,
you will need libraries located elsewhere in your RSA ClearTrust installation. See
“API Libraries” on page 13 for details.

Sample Code
The code examples shown at the end of this chapter are provided in your installation
under:

<CT_HOME>/api/admin-c/example

Header Files

API Headers
The following header files define the methods and types of the RSA ClearTrust
Administrative API. These files are located in <CT_HOME>/api/admin-c/include.

• ct_commands.h is the main RSA ClearTrust Administrative API header file and
contains all the API session initialization functions as well as commands for
finding, loading and saving user, resource, entitlement, and SmartRule records.

• ct_bool.h defines the boolean type and platform-dependent datatypes.

• ct_map.h contains utilities for working with Maps. Maps are multivalued
datatypes used in the RSA ClearTrust system to describe objects like users and
authentication results.

• ct_permissions.h includes methods that check an administrative user’s right to
perform each type of administrative action in the RSA ClearTrust system.

• ct_rc_constants.h defines the RSA ClearTrust return codes and error codes.

• ct_search.h contains search methods for finding and loading administrative
objects such as users, groups, entitlements and resources based on user-specified
criteria.

• ct_structs.h defines the RSA ClearTrust administrative API object types.
12 Administrative C API: Installing and Compiling

RSA ClearTrust Developer’s Guide
• ct_utilities.h contains memory management functions.

Removed Headers
The following header files no longer exist. Instead, use the methods in
ct_commands.h.

• ct_objects.h

• ct_relations.h

Headers Included for Compilation Only
The following header files are internal files included only because they are required
when building API programs.

• ct_auth_result.h

• ct_boolean.h

• ct_error.h

• ct_hash.h

• ct_lock.h

• ct_lock_impl.h

API Libraries
The RSA ClearTrust C Administrative API is implemented as a C-to-Java JNI
wrapper around the RSA ClearTrust Java Administrative API. For this reason, you
must install both the RSA ClearTrust C API library and the RSA ClearTrust Java API
library in order to build and run C Administrative API applications. In addition, some
SSL libraries are required if you are connecting to the RSA ClearTrust API Server
over SSL. The required libraries are

• the C Administrative API library, located in <CT_HOME>/api/admin-c/lib.
On Solaris, this will be either

• static: libct_admin_api.a, or

• dynamic: libct_admin_api.so
On Windows, this will be either

• static: ct_admin_api.lib, or

• dynamic: ct_admin_api.dll

• the Java Administrative API library:
<CT_HOME>/api/admin-j/lib/ct_admin_api.jar

• and the SSL-related libraries, all located in <CT_HOME>/lib (required only if you
are connecting over SSL):
jcsi_base.jar
jcsi_provider.jar
jce1_2-do.jar
Administrative C API: Installing and Compiling 13

RSA ClearTrust Developer’s Guide
jcert.jar
jnet.jar
jsse.jar
certj.jar
jsafe.jar
jsafeJCE.jar
rsajsse.jar
sslj.jar

Building for UNIX
To build RSA ClearTrust Administrative C API applications on Solaris, you will need
gcc version 2.95.1 or higher. (To download gcc, see http://gcc.gnu.org/) Building
requires the following resources:

• Link your code with the following libraries:
lct_admin_api -lsocket -lnsl

• Include the RSA ClearTrust API headers directory. (See “Header Files” on page
12 for the directory path.)

• Note also that a number of Java libraries will be required at runtime. See
“Initialization” on page 15.

Building for Windows 2000 and NT
To build the RSA ClearTrust Administrative C API for Windows 2000 and NT, use
Microsoft Visual Studio 6.0, or use GNU gcc version 2.95 or higher. Building
requires the following resources:

• Link your code with the RSA ClearTrust Administrative API library. To use the
DLL version of the library, include ct_admin_api.dll. To use the statically
linked version, you would include ct_admin_api.lib in your link options.

• Include the RSA ClearTrust API headers directory. (See “Header Files” on page
12 for the directory path.)

• Note also that a number of Java libraries will be required at runtime. See
“Initialization” on page 15.
14 Administrative C API: Installing and Compiling

http://gcc.gnu.org/

RSA ClearTrust Developer’s Guide
Initialization and Login Operations

Initialization
Your client application will establish an RSA ClearTrust session by calling the
ct_initialize_api() function of ct_commands.h. The initialization function links
the application to the required Java libraries and connects to the Entitlements Server
using the specified administrative user name and password.

ct_initialize_api() takes as an argument a reference to a ct_map containing a
CT_CLASSPATH_KEY field set to a semicolon-separated list of all the required Java
libraries. The complete path name is required for each library. The required libraries
are:

• The Java Admin API JAR file, from the Java API directory:
<CT_HOME>/api/admin-j/lib/ct_admin_api.jar

• If you are connecting over SSL, the SSL-related JARs are required:
<CT_HOME>/lib/jcsi_base.jar
<CT_HOME>/lib/jcsi_provider.jar
<CT_HOME>/lib/jce1_2-do.jar
<CT_HOME>/lib/jcert.jar
<CT_HOME>/lib/jnet.jar
<CT_HOME>/lib/jsse.jar
<CT_HOME>/lib/certj.jar
<CT_HOME>/lib/jsafe.jar
<CT_HOME>/lib/jsafeJCE.jar
<CT_HOME>/lib/rsajsse.jar
<CT_HOME>/lib/sslj.jar

Typically, you will create a string similar to this example:

Once you have created the CT_CLASSPATH_KEY and inserted it into the ct_map,
you can call ct_initialize_api(), passing in the map, here called, “myMap.” The
function returns an RC_OK value if the initialization succeeds.

char *class_path_key = "c:\\ct\\api\\admin-j\\lib\\ct_admin_api.jar;
c:\\ct\\lib\\jcsi_base.jar; \
c:\\ct\\lib\\jcsi_provider.jar; \
c:\\ct\\lib\\jce1_2-do.jar; \
c:\\ct\\lib\\jcert.jar; \
c:\\ct\\lib\\jnet.jar; \
c:\\ct\\lib\\jsse.jar; \
c:\\ct\\lib\\certj.jar; \
c:\\ct\\lib\\jsafe.jar; \
c:\\ct\\lib\\jsafeJCE.jar; \
c:\\ct\\lib\\rsajsse.jar; \
c:\\ct\\lib\\sslj.jar";

if ((rc = ct_initialize_api(myMap)) != RC_OK) {
printf("The ct_initialize_api() call failed: %d\n", rc);
Administrative C API: Initialization and Login Operations 15

RSA ClearTrust Developer’s Guide
To see how ct_initialize_api() is used, see the complete example “AdminUser.c”
on page 60.

Login
After you have initialized your application session, use the ct_connect() function to
log into the Entitlements Manager. This function takes the following arguments, some
of which may be left null:

• srvr_name: API Server’s (Entitlements Server’s) hostname or ip address

• port: API Server’s port number

• timeout: seconds this connection will wait for a response before timing out. A
typical setting would be 300 seconds.

• use_ssl: Whether to use SSL to connect to the API Server. See the following
section.

• admin_user: Name of the administrative user connecting (optional)

• admin_pw: Administrative user’s password (optional)

• admin_role: Name of the administrative user’s administrative role (optional)

• admin_group: Name of the administrative user’s administrative group (optional)

For an example containing ct_connect(), see “AdminUser.c” on page 60.
16 Administrative C API: Initialization and Login Operations

RSA ClearTrust Developer’s Guide
Connecting With and Without SSL
An Administrative API client may connect to the Entitlements Server as an
authenticated SSL client, an anonymous SSL client, or as a non-SSL client. The
cleartrust.eserver.api_port.use_ssl setting in the Entitlements Server’s
eserver.conf file indicates which type of connection is required for Administrative
API clients. When writing your Administrative API programs, make sure that the
boolean you pass as the use_ssl parameter of the ct_connect function matches the
setting of cleartrust.eserver.api_port.use_ssl. Your settings will match one of
the scenarios shown in the subsections that follow.

For more information, See the section “SSL Settings for RSA ClearTrust API Clients”
in Chapter 7 of the RSA ClearTrust Installation and Configuration Guide.

On a System Running Clear Text Connections
If the RSA ClearTrust system is running with clear text connections between servers,
as specified with:

cleartrust.net.ssl.use=false
cleartrust.net.ssl.require_authentication=false

Then the Administrative API clients must also connect in clear text, as specified with:

cleartrust.eserver.api_port.use_ssl=false

On a System Running Anonymous SSL Connections
If the RSA ClearTrust system is running with anonymous SSL connections between
servers, as specified with:

cleartrust.net.ssl.use=true
cleartrust.net.ssl.require_authentication=false

Then the Administrative API clients can connect either via clear text:

cleartrust.eserver.api_port.use_ssl=false

or via anonymous SSL:

cleartrust.eserver.api_port.use_ssl=true

On a System Running Mutually Authenticated SSL Connections
If the RSA ClearTrust system is running with mutually authenticated SSL connections
between servers, as specified with:

cleartrust.net.ssl.use=true
cleartrust.net.ssl.require_authentication=true

Then the Administrative API clients can connect either via clear text:

cleartrust.eserver.api_port.use_ssl=false

or via mutually authenticated SSL:

cleartrust.eserver.api_port.use_ssl=true
Administrative C API: Initialization and Login Operations 17

RSA ClearTrust Developer’s Guide
The Functions of ct_commands.h
ct_commands.h is the main RSA ClearTrust Administrative API header file and
contains all the API session initialization functions as well as commands for finding,
loading and saving users, resources, and entitlements.

This section contains brief overviews of each function in ct_commands.h. For more
detailed descriptions, see the comments in
<CT_HOME>/api/admin-c/include/ct_commands.h.

Functions For Loading Objects
The following methods illustrate the typical object retrieving methods available in
RSA ClearTrust. For most objects, you can look for the object based on name. In
addition, _by_index and _by_range methods are provided that allow you to iterate
over sets of objects. Please note the warning below regarding index numbers.

• ct_get_num_of_users

• ct_get_user_and_properties

• ct_get_user_by_index

• ct_get_user_by_name

• ct_get_userprop_for_user_by_name

• ct_get_users_by_names

• ct_get_users_by_range

Administrative Functions
Administrative functions create, edit, and retrieve RSA ClearTrust entitlements data.

Warning: The order in which objects are returned in a search is not defined. As a
result, you cannot use the get_*_by_index() functions to reliably locate a particular
item based on where you expected it to be placed in a set. Note that the
get_*_by_index() functions are useful for iterating over all elements in the set.
Similarly, you cannot use the get_*_by_range() functions to reliably locate a
particular set of items, but you can use them to retrieve a set of data in segments or
to retrieve the entire set.

Table 3.1 Administrative Functions

Function Description

ct_initialize_api Initializes the RSA ClearTrust API.

ct_connect Connects to the RSA ClearTrust API Server.

ct_connect_admin Deprecated. Use ct_connect() instead.
18 Administrative C API: The Functions of ct_commands.h

RSA ClearTrust Developer’s Guide
Password Setting Functions
The password setting functions allow an administrative user to reset users’ passwords.

Deprecated Runtime-Type Functions
These runtime-type functions have been deprecated in 4.7. While they will still work
in this release, they will be removed in the near future. You should use the equivalent
functions in ClearTrust Runtime API instead. See Chapter 5, “Runtime C API”.

ct_login Login the administrative user to the RSA ClearTrust API
Server.

ct_disconnect Disconnects from the RSA ClearTrust API Server.

ct_free_adminroleid_array Frees the CT_AdminRoleId array.

ct_get_adminroleids_for_user Gets an array of AdminRoleIds, which represents all
administrative roles that the user currently belongs to.

Table 3.1 Administrative Functions

Function Description

Table 3.2 Password Setting Functions

Function Description

ct_force_password_expiration Forces the expiration of the specified user password.

ct_get_password_expiration Gets the expiration date of the specified user password.

ct_reset_password Resets a user password.

ct_revert_password Reverts the password expiration date to the value specified by the
password policy associated with the user’s administrative group.

ct_set_password Sets a user password.

ct_set_password_expiration Sets a user password expiration date.

Table 3.3 Deprecated Runtime-Type Functions

Deprecated Function Description Replacement in Runtime API

ct_check_access Deprecated. Checks user accessibility to a
URI.

ct_authorize() or ct_authorize_pool()

ct_check_function Deprecated. Checks user accessibility to an
application’s function.

ct_authorize() or ct_authorize_pool()

ct_check_password Deprecated. Checks a user’s password. ct_authenticate() and
ct_authenticate_pool()

ct_validate_user Deprecated.

ct_flush_cache Deprecated. Flushes the RSA ClearTrust
Authorizer caches.

ct_clear_server_caches() and
ct_clear_server_caches_pool()
Administrative C API: The Functions of ct_commands.h 19

RSA ClearTrust Developer’s Guide
Administrative Objects
Administrative objects consists of the following:

• Administrative group (CT_AdminGroup) — Defines which administrative
users own (can view and modify) a set of objects.

• Administrative user (CT_AdminUser) — A user dedicated only to
RSA ClearTrust administration activities. An administrative user is not to be
confused with an IUser who is granted or denied access to resources that are
protected by RSA ClearTrust. IUsers cannot act as administrative users.

• Administrative role (CT_Admin) — A set of permissions defining what an
administrative user logged in under this role can and cannot do.

• Password policy (CT_PasswordPolicy) — A set of restrictions on passwords
for users.

The following sections describe the types of Administrative objects and the
ct_commands.h functions related to each object type.

Administrative Group (VBU)
A CT_AdminGroup object represents an administrative group, which is a grouping of
Administrative Roles. An Administrative Group is also a high level grouping of
owned RSA ClearTrust entities. It is used to control the administrative users’ abilities
to view and modify these entities — specifically users, groups, applications, Web
servers, server trees, and user property definitions. The ability to view and modify
these entities can be restricted to those Administrative Roles contained within the
owning Administrative Group. Finally, the Administrative Group helps determine the
behavior of some of the entities it owns.

The following table describes the ct_commands.h functions that operate on an
administrative group object.

Table 3.4 CT_AdminGroup Object

Element Type Description

id int Reference for the API layer.

name char * Name of the administrative group.

description char * Textual description of the administrative group.

passwordpolicy char * Name of the password policy associated with this administrative group.

defaultPrivate CT_BOOLEAN Indicates whether objects created in this administrative group through the GUI
are private or public by default.

forceExpiry CT_BOOLEAN indicates whether users created in this administrative group have expired
passwords on creation. On first login, the user will be required to change the
password.
20 Administrative C API: Administrative Objects

RSA ClearTrust Developer’s Guide
Table 3.5 Administrative Group Functions of ct_commands.h

Function Description

ct_create_admin_group Creates an administrative group object.

ct_delete_admin_group Deletes an administrative group object.

ct_get_admin_group_by_index Gets the administrative group for the an index number. Like all
get_by_index methods, this method is generally not useful for
retrieving a specific item. See page 18.

ct_get_admingroup_by_name Gets the administrative group for the specified name.

ct_get_admingroups_by_index Gets a range of administrative groups, based on an array of
administrative group indexes.

ct_get_admingroups_by_name Gets a range of administrative groups, based on an array of
administrative group names.

ct_get_admingroups_by_range Gets a range of administrative groups for the specified index range.
Like all get_by_range methods, this method is generally not useful
for retrieving a specific set of items. See page 18.

ct_get_adminrole_for_admingroup_by_index Gets the administrative role for the specified index into the specified
administrative group.

ct_get_adminrole_for_admingroup_by_name Gets the administrative role for the specified administrative group
and name.

ct_get_adminroles_for_admingroup_by_names Gets an array of administrative roles for the specified administrative
group and array of names.

ct_get_adminroles_for_admingroup_by_range Gets the requested range of administrative roles contained in the
administrative group for the index range specified.

ct_get_application_for_admingroup_by_index Gets the requested application owned by the administrative group
for the specified index.

ct_get_application_for_admingroup_by_name Gets the application with the specified name for the administrative
group specified.

ct_get_applications_for_admingroup_by_names Gets an array of applications for the administrative group with the
names specified.

ct_get_applications_for_admingroup_by_range Gets an array of applications for the administrative group for the
index range specified.

get_apps_for_user The get_apps_for_user() method in the C API has been removed.
In previous releases, one could get a list of a user’s set of available
resources by calling this method. This was possible because, in
those releases of the product, access to every resource was
provided by means of an application function associated with that
resource. In version 4.7, access to a given resource may be
provided by means of a an entitlement to that resource directly, or
by means of an entitlement to an application that contains the
resource. Since there are multiple ways of providing access to a
given resource, the results returned by get_apps_for_user() would
no longer provide a complete list of accessible resources. For this
reason, the method has been removed.

ct_get_group_for_admingroup_by_index Gets the group owned by the administrative group for the specified
index.
Administrative C API: Administrative Objects 21

RSA ClearTrust Developer’s Guide
ct_get_group_for_admingroup_by_name Gets the group owned by the administrative group for the specified
group name.

ct_get_groups_for_admingroup_by_names Gets an array of groups owned by the administrative group for the
names specified.

ct_get_groups_for_admingroup_by_range Gets an array of groups owned by the administrative group for the
index range specified.

ct_get_num_of_admingroups Gets the number of administrative groups in the entitlements
database.

ct_get_num_of_adminroles_for_admingroup Gets the number of administrative roles owned by the specified
administrative group.

ct_get_num_of_applications_for_admingroup Gets the number of applications owned by the administrative group
specified.

ct_get_num_of_groups_for_admingroup Gets the number of groups owned by the specified administrative
group.

ct_get_num_of_realms_for_admingroup Deprecated: Gets the number of realms owned by the specified
administrative group.

ct_get_num_of_userpropdefs_for_admingroup Gets the number of UserPropertyDefinitions owned by the specified
administrative group.

ct_get_num_of_users_for_admingroup Gets the number of users owned by the specified administrative
group.

ct_get_num_of_webservers_for_admingroup Gets the number of Web servers owned by the specified
administrative group.

ct_get_realm_for_admingroup_by_index Deprecated: Gets the realm owned by the administrative group for
the index specified.

ct_get_realm_for_admingroup_by_name Deprecated: Gets the realm owned by the administrative group for
the name specified.

ct_get_realms_for_admingroup_by_names Deprecated: Gets an array of realms owned by the administrative
group for the names specified.

ct_get_realms_for_admingroup_by_range Deprecated: Gets an array of realms owned by the administrative
group for the index range specified.

ct_get_user_for_admingroup_by_index Gets the user owned by the administrative group for the index
specified.

ct_get_user_for_admingroup_by_name Gets the user owned by the administrative group for the name
specified.

ct_get_userpropdef_for_admingroup_by_index Gets the UserPropertyDefinition owned by the administrative group
for the index specified.

ct_get_userpropdef_for_admingroup_by_name Gets the UserPropertyDefinition owned by the administrative group
for the name specified.

ct_get_userpropdefs_for_admingroup_by_name
s

Gets an array of UserPropertyDefinitions owned by the
administrative group for the names specified.

Table 3.5 Administrative Group Functions of ct_commands.h

Function Description
22 Administrative C API: Administrative Objects

RSA ClearTrust Developer’s Guide
ct_get_userpropdefs_for_admingroup_by_range Gets an array of UserPropertyDefinitions owned by the
administrative group for the index range specified.

ct_get_users_for_admingroup_by_names Gets an array of users owned by the administrative group for the
names specified.

ct_get_users_for_admingroup_by_range Gets an array of users owned by the administrative group for the
index range specified.

ct_get_webserver_for_admingroup_by_index Gets the Web server owned by the administrative group for the
index specified.

ct_get_webserver_for_admingroup_by_name Gets the Web server owned by the administrative group for the
name specified.

ct_get_webservers_for_admingroup_by_name Gets an array of Web servers owned by the administrative group for
the names specified.

ct_get_webservers_for_admingroup_by_range Gets an array of Web servers owned by the administrative group for
the index range specified.

ct_save_admin_group Saves the administrative group to the database.

ct_transfer_ownership Transfers the ownership from one administrative group to another
administrative group

Table 3.5 Administrative Group Functions of ct_commands.h

Function Description
Administrative C API: Administrative Objects 23

RSA ClearTrust Developer’s Guide
Administrative User
Administrative users (CT_AdminUsers) are users that are used purely for
RSA ClearTrust administration activities, and are not users that are granted access to
resources that are protected by RSA ClearTrust. In practice, administrative users
typically exist entirely within the RSA ClearTrust policy repository (as opposed to a
separate user store in LDAP or elsewhere), but this is configurable. This functionality
existed on CT_User in previous releases, but has since been separated to more easily
support read-only user stores.

Administrative users cannot be granted entitlements to RSA ClearTrust-protected
resources. If you have an administrative user who wishes to access resources, you
must create a separate CT_User account for that person. See “Users” on page 31.

An administrative user can view (and usually edit) public records and records owned
by his administrative group (see page 20), and his actions are limited to those
permitted by his administrative role (see page 25).

Table 3.6 Administrative User (CT_AdminUser) Object

Element Type Description

id jobject Reference for the API layer. Do not modify!

admin_id jobject Reference for the API layer. Do not modify!

admin_name char* Name of the owning administrative group.

ct_public CT_BOOLEAN If true, object is modifiable by any Administrator

name char* This is the name of the entity

firstname char* First name of admin user

lastname char* Last name of admin user

emailaddr char* E-mail address of admin user

superuser CT_BOOLEAN If true and user belongs to an Administrative Role, user has full
access to the ClearTrust database.

superHelpDesk CT_BOOLEAN If true, user can modify passwords for all ClearTrust users

password char* Password of the user, used only to set the password, it is not set
when a admin user is retrieved from the server.

is_locked CT_BOOLEAN If true, the admin user is locked out from the system. This means
the admin user cannot administer ClearTrust.

startdate DATE_TYPE Start date of the user

enddate DATE_TYPE End date of the user

password_expiration_date DATE_TYPE The date at which the current password expires. Beyond this date
the admin user will not be able to log into the system until the
password has been changed.
24 Administrative C API: Administrative Objects

RSA ClearTrust Developer’s Guide
Administrative Role
An CT_Admin object represents an administrative role. This role is a set of
permissions defining what an administrative user logged in under this role can and
cannot do.

Table 3.7 CT_Admin (Administrative Role) Object

Element Type Description

id int Reference for the API layer.

name char * Name of the administrative role used for object reference.

description char * Textual description of the administrative role.

admin_id int Reference for the API layer.

add_user CT_BOOLEAN Permission to add a user. True means this role allows the action; false
means it forbids the action.

mod_user CT_BOOLEAN Permission to modify a user.

del_user CT_BOOLEAN Permission to delete a user.

add_admin_user CT_BOOLEAN Permission to add an administrative user.

mod_admin_user CT_BOOLEAN Permission to modify an administrative user.

del_admin_user CT_BOOLEAN Permission to delete an administrative user.

add_group CT_BOOLEAN Permission to add a group.

mod_group CT_BOOLEAN Permission to modify a group.

del_group CT_BOOLEAN Permission to delete a group.

add_realm CT_BOOLEAN Deprecated: Permission to add a realm.

mod_realm CT_BOOLEAN Deprecated: Permission to modify a realm.

del_realm CT_BOOLEAN Deprecated: Permission to delete a realm.

add_app CT_BOOLEAN Permission to add an application.

mod_app CT_BOOLEAN Permission to modify an application.

del_app CT_BOOLEAN Permission to delete an application.

add_server CT_BOOLEAN Permission to add a server.

mod_server CT_BOOLEAN Permission to modify a server.

del_server CT_BOOLEAN Permission to delete a server.

add_user_prop_def CT_BOOLEAN Permission to add a user property definition.

mod_user_prop_def CT_BOOLEAN Permission to modify a user property definition.

del_user_prop_def CT_BOOLEAN Permission to delete a user property definition.

add_admin CT_BOOLEAN Permission to add an administrative role

mod_admin CT_BOOLEAN Permission to modify an administrative role.
Administrative C API: Administrative Objects 25

RSA ClearTrust Developer’s Guide
The following table describes the ct_commands.h functions that operate on the
administrative role object.

del_admin CT_BOOLEAN Permission to delete an administrative role.

set_password CT_BOOLEAN Permission to reset a user’s password.

Table 3.7 CT_Admin (Administrative Role) Object

Element Type Description

Table 3.8 CT_Admin (Administrative Role) Functions of ct_commands.h

Function Description

ct_add_admin_user_to_admin_role Adds an administrative user to the specified administrative role.

ct_create_admin_role Creates an administrative role associated with an administrative
group.

ct_delete_admin_role Deletes the specified administrative role.

ct_get_admin_user_in_admin_role_by_index Given an administrative role, and an index, returns requested user
who is a member of the administrative role.

ct_get_num_admin_users_in_admin_role Gets the number of users that are members of the administrative
role.

ct_get_adminrole_for_admingroup_by_name Given an administrative group, and name, returns the administrative
role with the specified name and the administrative role is contained
in the administrative group.

ct_get_adminroles_for_admingroup_by_names Given an administrative group, and an array of names, returns an
array of administrative roles with the specified names, and the
administrative roles is contained in the administrative group.

ct_get_adminroles_for_admingroup_by_range Given an administrative group, start index, and end index, returns
the requested range of administrative roles contained in the
administrative group.

ct_get_admin_user_in_admin_role_by_index Gets the user who is a member of the administrative role for the
specified index.

ct_get_admin_user_in_admin_role_by_name Gets the user who is a member of the administrative role for the
specified name.

ct_get_admin_users_in_admin_role_by_names Gets an array of users who are members of the administrative role
for the names specified.

ct_get_admin_users_in_admin_role_by_range Gets an array of users who are members of the administrative role
for the index range specified.

ct_get_context_admin_role Retrieves the administrative role from the current session or from the
given context.

ct_remove_admin_user_from_admin_role Removes an administrative user from the administrative role.

ct_save_admin_role Saves the administrative role object in the database.
26 Administrative C API: Administrative Objects

RSA ClearTrust Developer’s Guide
Password Policy
A password policy object (CT_PasswordPolicy) is a set of restrictions on passwords
for users. Each administrative group has an associated password policy that is applied
to users owned by that administrative group.

The following table describes the ct_commands.h functions that handle password
policies.

Table 3.9 CT_PasswordPolicy Object

Element Type Description

id int Reference for the API layer.

name char * Name of the password policy.

description char * Textual description of the password policy.

min_length int Password minimum length as defined by this policy.

max_length int Password maximum length as defined by this policy.

dictionary_file char * Dictionary file name for this policy.

non_letter CT_BOOLEAN Indicates whether the password policy requires that passwords contain a
non-letter character.

excluded_chars char * Characters excluded from passwords.

lifetime char * Default lifetime for user passwords.

history int Number of past passwords to exclude.

Table 3.10 Password Policy Functions of ct_commands.h

Function Description

ct_create_password_policy Creates a PasswordPolicy object.

ct_delete_password_policy Deletes a PasswordPolicy object.

ct_get_default_password_policy Gets the default PasswordPolicy.

ct_get_num_of_password_policies Gets the number of PasswordPolicies in the entitlement server database.

ct_get_password_policies_by_names Gets an array of PasswordPolicies for the names specified.

ct_get_password_policies_by_range Gets an array of PasswordPolicies for the index range specified.

ct_get_password_policy_by_index Gets the PasswordPolicy for the index specified.

ct_get_password_policy_by_name Gets the PasswordPolicy for the name specified.

ct_save_password_policy Saves the PasswordPolicy in the database.

set_default_password_policy Sets the default PasswordPolicy in the database.

get_default_password_policy Gets the default password policy.

transfer_admingroup Transfers ownership of the administrative group to another administrative
group.
Administrative C API: Administrative Objects 27

RSA ClearTrust Developer’s Guide
Participants
Participant objects model the people and organizations whose access to resources is
governed by the RSA ClearTrust system.

• Group: a collection of users

• User: an end-user person who will, upon successful authentication and
authorization, be given access to RSA ClearTrust-protected resources.

• User property: an extra detail about a user that can be used as a criterion for access
decisions, for Web personalization, etc. A user property is stored in a field that has
been declared and defined in a user property definition.

• User property definition: Mechanism for adding extra data fields to user records.
In order to add a data field that is usable on all user records, you must create a user
property definition that establishes the name and datatype. Once you have created
and saved the user property definition, you can begin storing data in the new user
property field.

CT_EntityHdr Struct
The CT_EntityHdr struct contains common attributes for groups and users.

When creating users and groups, please note that their names may not contain any
of the following characters: “,”, “+”, “"”, “\”, “<“, “>” or “;”.

Table 3.11 CT_EntityHdr

Element Type Description

id int Reference for the API layer.

admin_id int Reference for the API layer.

admin_name char * Name of the owning administrative group.

creationdate DATE_TYPE Deprecated. The creation date of the object.

ct_public CT_BOOLEAN Determines whether the object is visible to and editable by all administrative users.

name char * The name of the entity.
28 Administrative C API: Participants

RSA ClearTrust Developer’s Guide
Groups
A group object (CT_Group) represents a collection of users and/or other groups. Any
user or group can be included in many groups.

The following table describes the ct_commands.h functions that can operate on a
group object.

Note: If your installation uses collections of groups, please note that the mechanism
for doing this has changed with the release of RSA ClearTrust 4.7. Previously, RSA
ClearTrust provided the realm object (CT_Realm struct) for building collections of
groups. In version 4.7, the IRealm interface is deprecated, and this functionality has
been replaced with nested groups. This means that a group may contain other
groups, which may in turn contain other groups, and so on. The deprecation of
IRealm means that, while groups may still be collected into realms in 4.7, the IRealm
interface will no longer exist in the next version of RSA ClearTrust.

Table 3.12 CT_Group Object

Element Type Description

hdr CT_EntityHdr Header of the object.

description char * Textual description of the group.

Table 3.13 Group Functions of ct_commands.h

Function Description

ct_add_user_to_group Adds a user to a group.

ct_create_entitlement_for_group Creates a basic entitlement between a group and an application function.

ct_create_group Creates a group object. Group names may not contain any of the following
characters: “,”, “+”, “"”, “\”, “<“, “>” or “;”.

ct_delete_group Deletes a group object.

ct_get_entitlement_for_group Gets a basic entitlement between a group and an application function.

ct_get_exp_entitlement_for_group_by
_index

Gets the basic entitlement assigned to the group for the specified index.

ct_get_exp_entitlements_for_group_b
y_range

Gets an array of basic entitlements assigned to the group for the specified
index range.

ct_get_group_by_index Gets the group for the specified index.

ct_get_group_by_name Gets the group for the specified name.

ct_get_group_owner Gets the owner of a group.

ct_get_groups_by_names Gets an array of groups for the array of names specified.

ct_get_groups_by_range Gets an array of groups for the index range specified.
Administrative C API: Participants 29

RSA ClearTrust Developer’s Guide
ct_get_num_of_exp_entitlements_for
_group

Gets the number of basic entitlements assigned to the group.

ct_get_num_of_groups Gets the number of groups in the entitlement server database.

ct_get_num_of_realms_for_group Deprecated: Gets the number of realms that are parents of the group.

ct_get_num_of_users_for_group Gets the number of users that are children of the group.

ct_get_realm_for_group_by_index Deprecated: Gets the realm of the group for the specified index.

ct_get_realm_for_group_by_name Deprecated: Gets the realm of the group for the specified name.

ct_get_realms_for_group_by_names Deprecated: Gets an array of realms of the group for the specified names.

ct_get_realms_for_group_by_range Deprecated: Gets an array of realms of the group for the specified index
range.

ct_get_user_for_group_by_index Gets the user that is a child of the group for the specified index.

ct_get_user_for_group_by_name Gets the user that is a child of the group for the specified name.

ct_get_users_for_group_by_names Gets an array of users that are children of the group for the specified names.

ct_get_users_for_group_by_range Gets an array of users that are children of the group for the specified index
range.

ct_remove_user_from_group Removes a user from a group.

ct_save_group Saves the group to the database.

ct_set_group_owner Sets the administrative group that owns the group.

Table 3.13 Group Functions of ct_commands.h

Function Description
30 Administrative C API: Participants

RSA ClearTrust Developer’s Guide
Users
A user object (CT_User) represents a user who will attempt to view or use an
RSA ClearTrust-protected URL or other resource. Users are usually collected into
Groups and are given rights to resources via basic entitlements and SmartRules. A
user may be a member of many groups.

The following table describes the elements of the user object.

Relationships are not defined within the user object. You access the other objects
through the relationship APIs.

Warning: Do not confuse users with administrative users; they are separate and
unrelated objects. See “Administrative User” on page 24.

Table 3.14 CT_User Object

Element Type Description

hdr CT_EntityHdr Header of the object.

firstname char * First name of the user.

lastname char * Last name of the user.

emailaddr char * email address of the user.

superuser CT_BOOLEAN Deprecated. Applies only to the newly-introduced CT_AdminUser.

superHelpDesk CT_BOOLEAN Deprecated. Applies only to the newly-introduced CT_AdminUser.

password char * Password of the user, used only to set the password. It is not set when a user
is retrieved from the server.

dn char * Distinguished Name of the user. This attribute is used to map an
RSA ClearTrust user to a user in an external directory. user names may not
contain any of the following characters: “,”, “+”, “"”, “\”, “<“, “>” or “;”.

is_locked CT_BOOLEAN If true, the user is locked out from the system. This means that the user is
denied access to any resource.

startdate DATE_TYPE Start date of the user.

enddate DATE_TYPE End date of the user.

propArray ObjectArrayRef Array of user properties.
Administrative C API: Participants 31

RSA ClearTrust Developer’s Guide
The following table describes the ct_commands.h functions that can operate on a user
object.

Table 3.15 User Functions of ct_commands.h

Function Description

ct_create_entitlement_for_user Creates a basic entitlement between a user and an application
function.

ct_create_user_and_properties Creates a user and all of its properties. Note that user names may not
contain any of the following characters: “,”, “+”, “"”, “\”, “<“, “>” or “;”.

ct_delete_user Deletes a user.

ct_get_entitlement_for_user Gets a basic entitlement between a user and an application function.

ct_get_exp_entitlement_for_user_by_index Gets the basic entitlement assigned to the user for the index specified.

ct_get_exp_entitlements_for_user_by_range Gets an array of basic entitlements assigned to the user for the
specified index range.

ct_get_group_for_user_by_index Gets the parent group for this user for the specified index.

ct_get_group_for_user_by_name Gets the parent group for this user for the specified name.

ct_get_groups_for_user_by_names Gets an array of parent groups for this user for the specified names.

ct_get_groups_for_user_by_range Gets an array of parent groups for this user for the specified index
range.

ct_get_num_of_exp_entitlements_for_user Gets the number of basic entitlements assigned to the user.

ct_get_num_of_groups_for_user Gets the number of parent groups for which this user is a member.

ct_get_num_of_userprops_for_user Gets the number of UserProperties associated with the user.

ct_get_num_of_users Gets the number of users in the entitlement server database.

ct_get_user_and_properties Gets the specified user and all of its properties.

ct_get_user_and_properties_by_dn Gets the user specified by its Distinguished Name and all of its
properties.

ct_get_user_by_index Gets the user for the specified index.

ct_get_user_by_name Gets the user for the specified name.

ct_get_user_owner Gets the owner of the specified user.

ct_get_userprop_for_user_by_index Gets the UserProperty associated with the user for the specified index.

ct_get_userprop_for_user_by_name Gets the UserProperty associated with the user for the specified name.

ct_get_userprops_for_user_by_names Gets an array of UserProperties associated with the user for the
specified names.

ct_get_userprops_for_user_by_range Gets an array of UserProperties associated with the user for the
specified index range.

ct_get_users_by_names Gets an array of users for the specified names.

ct_get_users_by_range Gets an array of users for the specified index range.

ct_save_user Saves the specified user in the database.
32 Administrative C API: Participants

RSA ClearTrust Developer’s Guide
User Properties
A user property object (CT_UserProperty) is an extra detail about a user that can be
used as a criterion for access decisions, for Web personalization, etc. For example,
based on a user property, a SmartRule can calculate a user’s accessibility to an
application. A user property is stored in a field that has been declared and defined in a
user property definition.

User Property Definitions
A user property definition object (CT_UserPropertyDefinition) declares an extra data
field that may be populated in any user record. In order to add a data field that is
usable on all user records, you must create a user property definition that establishes
the name and datatype. Once you have created and saved the user property definition,
you can begin storing data in the new user property field. Each value you store is a
user property object (see previous section).

ct_save_user_and_properties Saves a user and all of its properties in the database.

ct_set_user_owner Sets the owner (administrative group) of the user.

Table 3.15 User Functions of ct_commands.h

Function Description

Table 3.16 CT_UserProperty Object

Element Type Description

id int Reference for the API layer.

user_id int User ID of the UserProperty.

name char * Deprecated. The name is available on
CT_UserPropertyDefinition.

type CT_USERPROP_DATATYPE Defines the data type of the UserProperty.

val CT_USERPROP_DATAVALUE Value of the data type.

isSet CT_BOOLEAN Indicates whether this UserProperty is set in the
RSA ClearTrust database.

Table 3.17 CT_UserPropertyDefinition Object

Element Type Description

id int Reference for the API layer.

admin_id int Reference for the API layer.

admin_name char * Name of the owning administrative group.

ct_public CT_BOOLEAN Indicates whether the UserPropertyDefinition is visible to all
RSA ClearTrust administrators.
Administrative C API: Participants 33

RSA ClearTrust Developer’s Guide
The following table describes the ct_commands.h functions that work with user
property definition objects.

name char * Name of the UserPropertyDefinition.

type CT_USERPROP_DATATYP
E

Data type of the UserPropertyDefinition.

description char * Textual description of the property definition.

source char * For internal use only.

readonly CT_BOOLEAN Indicates whether the property can be modified by all
RSA ClearTrust administrators.

helpDeskAccessible CT_BOOLEAN Indicates whether this property can be seen by the
superhelpdesk administrative user.

exportable CT_BOOLEAN Indicates whether this property is visible to Runtime API
clients.

Table 3.17 CT_UserPropertyDefinition Object

Element Type Description

Table 3.18 User Property Definition Functions of ct_commands.h

Function Description

ct_create_user_property_definition Creates a UserPropertyDefinition.

ct_delete_userpropdef Deletes the specified UserPropertyDefinition.

ct_get_num_of_userpropdefs Gets the number of UserPropertyDefinitions in the entitlement database.

ct_get_userpropdef_by_index Gets the UserPropertyDefinition for the specified index.

ct_get_userpropdef_by_name Gets the UserPropertyDefinition for the specified name.

ct_get_userpropdef_owner Gets the owner (administrative group) of the specified UserPropertyDefinition.

ct_get_userpropdefs_by_names Gets an array of UserPropertyDefinitions for the specified names.

ct_get_userpropdefs_by_range Gets an array of UserPropertyDefinitions for the specified index range.

ct_save_userpropdef Saves the UserPropertyDefinition in the database.

ct_set_userpropdef_owner Sets the owner (administrative group) of the specified UserPropertyDefinition.
34 Administrative C API: Participants

RSA ClearTrust Developer’s Guide
Deprecated Structure: Realms
The deprecated realm object (CT_Realm) was used in previous releases to represent a
collection of groups. As of 4.7, groups maybe collected together in other groups, so
realms are no longer needed. See “Groups” on page 29.

Table 3.19 The deprecated CT_Realm Object

Element Type Description

hdr CT_EntityHdr Header of the deprecated realm object.

description char * Textual description of the group.

Table 3.20 Deprecated Realm Functions of ct_commands.h. These are replaced by group functions.

Function Description

ct_add_group_to_realm Deprecated: Adds a group to a realm

ct_create_entitlement_for_realm Deprecated: Creates a basic entitlement between a realm and an
application function.

ct_create_realm Deprecated: Creates a realm object. Realm names may not contain any of
the following characters: “,”, “+”, “"”, “\”, “<“, “>” or “;”.

ct_delete_realm Deprecated: Deletes the specified realm object.

ct_get_entitlement_for_realm Deprecated: Gets a basic entitlement between a realm and an application
function.

ct_get_exp_entitlement_for_realm_by_
index

Deprecated: Gets the basic entitlement assigned to the realm for the
specified index.

ct_get_exp_entitlements_for_realm_
by_range

Deprecated: Gets an array of basic entitlements assigned to the realm for
the specified index range.

ct_get_group_for_realm_by_index Deprecated: Gets the group that is a child of the realm for the specified
index.

ct_get_group_for_realm_by_name Deprecated: Gets the group that is a child of the realm for the specified
name.

ct_get_groups_for_realm_by_names Deprecated: Gets an array of groups that are children of the realm for the
specified names.

ct_get_groups_for_realm_by_range Deprecated: Gets an array of groups that are children of the realm for the
specified index range.

ct_get_num_of_exp_entitlements_for_
realm

Deprecated: Gets the number of basic entitlements assigned to the
specified realm.

ct_get_num_of_groups_for_realm Deprecated: Gets the number of groups that are children of the realm.

ct_get_num_of_realms Deprecated: Gets the number of realms in the entitlements database.

ct_get_realm_by_index Deprecated: Gets the realm for the specified index.

ct_get_realm_by_name Deprecated: Gets the realm for the specified name.
Administrative C API: Participants 35

RSA ClearTrust Developer’s Guide
Policy Objects
Policy objects describe entitlements and rules that allow participants access to
resources.

• Basic entitlement — Governs access to application functions based on a user’s
name or his or her membership in a group.

• SmartRule — Governs access to application functions based on user properties.

Basic Entitlements
An explicit entitlement object (CT_ExplicitEntitlement) defines a user’s or group’s
access to a protected resource. Explicit entitlements are called basic entitlements. In
order to create a basic entitlement, you must specify its entity ID (the ID of the user or
group) and its application ID (the ID of the protected resource, which is an
application, application function, or URL). The entitlement may grant or deny the user
or group permission to access the application.

Basic entitlements granted to a group apply to all users in that group. Basic
entitlements have a hierarchy; a basic entitlement granted or denied at the user level
overrides any conflicting entitlements at the group level. Likewise, a basic entitlement
granted or denied at the group level overrides any conflicting entitlement set on a
parent group of that group.

In other words, when using nested group structures, if a user has a basic entitlement
assigned at the level of a group and also has a conflicting entitlement assigned at the
level of a second group that is higher up the group/parent group hierarchy, then the
entitlement of the lowest-level group will take precedence. The reason for this is that
the lowest-level group is thought of as providing the most precise definition of the
user’s privileges.

For example, if group BronzeUsers is denied access to application CarLoanCalculator,
and the BronzeUsers group in turn contains a number of groups, then all the users in
all the sub-groups of BronzeUsers are denied access. If you wished to override this
denial for some users, there are two ways you could do it. One approach would be to
create a new group (say, group BronzeSpecial) for those users, make that group a

ct_get_realm_owner Deprecated: Gets the owner of the realm.

ct_get_realms_by_names Deprecated: Gets an array of realms specified by names.

ct_get_realms_by_range Deprecated: Gets an array of realms for the specified index range.

ct_remove_group_from_realm Deprecated: Removes a group from a realm.

ct_save_realm Deprecated: Saves the realm to the database.

ct_set_realm_owner Deprecated: Sets the realm’s owner.

Table 3.20 Deprecated Realm Functions of ct_commands.h. These are replaced by group functions.

Function Description
36 Administrative C API: Policy Objects

RSA ClearTrust Developer’s Guide
member of the BronzeUsers group, and give that group access to CarLoanCalculator.
The BronzeSpecial setting will override the BronzeUsers setting. The other approach
would be to grant access at the individual user level. For example, if you grant user
TBradshaw access to application CarLoanCalculator, this overrides any denials for
TBradshaw defined in the groups to which he belongs.

The following ct_commands.h functions operate on an explicit (basic) entitlement
object.

Table 3.21 CT_ExplicitEntitlement Object

Element Type Description

id int Reference for the API layer.

accessible CT_BOOLEAN Indicates whether the application is accessible.

Table 3.22 Basic Entitlement Functions of ct_commands.h

Function Description

ct_create_entitlement_for_user Deprecated: Creates a basic entitlement between a user and an
application function.

ct_create_entitlement_for_group Deprecated: Creates a basic entitlement between a group and
an application function.

ct_create_entitlement_for_group_and_appfunc Creates an explicit entitlement between a group and an
application function.

ct_create_entitlement_for_group_and_application Creates an explicit entitlement between a group and an
application.

ct_create_entitlement_for_group_and_appurl Creates an explicit entitlement between a group and an
application URL.

ct_create_entitlement_for_realm Deprecated: Creates a basic entitlement between a realm and
an application function.

ct_create_entitlement_for_realm_and_appfunc Deprecated in 4.7.

ct_create_entitlement_for_realm_and_application Deprecated in 4.7.

ct_create_entitlement_for_realm_and_appurl Deprecated in 4.7.

ct_create_entitlement_for_user_and_appfunc Creates an explicit entitlement between a user and an
application function.

ct_create_entitlement_for_user_and_application Creates an explicit entitlement between a user and an
application.

ct_create_entitlement_for_user_and_appurl Creates an explicit entitlement between a user and an
application URL.

ct_create_entitlement_for_user Deprecated in 4.7.

ct_delete_exp_entitlement Deletes the specified basic entitlement.

ct_get_application_for_entitlement Gets the Application related to the Explicit Entitlement.

ct_get_appfunc_for_entitlement Gets the application function related to the basic entitlement.
Administrative C API: Policy Objects 37

RSA ClearTrust Developer’s Guide
ct_get_appurl_for_entitlement Gets the Application URL related to the Explicit Entitlement.

ct_get_entitlement Gets a basic entitlement between a Participant (user or group)
and an application function.

ct_get_entitlement_for_group. Deprecated in 4.7

ct_get_entitlement_for_user. Deprecated in 4.7

ct_get_entitlement_for_group_and_appfunc Retrieves an explicit entitlement between a CT_Group and a
Application Function.

ct_get_entitlement_for_group_and_application Retrieves an explicit entitlement between a CT_Group and a
Application.

ct_get_entitlement_for_group_and_appurl Retrieves an explicit entitlement between a CT_Group and a
Application URL.

ct_get_exp_entitlement_for_group_by_index Given a Group, and an index, returns requested
ExplicitEntitlement assigned to the Group.

ct_get_exp_entitlements_for_group_by_range Given a Group, start index, and end index, returns the requested
range of ExplicitEntitlements assigned to the Group.

ct_get_entitlement_for_realm Deprecated in 4.7.

ct_get_entitlement_for_realm_and_appfunc Deprecated in 4.7.

ct_get_entitlement_for_realm_and_application Deprecated in 4.7.

ct_get_entitlement_for_realm_and_appurl Deprecated in 4.7.

ct_get_entitlement_for_user_and_appfunc Retrieves an explicit entitlement between a user and an
application function.

ct_get_entitlement_for_user_and_application Retrieves an explicit entitlement between a user and an
application.

ct_get_entitlement_for_user_and_appurl Retrieves an explicit entitlement between a user and an
application URL.

ct_get_exp_entitlement_for_appfunc_by_index Given an Application Function, and an index, returns requested
ExplicitEntitlement assigned to the Application Function.

ct_get_exp_entitlements_for_appfunc_by_range Given a Application Function, start index, and end index, returns
the requested range of ExplicitEntitlements assigned to the
Application Function.

ct_get_exp_entitlement_for_application_by_index Given an Application, and an index, returns requested
ExplicitEntitlement assigned to the Application.

ct_get_exp_entitlements_for_application_by_range Given a Application, start index, and end index, returns the
requested range of ExplicitEntitlements assigned to the
Application.

ct_get_exp_entitlement_for_appurl_by_index Given an Application URL, and an index, returns requested
ExplicitEntitlement assigned to the Application URL.

ct_get_exp_entitlements_for_appurl_by_range Given a ApplicationURL, start index, and end index, returns the
requested range of ExplicitEntitlements assigned to the
ApplicationURL.

Table 3.22 Basic Entitlement Functions of ct_commands.h

Function Description
38 Administrative C API: Policy Objects

RSA ClearTrust Developer’s Guide
ct_get_exp_entitlement_for_user_by_index Given a user, and an index, returns requested entitlement
assigned to the user.

ct_get_exp_entitlements_for_user_by_range Given a user, start index, and end index, returns the requested
range of entitlements assigned to the user.

ct_get_exp_entitlement_for_realm_by_index Deprecated.

ct_get_exp_entitlements_for_realm_by_range Deprecated.

ct_get_group_for_entitlement Gets the group related to the basic entitlement.

ct_get_num_of_exp_entitlements_for_application Given an Application, returns the number of ExplicitEntitlements
assigned to the Application's 'ACCESS' ApplicationFunction.

ct_get_num_of_exp_entitlements_for_appfunc Given an Application Function, returns the number of
ExplicitEntitlements assigned to the Application Function.

ct_get_num_of_exp_entitlements_for_appurl Given an Application URL, returns the number of
ExplicitEntitlements assigned to the Application URL.

ct_get_num_of_exp_entitlements_for_group Given a Group, returns the number of ExplicitEntitlements
assigned to the Group.

ct_get_num_of_exp_entitlements_for_realm Deprecated.

ct_get_num_of_exp_entitlements_for_user Given a User, returns the number of entitlements assigned to the
user.

ct_get_realm_for_entitlement Deprecated: Gets the realm related to the basic entitlement.

ct_get_user_for_entitlement Gets the user related to the basic entitlement

ct_save_exp_entitlement Saves the basic entitlement to the database.

Table 3.22 Basic Entitlement Functions of ct_commands.h

Function Description
Administrative C API: Policy Objects 39

RSA ClearTrust Developer’s Guide
SmartRules
A SmartRule object (CT_SmartRule) governs access to a resource based on a user’s
value for a specified UserPropertyDefinition. The following table describes the
elements of a SmartRule object.

The following table describes the ct_commands.h operations that can be performed on
a SmartRule object.

Table 3.23 CT_SmartRule Object

Element Type Description

id int SmartRule primary key.

propDef_id int User property definition primary key.

appFunc_id int application function primary key.

type CT_CRITERIA_DATATYPE The type of SmartRule.

critValue CT_CRITERIA_DATAVALUE Data structure that holds the operator and value.

category char * The SmartRule category. Must be one of the following:
“ALLOW”
“DENY”
“REQUIRE”

Table 3.24 SmartRule Functions of ct_commands.h

Function Description

ct_create_smart_rule Creates a SmartRule object.

ct_create_smart_rule_for_app_func Creates a SmartRule associated with a UserPropertyDefinition and an
ApplicationFunction.

ct_create_smart_rule_for_app_url Creates a SmartRule associated with a UserPropertyDefinition and an
ApplicationFunction.

ct_create_smart_rule_for_application Creates a SmartRule associated with a UserPropertyDefinition and an
ApplicationFunction.

ct_delete_smart_rule Deletes a SmartRule object.

ct_get_appfunc_for_smartrule Get the related ApplicationFunction for a SmartRule object.

ct_get_application_for_smartrule Get the related Application for a SmartRule object.

ct_get_appurl_for_smartrule Get the related Application URL for a SmartRule object.

ct_get_num_of_smartrules_for_appfunc Gets the number of SmartRules associated with the specified
ApplicationFunction.

ct_get_num_of_smartrules_for_appfunc Given an ApplicationFunction, returns the number of SmartRules
associated with the ApplicationFunction.

ct_get_num_of_smartrules_for_application Given an Application, returns the number of SmartRules associated with
the Application.

ct_get_num_of_smartrules_for_appurl Given an ApplicationURL, returns the number of SmartRules associated
with the ApplicationURL.
40 Administrative C API: Policy Objects

RSA ClearTrust Developer’s Guide
ct_get_smartrules_for_appfunc_by_index Gets the SmartRule for the ApplicationFunction for the specified index.

ct_get_smartrules_for_appfunc_by_index Given a ApplicationFunction, and an index, returns requested SmartRule
associated with the ApplicationFunction.

ct_get_smartrules_for_appfunc_by_range Gets an array of SmartRules for the ApplicationFunction for the specified
index range.

ct_get_smartrules_for_appfunc_by_range Given an ApplicationFunction, start index, and end index, returns the
requested range of SmartRule contained in the ApplicationFunction.

ct_get_smartrules_for_application_by_inde
x

Given a Application, and an index, returns requested SmartRule
associated with the Application.

ct_get_smartrules_for_application_by_ran
ge

Given an Application, start index, and end index, returns the requested
range of SmartRule contained in the Application.

ct_get_smartrules_for_appurl_by_index Given a ApplicationURL, and an index, returns requested SmartRule
associated with the ApplicationURL.

ct_get_smartrules_for_appurl_by_range Given an ApplicationURL, start index, and end index, returns the
requested range of SmartRule contained in the ApplicationURL.

ct_get_userpropdef_for_smartrule Get the related UserPropertyDefition for a SmartRule object.

ct_save_smart_rule Saves the specified SmartRule in the database.

Table 3.24 SmartRule Functions of ct_commands.h

Function Description
Administrative C API: Policy Objects 41

RSA ClearTrust Developer’s Guide
Resources
The following resource objects are provided by the RSA ClearTrust API.

• Application — A logical grouping of resources and functions.

• Application function — A set of functionality within an application.

• URL — A resource labeled by a URI and associated with a particular application
and Web server.

• Web server — Associated with URIs, defining the location of the URIs.

• Server tree — Represents a tree of URLs on a Web server

Applications
An application object (CT_Application) represents a logical grouping of resources
and functions. A user’s access to the resources is defined by a basic entitlement from
the user to the application.

• If a user is not associated with an application, then accessibility of the contained
URLs for the user is determined by how passive access has been defined.

• If a user is associated with an application, the accessibility is defined by whether
the association has been defined as accessible.

The application object contains descriptive information. It does not describe the
application’s associated with relationships.

Table 3.25 CT_Application Object

Element Type Description

id int Reference for the API layer.

admin_id int Reference for the API layer.

admin_name char * Name of the owning administrative group.

ct_public CT_BOOLEAN Indicates whether the object is viewable by any administrative user.

name char * Name of the application, used for object reference and display label on the GUI.

version char * Version of the application.

description char * Textual description of the application.
42 Administrative C API: Resources

RSA ClearTrust Developer’s Guide
The following table describes the ct_commands.h functions that operate on an
application.

Table 3.26 Functions of ct_commands.h Related to Application Objects

Function Description

ct_create_application Creates an application object in the database.

ct_delete_application Deletes the specified application object from the database.

ct_get_app_by_index Gets the application for the specified index.

ct_get_app_by_name Gets the application for the specified name.

ct_get_appfunc_for_application_by_index Gets the ApplicationFunction for the application for the specified
index.

ct_get_appfunc_for_application_by_name Gets the ApplicationFunction for the application for the specified
name.

ct_get_appfuncs_for_application_by_names Gets an array of ApplicationFunctions for the application for the
specified names.

ct_get_appfuncs_for_application_by_range Gets an array of ApplicationFunctions for the application for the
specified index range.

ct_get_application_owner Gets the owner (administrative group) of the application.

ct_get_apps_by_names Gets an array of applications for the specified names.

ct_get_apps_by_range Gets an array of applications for the specified index range.

ct_get_appurl_for_application_by_index Gets the ApplicationURL associated with the application for the
specified index.

ct_get_appurls_for_application_by_range Gets an array of ApplicationURLs associated with the application
for the specified index range.

ct_get_exp_entitlement_for_application_by_index Gets the basic entitlement assigned to the application for the
specified index.

ct_get_exp_entitlement_for_application_by_range Gets an array of basic entitlements assigned to the application
for the specified index range.

ct_get_num_of_appfuncs_for_application Gets the number of ApplicationFunctions associated with the
application.

ct_get_num_of_applications Gets the number of application objects in the database.

ct_get_num_of_appurls_for_application Gets the number of ApplicationURLs associated with the
specified application.

ct_get_num_of_exp_entitlements_for_application Gets the number of basic entitlements assigned to the
application’s ‘ACCESS’ ApplicationFunction.

ct_save_application Saves the application in the database.

ct_set_application_owner Sets the owner (administrative group) of the application.
Administrative C API: Resources 43

RSA ClearTrust Developer’s Guide
Application Functions
An application function (CT_ApplicationFunction declared in ct_structs.h)
represents a protected set of functionality within an application. The set of
functionality can be protected through the creation of a basic entitlement.

The following table describes the ct_commands.h operations that can be performed on
an ApplicationFunction object.

Application URLs
An ApplicationURL object (CT_ApplicationURL) represents a resource labeled by a
URI and associated with a particular application and Web server.

An ApplicationURL represents an accessible URL that is part of a WebApplication.

Table 3.27 CT_ApplicationFunction Object

Element Type Description

id int Reference for the API layer.

name char * Name of the ApplicationFunction

description char * Textual description of the ApplicationFunction.

filter CT_BOOLEAN Filter for conflicting SmartRules.
TRUE - “allow “SmartRule takes precedence over a “deny” SmartRule.
FALSE - “deny” SmartRule takes precedence over an “allow” SmartRule.

Table 3.28 Functions of ct_commands.h Related to ApplicationFunctions

Function Description

ct_create_app_func Creates an ApplicationFunction object.

ct_delete_app_func Deletes an ApplicationFunction object.

ct_get_app_for_appfunc Gets the application related to the ApplicationFunction.

ct_save_appfunc Saves the ApplicationFunction in the database.

Table 3.29 CT_ApplicationURL Object

Element Type Description

id int Reference for the API layer.

app_id int ID of the URL’s application.

websrvr_id int ID of the URL’s Web server.

description char * Textual description of the ApplicationURL.

uri char * The accessible file. Note: This does not include the protocol (e.g. http:) or host name.
44 Administrative C API: Resources

RSA ClearTrust Developer’s Guide
The ApplicationURL object contains descriptive information. It does not describe the
ApplicationURL’s associated-with relationships.

The following table describes the ct_commands.h functions that operate on an
ApplicationURL object.

Web Servers
A Web server object (CT_WebServer) is associated with URIs, defining the location
of the URIs. The Web server also represents the location of the authorizer which
performs accessibility checking against the associated URIs.

A Web server defines a URL’s location through an associated-with relationship.

The Web server object represents the location of an RSA ClearTrust authorizer which
performs accessibility checking against the associated URLs.

Table 3.30 ApplicationURL Functions of ct_commands.h

Function Description

ct_create_app_url Creates an ApplicationURL associated with an Application and Web server.

ct_delete_appurl Deletes an ApplicationURL from the database.

ct_get_webserver_for_appurl Gets the Web server associated with the ApplicationURL.

ct_save_appurl Saves the ApplicationURL in the database.

ct_set_webserver_for_appurl Sets the Web server associated with the ApplicationURL.

Table 3.31 CT_WebServer Object

Element Type Description

id int Reference for the API layer.

admin_id int Reference for the API layer.

admin_name char * Name of the owning administrative group.

ct_public CT_BOOLEAN Defines the Web server’s visibility to RSA ClearTrust.

name char * Name of the application. Used for object reference and display label on the GUI.

description char * Textual description of the Web server. Used for information only.

manufacturer char * Manufacturer of the Web server. Used for information only.

hostname char * Host name of the Web server. Used for information only.

port int Port number of the Web server. Used for information only.
Administrative C API: Resources 45

RSA ClearTrust Developer’s Guide
The following ct_commands.h functions operate on a Web server object.

Server Trees
A server tree object (CT_ServerTree) is associated with a Web server. It represents a
tree of URLs on a Web server.

Table 3.32 Web server Functions of ct_commands.h

Function Description

ct_create_web_server Creates a Web server object in the database.

ct_delete_webserver Deletes a Web server object from the database.

ct_get_appurl_for_webserver_by_index Gets the ApplicationURL associated with the Web server for the specified
index.

ct_get_appurls_for_webserver_by_range Gets an array of ApplicationURLs associated with the Web server for the
specified index range.

ct_get_num_of_appurls_for_webserver Gets the number of ApplicationURLs associated with the Web server.

ct_get_num_of_webservers Gets the number of Web servers in the entitlement server database.

ct_get_webserver_by_index Gets the Web server for the specified index.

ct_get_webserver_by_name Gets the Web server for the specified name.

ct_get_webserver_owner Gets the owner (administrative group) of the Web server.

ct_get_webservers_by_names Gets an array of Web servers for the specified names.

ct_get_webservers_by_range Gets an array of Web servers for the specified index range.

ct_save_webserver Saves the specified Web server in the database.

ct_set_webserver_owner Sets the owner (administrative group) of the Web server.

Table 3.33 CT_ServerTree Object

Element Type Description

id int Reference for the API layer.

admin_id int Reference for the API layer.

admin_name char * Name of the owning administrative group.

ct_public CT_BOOLEAN Indicates whether the ServerTree is visible to RSA ClearTrust.

uri char * Root URI for the ServerTree.

description char * Textual description of the ServerTree.
46 Administrative C API: Resources

RSA ClearTrust Developer’s Guide
The following ct_commands.h functions operate on ServerTree objects.

Searching
The API provides objects and operations for searching the entitlements database. For
detailed function descriptions, see the comments in
<CT_HOME>/api/admin-c/include/ct_search.h.

Valid search types are:

• CT_ADMIN_USER_SEARCH

• CT_ADMIN_GROUP_SEARCH

• CT_GROUP_SEARCH

• Deprecated: CT_REALM_SEARCH

• CT_WEB_SERVER_SEARCH

• CT_APPLICATION_SEARCH

• CT_USER_PROP_DEF_SEARCH

• CT_USER_SEARCH

Each search type has a corresponding search object to contain search information that
is passed to the appropriate search function. The following tables describe the search
information for each search object.

Table 3.34 ServerTree Functions of ct_commands.h

Function Description

ct_create_server_tree Creates a ServerTree object in the database.

ct_delete_server_tree Deletes a ServerTree object from the database.

ct_get_num_servertree_for_webserver Gets the number of ServerTrees associated with the specified Web
server.

ct_get_servertree_for_webserver_by_index Gets the ServerTree associated with the Web server for the specified
index.

ct_get_servertree_for_webserver_by_range Gets an array of ServerTrees associated with the Web server for the
specified index range.

ct_get_servertree_owner Gets the owner (administrative group) of the ServerTree.

ct_save_server_tree Saves the ServerTree to the database.

ct_set_servertree_owner Sets the owner (administrative group) of the ServerTree.

Table 3.35 CT_AdminGroupSearch Object

Element Type Description

nameCriterion CT_StringCriterion * Criterion to match the administrative group name.
Administrative C API: Searching 47

RSA ClearTrust Developer’s Guide
Table 3.36 CT_GroupSearch Object

Element Type Description

nameCriterion CT_StringCriterion * Criterion to match the group name.

Table 3.37 Deprecated: CT_RealmSearch Object

Element Type Description

nameCriterion CT_StringCriterion * Criterion to match the realm name.

Table 3.38 CT_WebServerSearch Object

Element Type Description

nameCriterion CT_StringCriterion * Criterion to match the Web server name.

Table 3.39 CT_ApplicationSearch Object

Element Type Description

nameCriterion CT_StringCriterion * Criterion to match the application name.

Table 3.40 CT_UserPropDefSearch Object

Element Type Description

nameCriterion CT_StringCriterion * Criterion to match the UserPropDef name.

Table 3.41 CT_UserSearch Object

Element Type Description

useridCriterion CT_StringCriterion * Criterion to match the user ID.

firstNameCriterion CT_StringCriterion * Criterion to match the user’s first name.

lastNameCriterion CT_StringCriterion * Criterion to match the user’s last name.

emailCriterion CT_StringCriterion * Criterion to match the user’s email address.

dnCriterion CT_StringCriterion * Criterion to match the user’s DN.

accountStartCriterion CT_DateCriterion * Criterion to match the user’s Account Start Date.

accountEndCriterion CT_DateCriterion * Criterion to match the user’s Account End Date.

userLockoutCriterion CT_BooleanCriterion * Criterion to match the user’s lockout attribute.

superUserCriterion CT_BooleanCriterion * Criterion to match the user’s SuperUser attribute.

superHelpDeskCriterion CT_BooleanCriterion * Criterion to match the user’s HelpDesk attribute.

ownerCriterion CT_StringCriterion * Criterion to match the user’s owner’s name.

userPropCritArrayRef CT_UserPropCriteriaArrayRef A reference to an array of UserPropertyCriteria objects.
48 Administrative C API: Searching

RSA ClearTrust Developer’s Guide
To conduct a search, you first must allocate memory for the search Criterion object.
You should use the ct_alloc_search and ct_free_search functions to allocate and
free memory for the search objects.

You then must populate the search object with the information required for the search.
Once that information is in place, you can pass the search object as a parameter to the
appropriate search function.

The following table describes the search functions of ct_search.h.

Table 3.42 CT_UserInGroupSearch Object

Element Type Description

useridCriterion CT_StringCriterion * Criterion to match the user ID.

firstNameCriterion CT_StringCriterion * Criterion to match the user’s first name.

lastNameCriterion CT_StringCriterion * Criterion to match the user’s last name.

emailCriterion CT_StringCriterion * Criterion to match the user’s email address.

dnCriterion CT_StringCriterion * Criterion to match the user’s DN.

accountStartCriterion CT_DateCriterion * Criterion to match the user’s Account Start Date.

accountEndCriterion CT_DateCriterion * Criterion to match the user’s Account End Date.

userLockoutCriterion CT_BooleanCriterion * Criterion to match the user’s lockout attribute.

superUserCriterion CT_BooleanCriterion * Criterion to match the user’s SuperUser attribute.

superHelpDeskCriterion CT_BooleanCriterion * Criterion to match the user’s HelpDesk attribute.

ownerCriterion CT_StringCriterion * Criterion to match the user’s owner’s name.

userPropCritArrayRef CT_UserPropCriteriaArrayRef A reference to an array of UserPropertyCriteria objects.

Table 3.43 Search Functions of ct_search.h

Function Description

ct_alloc_search Allocates a Search object for the specified search type.

ct_free_search Frees a Search object.

ct_get_admingroup_by_index_in_search Gets the administrative group that matches the
CT_AdminGroupSearch criteria for the specified index.

ct_get_admingroup_by_name_in_search Gets the administrative group that matches the
CT_AdminGroupSearch criteria for the specified name.

ct_get_admingroups_by_names_in_search Gets an array of administrative groups that match the
CT_AdminGroupSearch criteria for the specified names.

ct_get_admingroups_by_range_in_search Gets an array of administrative groups that match the
CT_AdminGroupSearch criteria for the specified index range.

ct_get_app_by_index_in_search Gets the application that matches the CT_ApplicationSearch criteria for
the specified index.

ct_get_app_by_name_in_search Gets the application that matches the CT_ApplicationSearch criteria for
the specified name.
Administrative C API: Searching 49

RSA ClearTrust Developer’s Guide
ct_get_apps_by_names_in_search Gets an array of applications that match the CT_ApplicationSearch
criteria for the specified names.

ct_get_apps_by_range_in_search Gets an array of applications that match the CT_ApplicationSearch
criteria for the specified index range.

ct_get_group_by_index_in_search Gets the group that matches the CT_GroupSearch criteria for the
specified index.

ct_get_group_by_name_in_search Gets the group that matches the CT_GroupSearch criteria for the
specified name.

ct_get_group_by_names_in_search Gets an array of groups that match the CT_GroupSearch criteria for the
specified names.

ct_get_groups_by_range_in_search Gets an array of groups that match the CT_GroupSearch criteria for the
specified index range.

ct_get_num_of_admingroups_in_search Gets the number of administrative groups that match the
CT_AdminGroupSearch criteria.

ct_get_num_of_apps__in_search Gets the number of applications in the entitlement server database that
match the CT_ApplicationSearch criteria.

ct_get_num_of_groups_in_search Gets the number of groups in the entitlement server database that
match the CT_GroupSearch criteria.

ct_get_num_of_realms_in_search Deprecated: Gets the number of realms in the entitlement server
database that match the CT_RealmSearch criteria.

ct_get_num_of_userpropdefs_in_search Gets the number of UserPropertyDefs in the entitlement server
database that match the CT_UserPropDefSearch criteria.

ct_get_num_of_users_in_group_in_search Gets the number of users in the group that match the
CT_UserInGroupSearch criteria.

ct_get_num_of_users_in_search Gets the number of users in the entitlement server database that match
the CT_UserSearch criteria.

ct_get_num_of_webservers_in_search Gets the number of Web servers in the entitlement server database
that match the CT_WebServerSearch criteria.

ct_get_realm_by_index_in_search Deprecated: Gets the realm that matches the CT_RealmSearch
criteria for the specified index.

ct_get_realy_by_name_in_search Deprecated: Gets the realm that matches the CT_GroupSearch
criteria for the specified name.

ct_get_realms_by_names_in_search Deprecated: Gets an array of realms that match the CT_RealmSearch
criteria for the specified names.

ct_get_realms_by_range_in_search Deprecated: Gets an array of realms that match the CT_RealmSearch
criteria for the specified index range.

ct_get_user_by_index_in_search Gets the user that matches the CT_UserSearch criteria for the
specified index.

ct_get_user_by_name_in_search Gets the user that matches the CT_UserSearch criteria for the
specified name.

Table 3.43 Search Functions of ct_search.h

Function Description
50 Administrative C API: Searching

RSA ClearTrust Developer’s Guide
ct_get_userpropdef_by_index_in_search Gets the UserPropDef that matches the CT_UserPropDefSearch
criteria for the specified index.

ct_get_userpropdef_by_name_in_search Gets the UserPropDef that matches the CT_UserPropDefSearch
criteria for the specified name.

ct_get_userpropdefs_by_names_in_search Gets an array of UserPropDefs that match the
CT_UserPropDefsSearch criteria for the specified names.

ct_get_userpropdefs_by_range_in_search Gets an array of UserPropDefs that match the CT_UserPropDefSearch
criteria for the specified index range.

ct_get_users_by_names_in_search Gets an array of user that match the CT_UserSearch criteria for the
specified names.

ct_get_users_by_range_in_search Gets an array of user that match the CT_UserSearch criteria for the
specified index range.

ct_get_user_in_group_by_index_in_search Gets the user in the group that matches the CT_UserInGroupSearch
criteria for the specified index.

ct_get_user_in_group_by_name_in_search Gets the user in the group that matches the CT_UserInGroupSearch
criteria for the specified name.

ct_get_users_in_group_by_names_in_searc
h

Gets an array of users in the group that match the
CT_UserInGroupSearch criteria for the specified names.

ct_get_users_in_group_by_range_in_search Gets an array of users in the group that match the
CT_UserInGroupSearch criteria for the specified index range.

ct_get_webserver_by_index_in_search Gets the Web server that matches the CT_WebServerSearch criteria
for the specified index.

ct_get_webserver_by_name_in_search Gets the Web server that matches the CT_WebServerSearch criteria
for the specified name.

ct_get_webservers_by_names_in_search Gets an array of Web servers that match the CT_WebServerSearch
criteria for the specified names.

ct_get_webservers_by_range_in_search Gets an array of Web servers that match the CT_WebServerSearch
criteria for the specified index range.

Table 3.43 Search Functions of ct_search.h

Function Description
Administrative C API: Searching 51

RSA ClearTrust Developer’s Guide
Permissions
The permissions methods let you check whether the administrative user (as logged in
under a specific administrative role) has permission to perform a particular action. For
detailed function descriptions, see the comments in
<CT_HOME>/api/admin-c/include/ct_permissions.h.

Table 3.44 Permissions Functions of ct_permissions.h

Function Description

ct_check_add_group_to_realm Deprecated: Permission to add the specified group to the specified
realm.

ct_check_add_user_to_group Permission to add the specified user to the specified group.

ct_check_change_password Permission to change the password for the specified user.

ct_check_create_admin_group Permission to create an administrative group.

ct_check_create_admin_role Permission to create an administrative role.

ct_check_create_admin_role_in_admin_group Permission to create an administrative role in the specified
administrative group.

ct_check_create_application Permission to create an application.

ct_check_creeate_application_function Permission to create an application function.

ct_check_create_explicit_entitlement Permission to create a basic entitlement.

ct_check_create_group Permission to create a group.

ct_check_create_password Permission to create a password.

ct_check_create_realm Deprecated: Permission to create a realm.

ct_check_create_server_tree Permission to create a server tree.

ct_check_create_smart_rule Permission to create a SmartRule.

ct_check_create_user Permission to create a user.

ct_check_create_property_definition Permission to create a user property definition.

ct_check_create_web_server Permission to create a Web server.

ct_check_delete_administrative_group Permission to delete the specified administrative group.

ct_check_delete_administrative_role Permission to delete the specified administrative role.

ct_check_delete_application Permission to delete the specified application.

ct_check_delete_application_function Permission to delete the specified application function.

ct_check_delete_explicit_entitlement Permission to delete the specified basic entitlement.

ct_check_delete_group Permission to delete the specified group.

ct_check_delete_password_policy Permission to delete the specified password policy.

ct_check_delete_realm Deprecated: Permission to delete the specified realm.

ct_check_delete_server_tree Permission to delete the specified server tree.
52 Administrative C API: Permissions

RSA ClearTrust Developer’s Guide
ct_check_delete_smart_rule Permission to delete the specified SmartRule.

ct_check_delete_user Permission to delete the specified user.

ct_check_delete_user_property_definition Permission to delete the specified user property definition.

ct_check_delete_web_server Permission to delete the specified Web server.

ct_check_modify_administrative_group Permission to modify the specified administrative group.

ct_check_modify_administrative_role Permission to modify the specified administrative role.

ct_check_modify_application Permission to modify the specified application.

ct_check_modify_application_function Permission to modify the specified application function.

ct_check_modify_explicit_entitlement Permission to modify the specified basic entitlement.

ct_check_modify_group Permission to modify the specified group.

ct_check_modify_password_policy Permission to modify the specified password policy.

ct_check_modify_realm Deprecated: Permission to modify the specified realm.

ct_check_modify_server_tree Permission to modify the specified server tree.

ct_check_modify_smart_rule Permission to modify the specified SmartRule.

ct_check_modify_user Permission to modify the specified user.

ct_check_modify_user_property_definition Permission to modify the specified user property definition.

ct_check_modify_web_server Permission to modify the specified Web server.

ct_check_set_default_password_policy Permission to set the default password policy.

Table 3.44 Permissions Functions of ct_permissions.h

Function Description
Administrative C API: Permissions 53

RSA ClearTrust Developer’s Guide
Object Utilities
The object utilities provide low level functions that are called by the Administrative C
API. For detailed function descriptions, see the comments in
<CT_HOME>/api/admin-c/include/ct_utilities.h.

Error Codes
This table displays the error code mappings defined in
<CT_HOME>/api/admin-c/include/ct_rc_constants.h.

Table 3.45 Object Utilities Functions of ct_utilities.h

Function Description

ct_alloc_obj Allocates a ClearTrust object.

ct_free_obj Frees an object returned from the API.

ct_alloc_array_obj Allocates an array of ClearTrust objects.

ct_free_array_obj Frees an array of objects returned from the API.

ct_free_adminroleid Frees a CT_AdminRoleId structure and all pointers reachable from the
CT_AdminRoleId.

ct_alloc_search Allocates a Search struct object.

ct_free_search Frees a Search struct and all pointers reachable from the Search struct.

ct_alloc_criterion Allocates a Criterion.

ct_free_criterion Frees a Criterion struct and all pointers reachable from the Criterion.

ct_alloc_userprop_criterion Allocates a CT_UserPropertyCriterion.

ct_alloc_userprop_criterion_array Allocates an array of CT_UserPropertyCriterion.

ct_free_userprop_criterion_array Frees an array of CT_UserPropertyCriterion structs and all pointers reachable
from the CT_UserPropertyCriterion array.

ct_alloc_string Creates an allocated copy of the Source String and returns it through the
Destination Striking.

ct_free_string Frees an allocated String that was allocated by ct_alloc_string.

Table 3.46 Error Codes Returned by the Administrative C API

Error Code Numerical Code

RC_OK 0

RC_OBJ_NOT_FOUND 2

RC_INVALID_TYPE 3

RC_NOT_AUTHORIZED 4

RC_TRANSPORT_ERROR 5
54 Administrative C API: Object Utilities

RSA ClearTrust Developer’s Guide
The following error codes have been deprecated as of version 4.7. In the case of a bad
password or an invalid administrative role, the API will now return the more general
RC_NOT_AUTHORIZED error, instead of those listed below.

RC_MEMORY_ERROR 6

RC_DUPLICATE_OBJ_ERROR 7

RC_RANGE_OUT_OF_BOUNDS 8

RC_NO_AUTH_SERVERS 10

RC_RANGE_EXCEEDS_LIMIT 11

RC_INVALID_REFERENCE 12

RC_BAD_ARGS 13

RC_INVALID_CONTEXT 14

RC_ALREADY_CONNECTED 15

RC_NOT_CONNECTED 16

RC_ALREADY_INITIALIZED 17

RC_ILLEGAL_PASSWORD 18

RC_EXPIRED_PASSWORD 19

RC_AMBIGUOUS_ADMIN_ROLE 20

RC_INCOMPLETE_DATA 21

RC_OPERATION_NOT_APPLICABLE 22

RC_OPERATION_NOT_SUPPORTED 23

RC_SERVER_TIMEOUT 24

RC_INITIALIZATION_ERROR 25

RC_UNKNOWN_ERROR 26

Table 3.47 Deprecated Error Codes

Error Code Numerical Code

RC_INVALID_PASSWORD 1

RC_ADMINISTRATOR_NOT_FOUND 9

Table 3.46 Error Codes Returned by the Administrative C API

Error Code Numerical Code
Administrative C API: Error Codes 55

RSA ClearTrust Developer’s Guide
Memory Management in the C API

Memory Management when Getting API Objects
When retrieving an object from the server, the RSA ClearTrust C API dynamically
allocates the object's storage as well as any associated storage (for example, a string
for the object's name, or an array of UserProperties in users).

Freeing Memory
To prevent memory leaks, you must free an object and its associated storage using the
ct_free_obj function in ct_utilities.h.

Freeing Arrays
Similarly, when retrieving an array of objects from the server, the RSA ClearTrust C
API dynamically allocates the array of objects as well as their associated storage. To
prevent memory leaks, you must free the array of objects through the
ct_free_array_obj function in ct_utilities.h.

CT_User* user_ptr = NULL;
rc = ct_get_user_and_properties("TestUser", &user_ptr);

..
/* After finished with the CT_User struct you must call
* ct_free_obj to prevent memory leaks */
rc = ct_free_obj(CT_USER, user_ptr);

int num_of_groups = -1;
int ret_array_size = -1;
CT_Group* group_array_ptr = NULL;

rc = ct_get_num_of_groups(&num_of_groups);
if (rc != RC_OK) return rc;
rc = ct_get_groups_by_range(0, num_of_groups-1,

&ret_array_size,
&group_array_ptr);

if (rc != RC_OK) return rc;
...

/* After finished with the array of CT_Group
* struct you must call ct_free_array_obj. */
rc = ct_free_array_obj(CT_GROUP, group_array_ptr);

Note: DO NOT use the ct_free_obj on the individual CT-structs in an array of
CT-structs. This will cause unpredictable behavior. The returned array of CT-structs
is not an array of pointers to CT-structs.
56 Administrative C API: Memory Management in the C API

RSA ClearTrust Developer’s Guide
Memory Management when Modifying an API Object
After retrieving an API object struct, a common task is to make modifications to that
struct and the save your changes by passing the struct to the ct_save command.

However, you must be careful not to create memory leaks by replacing a reference in
the struct without freeing the previous value. Also after any modifications to the
struct, when you call any of the ct_free functions, the references in that struct must
all be NULL or freeable values (i.e., not a const value, or a value shared somewhere
else).

So, before modifying a struct’s attribute, free the attribute's storage and use the
appropriate memory utility functions (in ct_utilities.h) to replace the attribute
with a value that is freeable with the ct_free functions.

Example

Memory Management when Creating API Objects
When creating an API object in the RSA ClearTrust Server with the C API, you must
pass a struct’s reference to the appropriate create function. To avoid memory leaks,
this can be accomplished in either of the following two ways:

1. Statically allocate the struct on the stack; or

2. Dynamically allocate the struct with the ct_alloc functions.

CT_User *user_ptr = NULL;
// Retrieve an object.
rc = ct_get_user_by_name("TestUser", &user_ptr);
if (rc == RC_OK)
{
// Free the old attribute's Memory
if (user_ptr->hdr.name != NULL) ct_free_string(

user_ptr->hdr.name);

// Don't pass a Constant String to the CT_User
// struct, so ct_free_obj will be able to
// deallocate the memory for us.

ct_alloc_string("ChangedName", user_ptr->hdr.name);

ct_save_user(user_ptr); //Save changes to the APIServer
ct_free_obj(CT_USER, user_ptr);
}

Administrative C API: Memory Management in the C API 57

RSA ClearTrust Developer’s Guide
Static Allocation
This has the benefit that memory management is now left up to the stack and there is
no need to call the ct_free functions. And since you are not passing the struct to the
ct_free functions, you can pass string constants to the stack allocated struct. Of
course, any memory manually allocated for an attribute of the struct, must be
manually freed.

Example:

However, this has the disadvantage that the struct will only be available for the
lifetime of its declared scope. You can retrieve the newly created object's struct with
the get functions, but this may be an unwanted and costly overhead.

Dynamic Allocation
Using the ct_alloc functions to dynamically allocate the struct to create an object
solves the disadvantages of static stack allocation. However, memory management
and explicit frees are again left to the programmer.

The ct_alloc methods should be used to dynamically allocate the memory of the
struct.

Also, it will set all of the allocated struct’s attributes references to NULL or 0. To
prevent memory leaks the dynamically allocated struct and its associated storage must
be freed. When you are done using the Dynamically Allocated struct you must call
appropriate ct_free function. Again, you must be careful that all of the associated
memory is freeable.

CT_User user;
DATE_TYPE* start_date = localtime(&cur_time);
DATE_TYPE* end_date = localtime(&cur_time);
end_date->tm_year++;
memset(&user, '\0', sizeof(CT_User)); // Clear out the

// struct's attributes.

/* Set Up the User struct used to Create the User */
user.hdr.name = "JoeBob";
user.hdr.ct_public = TRUE;
user.startdate = *start_date;
user.enddate = *end_date;

rc = ct_create_user_and_properties(&user, 0, NULL);
if (rc != RC_OK)
{
printf ("Error: ct_create_user_and_properties\n");
}

58 Administrative C API: Memory Management in the C API

RSA ClearTrust Developer’s Guide
Example:

CT_User* user_ptr = NULL;
DATE_TYPE *start_date, *end_date;
start_date = localtime(&cur_time);
end_date = localtime(&cur_time);
end_date->tm_year++;

rc = ct_alloc_obj(CT_USER, &user);
if (rc != RC_OK) return rc;

/* Set Up the User struct used to Create the User */
// First allocate the String so ct_free_obj can
// free the memory for us.

ct_alloc_string("JoeBob", user_ptr->hdr.name);
user_ptr->hdr.ct_public = TRUE;
user_ptr->startdate = *start_date;
user_ptr->enddate = *end_date;

rc = ct_create_user_and_properties(user_ptr, 0, NULL);
if (rc != RC_OK)
{
printf ("Error: ct_create_user_and_properties\n");
}

...

...

/* When done using the user_ptr struct then Free the memory. */
rc = ct_free_obj(CT_USER, user_ptr);
if (rc != RC_OK)
{
printf ("Error: ct_free_obj\n");
}

Administrative C API: Memory Management in the C API 59

RSA ClearTrust Developer’s Guide
Sample Code
The following sample code illustrates the use of the RSA ClearTrust C Administrative
API. For the code to run, your RSA ClearTrust policy datastore must have at least one
of each of the following items defined:

• super user

• administrative group

• administrative role

By default, one of each is created when you install RSA ClearTrust.

AdminUser.c
This program shows how to initialize the RSA ClearTrust Administrative API and use
it to create, modify, and delete Administrative users. This example is provided in your
RSA ClearTrust installation, saved as
<CT_HOME>/api/admin-c/example/AdminUser.c.

/* AdminUser.c
*
* @version 4.7
* @since November 20, 2001
*/

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "ct_map.h"
#include "ct_search.h"
#include "ct_commands.h"

#define SERVER_NAME "localhost" /* IP Address may be used 127.0.0.1 */
#define SERVER_PORT "5601" /* Port Number Entitlement Server is running*/
#define TIMEOUT 300 /* max period of inactivity in seconds */
#define USE_SSL FALSE /* Either TRUE or FALSE */
#define API_USER "admin"
#define PASSWORD "admin1234"
60 Administrative C API: Sample Code

RSA ClearTrust Developer’s Guide
AdminUser.c example continues:

#define ADMIN_ROLE "Default Administrative Role"
#define ADMIN_GROUP_NAME "Default Administrative Group"

int main()
{

int rc = RC_OK;

/* Class paths to ClearTrust jar files on your system */
char *class_path_key =

"c:\\ct\\api\\admin-j\\lib\\ct_admin_api.jar;c:\\ct\\lib\\jcsi_provider.jar;c:\\ct
\\lib\\jce1_2-do.jar;c:\\ct\\lib\\jcsi_ssl.jar";

ct_map* myMap;

CT_Admin newAdminRole;
CT_AdminUser newAdminUser;

CT_Admin *existAdminRole = NULL;
CT_AdminUser *existAdminUser = NULL;
CT_AdminGroup *existAdminGroup = NULL;

time_t cur_time = time(NULL);
DATE_TYPE* start_date = localtime(&cur_time);
DATE_TYPE* end_date = localtime(&cur_time);
end_date->tm_year++;

/* Set CT_CLASSPATH_KEY to the path to the Java Admin
* API JAR file (ct_admin_api.jar).
*
* You may optionally set CT_DEBUG_KEY to any value
* to enable debugging and turn off the JIT in the JVM.
*/

myMap = ct_create_map();
ct_map_insert(myMap, CT_CLASSPATH_KEY, class_path_key);

/* Once our ct_map is created and set,
* we can now initialize the API
*/

if ((rc = ct_initialize_api(myMap)) != RC_OK) {
printf("\t[FAIL] ct_initialize_api(): %d\n", rc);

}

Administrative C API: Sample Code 61

RSA ClearTrust Developer’s Guide
AdminUser.c example continues:

/* Once the API has been initialized,
* we may destroy the ct_map
*/

ct_map_destroy(myMap);

/* ct_connect() */
if (rc = ct_connect(SERVER_NAME, SERVER_PORT, TIMEOUT,

USE_SSL, API_USER, PASSWORD,
ADMIN_ROLE, ADMIN_GROUP_NAME)

!= RC_OK) {
printf("\n\t[FAIL] ct_connect(): %d\n", rc);

} else {
printf("\n\t[PASS] ct_connect(): %d\n", rc);

}

/* Before an Admin User may be created, an Admin Group
* and an Admin Role are needed
*/

rc = ct_get_admingroup_by_name("Default Administrative Group",
&existAdminGroup);

if (rc != RC_OK) {
printf("[FAIL] : ct_get_admingroup_by_name() : %d\n", rc);

} else {

/* Set a new Admin Role structure*/
newAdminRole.name = "Sample AdminRole Name";
newAdminRole.description = "Sample AdminRole Description";
newAdminRole.add_user = TRUE;
newAdminRole.mod_user = TRUE;
newAdminRole.del_user = FALSE;
newAdminRole.add_group = TRUE;
newAdminRole.mod_group = TRUE;
newAdminRole.del_group = FALSE;
newAdminRole.add_realm = TRUE;
newAdminRole.mod_realm = TRUE;
newAdminRole.del_realm = FALSE;
62 Administrative C API: Sample Code

RSA ClearTrust Developer’s Guide
AdminUser.c example continues:

newAdminRole.add_app = TRUE;
newAdminRole.mod_app = TRUE;
newAdminRole.del_app = FALSE;
newAdminRole.add_server = TRUE;
newAdminRole.mod_server = TRUE;
newAdminRole.del_server = FALSE;
newAdminRole.add_admin = TRUE;
newAdminRole.mod_admin = TRUE;
newAdminRole.del_admin = FALSE;
newAdminRole.set_password = TRUE;
newAdminRole.add_user_prop_def = TRUE;
newAdminRole.mod_user_prop_def = TRUE;
newAdminRole.del_user_prop_def = FALSE;

/* Check for duplicate Admin Role and Delete if needed. */
if ((rc = ct_get_adminrole_for_admingroup_by_name(existAdminGroup,

newAdminRole.name, &existAdminRole)) == RC_OK
&&
existAdminRole != NULL
)

{
rc = ct_delete_admin_role(existAdminRole);

}

/* Now Create the new Admin Role */
rc = ct_create_admin_role(existAdminGroup, &newAdminRole);

if (rc != RC_OK) {
printf("[FAIL] : ct_create_admin_role() : %d\n", rc);

}
}

/* Set up a newAdmin struct */
memset(&newAdminUser, sizeof(CT_AdminUser), 0);

newAdminUser.admin_name = "TestAdminUser1";
newAdminUser.name = "TestAdmin1";
Administrative C API: Sample Code 63

RSA ClearTrust Developer’s Guide
AdminUser.c example continues:

newAdminUser.ct_public = TRUE;
newAdminUser.password = "admin1234";
newAdminUser.firstname = "Test";
newAdminUser.lastname = "Admin";
newAdminUser.emailaddr = "tau2@somewhere.com";
newAdminUser.startdate = *start_date;
newAdminUser.enddate = *end_date;
newAdminUser.superuser = FALSE;
newAdminUser.superHelpDesk = FALSE;
newAdminUser.is_locked = FALSE;

/* Check for duplicate Admin User and Delete if needed. */
if ((rc = ct_get_admin_user_by_name(newAdminUser.name,

&existAdminUser)) == RC_OK
&&
existAdminUser != NULL)

{
rc = ct_delete_admin_user(existAdminUser);

}

/* Now Create the new Admin Role */
if ((rc = ct_create_admin_user(&newAdminUser, &newAdminRole))

!= RC_OK)
{

printf("[FAIL] : ct_create_admin_user() : %d\n", rc);
} else {

printf("\t[PASS] ct_create_admin_user(): %d\n", rc);
}

/*
* Once we know we have a good Admin User
* let's go ahead and save changes to it.
*/

{
CT_AdminUser modifyingAdminUser = newAdminUser;

modifyingAdminUser.name = "New name";
modifyingAdminUser.firstname = "New first name";
64 Administrative C API: Sample Code

RSA ClearTrust Developer’s Guide
AdminUser.c example continues:

modifyingAdminUser.lastname = "New last name";
modifyingAdminUser.emailaddr = "new_name@somewhere.com";

if ((rc = ct_save_admin_user(&modifyingAdminUser)) != RC_OK)
{

printf("[FAIL] : ct_save_admin_user() : %d\n", rc);
} else {

printf("\t[PASS] ct_save_admin_user(): %d\n", rc);
}

}

/* Now let's clean up all admin users and roles */
if ((rc = ct_get_admin_user_by_name("New name",

&existAdminUser))
== RC_OK
&&
existAdminUser != NULL
)

{
if ((rc = ct_delete_admin_user(existAdminUser)) != RC_OK)

{
printf("[FAIL] : ct_delete_admin_user() : %d\n", rc);

} else {
printf("\t[PASS] ct_delete_admin_user(): %d\n", rc);

}
}

if ((rc = ct_delete_admin_role(&newAdminRole)) != RC_OK)
{

printf("[FAIL] : ct_delete_admin_role() : %d\n", rc);
}

if (rc = ct_disconnect() != RC_OK)
{

printf("\t[FAIL] ct_disconnect(): %d\n", rc);
} else {

printf("\t[PASS] ct_disconnect(): %d\n", rc);
}

return rc;
} /* end main() */
Administrative C API: Sample Code 65

RSA ClearTrust Developer’s Guide
66 Administrative C API: Sample Code

RSA ClearTrust Developer’s Guide
4 Administrative Java API
This chapter describes the Java version of the RSA ClearTrust Administrative API.
The Administrative API allows you to develop security administrator applications that
create/update user accounts and set the access rules enforced by the RSA ClearTrust
system. The Administrative API uses the Entitlements Server (called the “API Server”
when accessed by an API client) to write to the user, policy and administrator data
stores on your configured LDAP directory server (or, in future releases, on your
relational database management server).

The Administrative API consists of all the classes in the sirrus.api packages. See
the RSA ClearTrust Administrative API Javadocs for precise descriptions of these
classes and methods. You can find the Javadocs in your RSA ClearTrust installation in
the directory <CT_HOME>/api/admin-j/doc/index.html.

This Chapter
This chapter consists of:

• Compilation instructions starting with “Installing and Compiling” on page 68.

• Reference information starting with a description of the main Administrative API
class, “APIServerProxy” on page 69.

• Example programs with instructions.

• “Connection Example” on page 74

• “User Example” on page 110

• “User Property Example” on page 113

• “Application Function Example” on page 120

• “SmartRule Example” on page 123

• “User Search Example” on page 127

The source code for these API example programs is installed in

<CT_HOME>/api/admin-j/example
Administrative Java API: This Chapter 67

RSA ClearTrust Developer’s Guide
Installing and Compiling
This section explains the installed components that make up the API and provides
guidelines for building applications. For instructions on installing the APIs, see
Chapter 2, “Installing the RSA ClearTrust APIs”.

Compiling Applications

API Library
In order to compile and run API programs, you must have the Administrative API jar,
ct_admin_api.jar, installed and included in your SOURCEPATH and CLASSPATH. You
will find this jar file installed as:

<CT_HOME>/api/admin-j/lib/ct_admin_api.jar

SSL Libraries
If your API client program will connect over SSL (see “Connecting With and Without
SSL” on page 72), you will need following additional jar files in your SOURCEPATH and
CLASSPATH. You will find these jars in your RSA ClearTrust installation in the
<CT_HOME>/lib directory.

RSA SSL software:

• certj.jar

• jsafe.jar

• jsafeJCE.jar

• rsajsse.jar

• sslj.jar

JCSI Keystore software:

• jcsi_base.jar

• jcsi_provider.jar

Sun security infrastructure:

• jce1_2-do.jar

• jcert.jar

• jnet.jar

• jsse.jar
68 Administrative Java API: Installing and Compiling

RSA ClearTrust Developer’s Guide
APIServerProxy
The APIServerProxy provides the communication interface between the client
application and the RSA ClearTrust API Server, which is an interface to the
Entitlement Server. When using the API, you must first create an APIServerProxy and
then connect it to the API Server using the connect() method (see page 72).

APIServerProxy Method Reference
The following table provides an overview of the methods in APIServerProxy. For a
detailed description of each method, consult the RSA ClearTrust Javadocs.

Note: You should only connect ONCE to the API Server. If your application is a long
running application which issues many requests to the server, connect to the server
at the start of your application. If you connect and disconnect for every request to
the server, it will drastically degrade the API performance.

Table 4.1 APIServerProxy Methods

Method Description

APIServerProxy Constructor to create a server proxy.

checkAccess Deprecated. Use the Runtime API instead.

checkFunction Deprecated. Use the Runtime API instead.

checkPassword Deprecated. Use the Runtime API instead.

connect Connects the client application to the API Server.

createAdministrativeGroup Creates a new administrative group.

createAdministrativeUser Creates a new administrative user.

createApplication Creates a new application.

createAppURL Creates a new ApplicationURL.

createExplicitEntitlement Creates a new basic entitlement, based on the isAccessible switch, between the given
entity and an application.

createGroup Creates a new group.

createPasswordPolicy Creates a new password policy with parameters matching the default password policy.

createRealm Deprecated: Creates a new realm.

createUser Creates a new user.

createUserPropertyDefinitio
n

Creates a new UserPropertyDefinition.
Administrative Java API: APIServerProxy 69

RSA ClearTrust Developer’s Guide
createWebApplication Deprecated. This has been replaced by the method createApplication().

createWebAppURL Deprecated. This has been replaced by the method createAppURL().

createWebServer Creates a new Web server.

disconnect Disconnects the client application from the server.

flushCache Forces all the Authorization Servers to flush their caches. You should call flushCache()
each time you finish adding or updating users, groups, or entitlements. Note: If you only
want to clear the cache of a particular Authorization Server, see clearServerCache() on
page 168.

forcePasswordExpiration Forces the password for the specified user to expire.

getAdministrativeGroup Returns the administrative group associated with the login session.

getAdministrativeUserByUni
queIdentifier

Get an administrative user by using the unique identifier of the user.

getAdministrativeUsers Returns a sparse data for all the administrative users in the system.

getAdminGroups Gets all administrative groups visible to the currently logged-in administrative user.

getAdministrativeRole Returns the administrative role associated with the login session.

getAdminRoleIdsForUser Gets an array of AdminRoleIds, which represents all administrative roles that the user
currently belongs to.

getApplications Gets all applications visible to the currently logged-in administrative user.

getAppsForUser Removed. The getAppsForUser() method in the Java API has been removed. In
previous releases, one could get a list of a user’s set of available resources by calling
this method. This was possible because, in those releases of the product, access to
every resource was provided by means of an application function associated with that
resource. In version 4.7, access to a given resource may be provided by means of a an
entitlement to that resource directly, or by means of an entitlement to an application that
contains the resource. Since there are multiple ways of providing access to a given
resource, the results returned by getAppsForUser() would no longer provide a complete
list of accessible resources. For this reason, the method has been removed.

getDefaultPasswordPolicy Gets the default password policy.

getExplicitEntitlement Gets a basic entitlement between the given entity and an application.

getGroups Gets all groups visible to the currently logged-in administrative user.

getPasswordPolicies Gets all password policies visible to the currently logged-in administrative user.

getPermissionChecker Gets the permission checker object.

getPWExpirationDate Gets a user’s Password Expiration Date.

getRealms Deprecated: Gets all realms visible to the currently logged-in administrative user.

getSocket Gets the socket.

getUser Fetch the administrative user for the current login session. Returns the logged-in
IAdministrativeUser.

getUserAndProperties Deprecated. All methods that fetch a user now always get the user properties at the
same time. See getUsers().

Table 4.1 APIServerProxy Methods

Method Description
70 Administrative Java API: APIServerProxy

RSA ClearTrust Developer’s Guide
getUserAndPropertiesByDN Deprecated. All methods that fetch a user always get the user properties at the same
time. See getUserByDN(String).

getUserByUniqueIdentifier This method allows you to retrieve an IUser object that you have previously loaded.
Takes an IUniqueIdentifier as an argument. The IUniqueIdentifier allows you to specify
which object to load without having to search based on some attribute that may have
changed in the meantime, such as the name of the object. You can obtain the
UniqueIdentifier by calling getPrimaryKey() on the object that you wish to reload.

getUserPropertyDefinitions Gets all UserPropertyDefinitions visible to the currently logged-in administrative user.

getUsers Gets all users visible to the currently logged-in administrative user.

getWebApplications Deprecated. This method has been replaced by the method getApplications().

getWebServers Gets all Web servers visible to the currently logged-in administrative user.

isPWExpirationDateOverrid
den

Determines whether a user’s Password Expiration Date overrides the administrative
group default password lifetime.

login Authenticates the user as a ClearTrust administrative user in the API.

resetAdministrativeUserPas
sword

Resets an administrative user password.

resetPassword Resets a user’s password.

revertAdministrativeUserPa
sswordExpirationDate

This call reverts the password expiration date for the specified administrative user.

revertPasswordExpirationD
ate

Reverts the password expiration date for the specified user.

searchAdministrativeGroup
Objects

Gets the IAdministrativeGroupSearch object.

searchAdministrativeUserO
bjects

Gets an IAdministrativeUserSearch object.

searchGroupObjects Gets an IGroupSearch object.

searchRealmObjects Deprecated: Gets an IrealmSearch object.

searchUserObjects Gets an IUserSearch object.

searchUserPropDefObjects Gets an IUserPropDefSearch object.

searchWebServerObjects Gets an IWebServerSearch object.

setDefaultPasswordPolicy Sets the default password policy.

setPassword Sets a user password.

setPWExpirationDate Deprecated. Use IUser.setPasswordExpirationDate(Date) to set the user password
expiration date.

setTimeout Sets the timeout value for conversations with the API Server.

validateUser Deprecated. This method has been replaced by equivalent functionality in the
ClearTrust runtime API. See sirrus.runtime.RuntimeAPI.authenticate(java.util.Map).
This method is still available in ClearTrust 4.7, but will be removed in a future release.

Table 4.1 APIServerProxy Methods

Method Description
Administrative Java API: APIServerProxy 71

RSA ClearTrust Developer’s Guide
Connecting an APIServerProxy Client
You will use the APIServerProxy.connect() method to connect your API client.
Before you begin writing your connection code, you should decide how secure your
connection needs to be, as explained in the next section. If you already know what
type of SSL or non-SSL connection you will use, turn to “How to Connect” on page
73 for connection instructions.

Connecting With and Without SSL
An Administrative API client may connect to the Entitlements Server as an
authenticated SSL client, an anonymous SSL client, or as a non-SSL client. The
cleartrust.eserver.api_port.use_ssl setting in the Entitlements Server’s
eserver.conf file indicates which type of connection is required for Administrative
API clients. When writing your Administrative API programs, make sure that the
boolean you pass as the use_ssl parameter of the APIServerProxy constructor
matches the server’s cleartrust.eserver.api_port.use_ssl setting. Your settings
will match one of the scenarios shown in the subsections that follow.

For more information, See the section “SSL Settings for RSA ClearTrust API Clients”
in Chapter 7 of the RSA ClearTrust Installation and Configuration Guide.

On a System Running Clear Text Connections
If the RSA ClearTrust system is running with clear text connections between servers,
as specified with:

cleartrust.net.ssl.use=false
cleartrust.net.ssl.require_authentication=false

Then the Administrative API clients must also connect in clear text, as specified with:

cleartrust.eserver.api_port.use_ssl=false

On a System Running Anonymous SSL Connections
If the RSA ClearTrust system is running with anonymous SSL connections between
servers, as specified with:

cleartrust.net.ssl.use=true
cleartrust.net.ssl.require_authentication=false

Then the Administrative API clients can connect either via clear text:

cleartrust.eserver.api_port.use_ssl=false

or via anonymous SSL:

cleartrust.eserver.api_port.use_ssl=true

On a System Running Mutually Authenticated SSL Connections
If the RSA ClearTrust system is running with mutually authenticated SSL connections
between servers, as specified with:

cleartrust.net.ssl.use=true
72 Administrative Java API: APIServerProxy

RSA ClearTrust Developer’s Guide
cleartrust.net.ssl.require_authentication=true

Then the Administrative API clients can connect either via clear text:

cleartrust.eserver.api_port.use_ssl=false

or via mutually authenticated SSL:

cleartrust.eserver.api_port.use_ssl=true

How to Connect
To start an Administrative API session, you must declare an APIServerProxy object
and then connect it to the API server using the connect() method. Enclose your
connection code in a try block in order to catch the various exceptions that may be
thrown by the APIServerProxy constructor and the connect() method.

The following example shows just the lines needed to make the connection. Later in
this chapter you will see complete example programs that establish a connection.

In this example, we use “localhost” as the name of the API Server machine. If your
server is running elsewhere, you must specify the machine name or IP address here.

Error Messages
If your API client application provides incorrect or insufficient login information to
the RSA ClearTrust API Server when calling the connect() method, the API will
return the following error:

sirrus.api.client.UserNotAuthorizedException: Login incorrect

This can occur if you passed in an invalid administrative user name, an invalid
password, an invalid administrative group, or an invalid administrative role.

try{
serverProxy = new APIServerProxy("localhost", //API Server name

5601, //API Server Port
false); //Use SSL

serverProxy.connect("admin",
"admin1234",
"Default Administrative Group",
"Default Administrative Role");

}catch(IOException e){
System.out.println("\n\n IOError = " + e + "\n\n");

}catch(TransportException e){
System.out.println("\n\n Error in transport layer = " + e + "\n\n");

}catch(UserNotAuthorizedException e){
System.out.println("\n\n User unable to act as an Administrator.\n\n");

}catch(APIException e){
System.out.println("\n\n General API error = " + e + "\n\n");

}

Administrative Java API: APIServerProxy 73

RSA ClearTrust Developer’s Guide
Disconnecting an APIServerProxy Client
You can break your connection to the API Server by calling the disconnect()
method. Generally, your programs should connect only once, calling disconnect only
when the program is about to exit. This example assumes you have created an
APIServerProxy object called “serverProxy.”

Connection Example
The following example, AdminUserCheck.java, connects to the API Server and calls
a simple administrative method. The purpose of this example is to demonstrate how to
connect and disconnect an Administrative API client.

Edit the Program Before Compiling and Running
Before you can compile and run this example, you may need to make the following
edits to the program and installation:

1. Edit the server name and server port parameters of the APIServerProxy
constructor.

2. Also in the APIServerProxy constructor, set the use_ssl setting to match the
cleartrust.net.ssl.use setting in your Entitlements Server’s configuration
file.

3. Edit the four arguments of the serverProxy.connect() method.

For instructions on compiling this example, see “Compiling Applications” on page 68.

if (serverProxy != null){
try{

serverProxy.disconnect();
}catch(java.io.IOException e){

e.printStackTrace();
}catch(NotConnectedException e){

e.printStackTrace();
}

}

74 Administrative Java API: APIServerProxy

RSA ClearTrust Developer’s Guide
Example

package sirrus.samples.admin;

import java.io.*;
import java.util.*;

import sirrus.api.client.*;
import sirrus.api.client.search.*;
import sirrus.api.client.criteria.*;

/**
* AdminUserCheck.java
*
* @version 4.7
* @since October 19, 2001
*/

public class AdminUserCheck
{

static APIServerProxy serverProxy = null;
static String passwordExpiry = new String();

/*
*Method to connect to ClearTrust API Server
*/

public static void connect()
{

try{
serverProxy = new APIServerProxy("localhost", //API Server name

5601, //API Server Port
false); //Use SSL

serverProxy.connect("admin",
"admin1234",
"Default Administrative Group",
"Default Administrative Role");

}catch(IOException e){
System.out.println("\n\n IOError = " + e + "\n\n");

}catch(TransportException e){
System.out.println("\n\n Error in transport layer = " + e +

"\n\n");
}catch(UserNotAuthorizedException e){

System.out.println("\n\n User unable to act as an
Administrator.\n\n");

}catch(APIException e){
System.out.println("\n\n General API error = " + e + "\n\n");

}
}

Administrative Java API: APIServerProxy 75

RSA ClearTrust Developer’s Guide
Example continues:

/*
* Method to disconnect from ClearTrust API server
*/

public static void disconnect()
{

if (serverProxy != null){
try{

serverProxy.disconnect();
}catch(java.io.IOException e){

e.printStackTrace();
}catch(NotConnectedException e){

e.printStackTrace();
}

}
}

public static void main(String[] args)
{

AdminUserCheck apiClient = new AdminUserCheck();

//Initializing the connection to ClearTrust API server
apiClient.connect();

//Get user name
System.out.println("User name?");
BufferedReader bfReader =

new BufferedReader(new InputStreamReader(System.in));
String str1 = new String("0");
try{

str1 = bfReader.readLine();
}catch(Exception e){

e.printStackTrace();
}

//Check the password expiration date
System.out.println("Retrieving password expiration date...");

try{
passwordExpiry =

serverProxy.getPWExpirationDate(str1).toString();
}catch(IOException e){

e.printStackTrace();
}catch(TransportException e){

e.printStackTrace();
}catch(ObjectNotFoundException e){

System.out.println("User may not exist.\n");
e.printStackTrace();
76 Administrative Java API: APIServerProxy

RSA ClearTrust Developer’s Guide
Example continues:

}catch(APIException e){
e.printStackTrace();

}

System.out.println("Password expires: " + passwordExpiry);

AdminUserCheck.disconnect();

}
}

Administrative Java API: APIServerProxy 77

RSA ClearTrust Developer’s Guide
Administration Objects
Administrative objects consist of the following:

• Administrative group (IAdministrativeGroup) — Defines which
administrative users own (can view and modify) a set of objects.

• Administrative user (IAdministrativeUser) — A user dedicated only to
RSA ClearTrust administration activities. An administrative user is not to be
confused with an IUser who is granted or denied access to resources that are
protected by RSA ClearTrust. IUsers cannot act as administrative users.

• Administrative role (IAdministrator) — A set of permissions defining what an
administrative user logged in under this role can and cannot do.

• Password policy (IPasswordPolicy) — A set of restrictions on passwords for
users.

The following sections describe the Administration objects.

Administrative Group
The IAdministrativeGroup interface describes the administrative group, which is a set
of administrative users. An administrative group governs which administrative users
can view and modify which entities in the RSA ClearTrust data store. This is done by
requiring that each entity (a user, group, realm, application, Web server, server tree, or
user property definition) be owned by an administrative group. The administrative
users who are members of a given administrative group can view and edit the entities
owned by that administrative group. Each administrative user in RSA ClearTrust is a
member of one and only one administrative group. See the RSA ClearTrust
Administrator’s Guide for more information on administrative groups and users.

Note that each administrative user's actions are also limited by his administrative role
(see page 82).

Finally, the administrative group provides one more thing: the password policy. Each
RSA ClearTrust user has a password policy that establishes the rules for his password.
The user's password policy is provided by the administrative group that owns that
user.

Table 4.2 IAdministrativeGroup Methods

Method Description

createAdministrator Creates a new administrative role in this administrative group.

getAdministrators Gets all administrative users in this administrative group.

getApplications Gets all applications owned by this administrative group.

getGroups Gets all groups owned by this administrative group.

getPasswordPolicy Gets the name of the password policy associated with this administrative group.

getRealms Deprecated: Gets all realms owned by this administrative group.
78 Administrative Java API: Administration Objects

RSA ClearTrust Developer’s Guide
getUserPropertyDefinition
s

Gets all the user property definitions in this administrative group.

getUsers Gets all users owned by this administrative group.

getWebServers Gets all Web servers in this administrative group.

isDefaultPrivate Checks whether new entities created in this administrative group are private by default.

isForcedPasswordExpiry Checks whether new users created in this administrative group are forced to change their
password on first login.

setDetaultPrivate Sets whether new entities created in this administrative group are private by default.

setForcedPasswordExpiry Sets whether new users created in this administrative group are forced to change their
password on next login.

setPasswordPolicy Sets the name of the password policy associated with this administrative group.

transferOwnership Transfers ownership from the current administrative group to another administrative
group.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object.

Inherited from interface sirrus.api.client.IDescription

getDescription Gets the textual description of this object.

setDescription Sets the textual description of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Table 4.2 IAdministrativeGroup Methods

Method Description
Administrative Java API: Administration Objects 79

RSA ClearTrust Developer’s Guide
Administrative User
Administrative users (IAdministrativeUsers) are users that are used purely for
RSA ClearTrust administration activities, and are not users that are granted access to
resources that are protected by RSA ClearTrust. In practice, administrative users
typically exist entirely within the RSA ClearTrust policy repository (as opposed to a
separate user store in LDAP or elsewhere), but this is configurable. This functionality
existed on IUser in previous releases, but has since been separated to more easily
support read-only user stores.

Administrative users cannot be granted entitlements to RSA ClearTrust-protected
resources. If you have an administrative user who wishes to access resources, you
must create a separate IUser account for that person. See “Users” on page 89.

An administrative user can edit records owned by his administrative group (see page
78), and his actions are limited to those permitted by his administrative role (see page
82).

Table 4.3 IAdministrativeUser Methods

Method Description

addAdministrativeRole(IAdministrator role) Adds the administrative role to this administrative user.

getAdministrativeLockout() Checks if this administrative user is currently locked out of the system.
This is only true if an administrative user has explicitly disabled this
administrative user account, and overrides all other account activity
settings (start/end date, etc.)

getEmailAddress() Fetches the email address of this administrative user.

getEndDate() Gets the end date for this administrative user's account.

getFirstName() Gets the first name of this administrative user.

getLastName() Gets the last name of this administrative user.

getPasswordExpirationDate() Gets the password expiration date for this administrative user.

getStartDate() Gets the start date for this administrative user's account.

isSuperHelpDesk() Checks if this administrative user is a super help desk user.

isSuperUser() Checks if this administrative user is a superuser.

removeAdministrativeRole(IAdministrator
role)

Removes this administrative user from the specified administrative role.

setAdministrativeLockout(boolean locked) Disables this administrative user account. Doing this overrides all other
account activity settings (start/end date, etc.).

setEmailAddress(String email) Sets this administrative user's email address.

setEndDate(Date aDate) Sets the end date for this administrative user's account.

setFirstName(String n) Sets this administrative user's first name.

setLastName(String n) Sets the last name of this administrative user.

setPassword(String password) Sets this administrative user's password.
80 Administrative Java API: Administration Objects

RSA ClearTrust Developer’s Guide
setPasswordExpirationDate(Date date) Sets the password expiration date for this administrative user.

setStartDate(Date aDate) Sets the start date for this administrative user's account.

setSuperHelpDesk(boolean
isSuperHelpDesk)

Sets this administrative user's super help desk status.

setSuperUser(boolean isSuperUser) Sets this administrative user's super user status.

Methods inherited from interface sirrus.api.client.IOwnable

getAdministrativeGroup Gets the administrative group that owns this administrative user.

getAdministrativeGroupName Gets the name of the administrative group that owns this administrative
user.

isPublic Gets the public flag. If true, this object is viewable by any administrative
user. If false, only members of the owning administrative group can view
this object.

setAdministrativeGroup Sets the administrative group that owns this administrative user.

setPublic Sets the public flag. If true, this object is viewable by any administrative
user. If false, only members of the owning administrative group can view
this object.

Methods inherited from interface sirrus.api.client.IName

getName Gets the name of this object.

setName Sets the name of this object.

Methods inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the data store.

save Saves this object to the data store.

Methods inherited from interface sirrus.api.client.IAPIObject

getUniqueIdentifier Returns an opaque token that can be used later to retrieve this object.

Table 4.3 IAdministrativeUser Methods

Method Description
Administrative Java API: Administration Objects 81

RSA ClearTrust Developer’s Guide
Administrative Role
An IAdministrator object is an administrative role. An administrative user is assigned
one or more administrative roles, which determine which actions he can perform in
the RSA ClearTrust system. Administrative roles are usually named to reflect the
real-world role of the administrative user (for example, help desk or human
resources). The administrative role controls what actions the administrative user can
perform on the objects owned by his administrative group.

The following table describes the functions that operate on the administrative role
object.

Note: Do not be confused by the interface name IAdministrator. This interface is not
used to model administrative users; administrative users are modeled as
IAdministrativeUsers.

Table 4.4 Administrative Role (IAdministrator) Methods

Method Description

addUser Deprecated. Replaced with addAdministrativeUser().

addAdministrativeUser Add an administrative user to this administrative role.

getAdministrativeUsers Gets all administrative users associated with this role.

getCreateAdministrativeRole Checks whether administrative users in this role can create new administrative
roles in this administrative group.

getCreateAdministrativeUser Checks whether administrative users in this role can create new administrative
users owned by this administrative group.

getCreateApplication Checks whether administrative users in this role can create new applications
owned by this administrative group.

getCreateGroup Checks whether administrative users in this role can create new groups owned
by this administrative group.

getCreateRealm Deprecated: Checks whether administrative users in this role can create new
realms owned by this administrative group.

getCreateServer Checks whether administrative users in this role can create new Web servers
owned by this administrative group.

getCreateUser Checks whether administrative users in this role can create new users owned by
this administrative group.

getCreateUserPropertyDefinition Checks whether administrative users in this role can create new user property
definitions owned by this administrative group.

getDeleteAdministrativeRole Checks whether administrative users in this role can delete existing
administrative roles in this administrative group.

getDeleteAdministrativeUser Checks whether administrative users in this role can delete existing
administrative users owned by this administrative group.
82 Administrative Java API: Administration Objects

RSA ClearTrust Developer’s Guide
getDeleteApplication Checks whether administrative users in this role can delete existing applications
owned by this administrative group.

getDeleteGroup Checks whether administrative users in this role can delete existing groups
owned by this administrative group.

getDeleteRealm Deprecated: Checks whether administrative users in this role can delete existing
realms owned by this administrative group.

getDeleteServer Checks whether administrative users in this role can delete existing Web servers
owned by this administrative group.

getDeleteUser Checks whether administrative users in this role can delete existing users owned
by this administrative group.

getDeleteUserPropertyDefinition Checks whether administrative users in this role can delete existing user
property definitions owned by this administrative group.

getModifyAdministrativeRole Checks whether administrative users in this role can modify existing
administrative roles in this administrative group.

getModifyAdministrativeUser Checks whether administrative users in this role can modify existing
administrative users owned by this administrative group.

getModifyApplication Checks whether administrative users in this role can modify existing applications
owned by this administrative group.

getModifyGroup Checks whether administrative users in this role can modify existing groups
owned by this administrative group.

getModifyRealm Deprecated: Checks whether administrative users in this role can modify
existing realms owned by this administrative group.

getModifyServer Checks whether administrative users in this role can modify existing Web
servers owned by this administrative group.

getModifyUser Checks whether administrative users in this role can modify existing users
owned by this administrative group.

getModifyUserPropertyDefinition Checks whether administrative users in this role can modify existing user
property definitions owned by this administrative group.

getResetPassword Checks whether administrative users in this role can reset the password for this
administrative group.

getUsers Deprecated. Replaced with getAdministrativeUsers().

removeUser Deprecated. Replaced with removeAdministrativeUser().

removeAdministrativeUser Removes an administrative user from this role.

setCreateAdministrativeRole Sets whether administrative users in this role can create new administrative roles
in this administrative group.

setCreateAdministrativeUser Sets whether administrative users in this role can create new administrative
users in this administrative group.

setCreateApplication Sets whether administrative users in this role can create new applications in this
administrative group.

setCreateGroup Sets whether administrative users in this role can create new groups in this
administrative group.

Table 4.4 Administrative Role (IAdministrator) Methods

Method Description
Administrative Java API: Administration Objects 83

RSA ClearTrust Developer’s Guide
setCreateRealm Deprecated: Sets whether administrative users in this role can create new
realms in this administrative group.

setCreateServer Sets whether administrative users in this role can create new Web servers in this
administrative group.

setCreateUser Sets whether administrative users in this role can create new users in this
administrative group.

setCreateUserPropertyDefinition Sets whether administrative users in this role can create new user property
definitions in this administrative group.

setDeleteAdministrativeRole Sets whether administrative users in this role can delete existing administrative
roles in this administrative group.

setDeleteAdministrativeUser Sets whether administrative users in this role can delete existing administrative
users owned by this administrative group.

setDeleteApplication Sets whether administrative users in this role can delete existing applications
owned by this administrative group.

setDeleteGroup Sets whether administrative users in this role can delete existing groups owned
by this administrative group.

setDeleteRealm Deprecated: Sets whether administrative users in this role can delete existing
realms owned by this administrative group.

setDeleteServer Sets whether administrative users in this role can delete existing Web servers
owned by this administrative group.

setDeleteUser Sets whether administrative users in this role can delete existing users owned by
this administrative group.

setDeleteUserPropertyDefinition Sets whether administrative users in this role can delete existing user property
definitions owned by this administrative group.

setModifyAdministrativeRole Sets whether administrative users in this role can modify existing administrative
roles in this administrative group.

setModifyAdministrativeUser Sets whether administrative users in this role can modify existing administrative
users in this administrative group.

setModifyApplication Sets whether administrative users in this role can modify existing applications in
this administrative group.

setModifyGroup Sets whether administrative users in this role can modify existing groups in this
administrative group.

setModifyRealm Deprecated: Sets whether administrative users in this role can modify existing
realms in this administrative group.

setModifyServer Sets whether administrative users in this role can modify existing Web servers in
this administrative group.

setModifyUser Sets whether administrative users in this role can modify existing users in this
administrative group.

setModifyUserPropertyDefinition Sets whether administrative users in this role can modify existing user property
definitions in this administrative group.

Table 4.4 Administrative Role (IAdministrator) Methods

Method Description
84 Administrative Java API: Administration Objects

RSA ClearTrust Developer’s Guide
Password Policy
A password policy is a set of restrictions on passwords for users. Each administrative
group has an associated password policy that is applied to users owned by that
administrative group.

setResetPassword Sets whether administrative users in this role can modify existing Passwords in
this administrative group.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object.

Inherited from interface sirrus.api.client.IDescription

getDescription Gets the textual description of this object.

setDescription Sets the textual description of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Table 4.4 Administrative Role (IAdministrator) Methods

Method Description

Table 4.5 Password Policy Methods

Method Description

getDictionaryFile Gets the name of the dictionary file containing passwords excluded by this policy.

getExclusionCharacters Gets the list of characters excluded from passwords that satisfy this policy.

getForceNonLetter Checks whether a password must contain a non-letter character to satisfy this policy.

getHistorySize Gets the number of past passwords that cannot be reused.

getPasswordLifetime Gets the lifetime of passwords defined under this password policy.

getPasswordMaximumLength Gets the maximum allowed length for passwords under this policy.

getPasswordMinimumLength Gets the minimum allowed length for passwords under this policy.

setDictionaryFile Sets the dictionary file containing passwords excluded by this policy.

setExclusionCharacters Sets the list of characters excluded from passwords that satisfy this policy.

setForceNonLetter Sets whether a password must contain a non-letter character to satisfy this policy.

setHistorySize Sets the number of past passwords that cannot be reused.

setLengthParams Sets the range of password lengths allowed under this policy.

setPasswordLifetime Sets the lifetime of passwords defined under this password policy.
Administrative Java API: Administration Objects 85

RSA ClearTrust Developer’s Guide
Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object.

Inherited from interface sirrus.api.client.IDescription

getDescription Gets the textual description of this object.

setDescription Sets the textual description of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Table 4.5 Password Policy Methods

Method Description
86 Administrative Java API: Administration Objects

RSA ClearTrust Developer’s Guide
Participants
Participant objects model the people and organizations whose access to resources is
governed by the RSA ClearTrust system.

• Group: a collection of users

• User: a person who will, upon successful authentication and authorization, be
given access to RSA ClearTrust-protected resources.

• User property: an extra detail about a user that can be used as a criterion for access
decisions, for Web personalization, etc. A user property is stored in a field that has
been declared and defined in a user property definition.

• User property definition: Mechanism for adding extra data fields to user records.
In order to add a data field that is usable on all user records, you must create a user
property definition that establishes the name and datatype. Once you have created
and saved the user property definition, you can begin storing data in the new user
property field.

Groups
An IGroup object is a group, which is a collection of users and/or other groups. Any
user or group can be included in many groups.

Warning: When creating users and groups, please note that their names may not
contain any of the following characters: “,”, “+”, “"”, “\”, “<“, “>” or “;”.

Note: If your installation uses collections of groups, please note that the mechanism
for doing this has changed with the release of RSA ClearTrust 4.7. Previously, RSA
ClearTrust provided the IRealm object for building collections of groups. In version
4.7, the IRealm interface is deprecated, and this functionality has been replaced with
nested groups. This means that a group may contain other groups, which may in
turn contain other groups, and so on. The deprecation of IRealm means that, while
groups may still be collected into realms in 4.7, the IRealm interface will no longer
exist in the next version of RSA ClearTrust.
Administrative Java API: Participants 87

RSA ClearTrust Developer’s Guide
Table 4.6 Group Methods

Method Description

getCreationDate Allows entities to query the date a group was created in the Entitlements Database.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object. When creating a group, please note that its name may
not contain any of the following characters: “,”, “+”, “"”, “\”, “<“, “>” or “;”.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Inherited from interface sirrus.api.client.IOwnable

getAdministrativeGroup Gets the administrative group that will own the ownable object.

getAdministrativeGroupName Gets the name of the administrative group that the ownable object is in.

isPublic Determines whether the object is viewable by any administrative user.

setAdministrativeGroup Sets the administrative group that will own the ownable object.

setPublic Sets the public flag.

Inherited from interface sirrus.api.client.IEntity

createExplicitEntitlement Creates a new basic entitlement for this entity, the specified application, and the
specified application function.

getExplicitEntitlement Gets this entity’s basic entitlement for the specified application and application
function.

getExplicitEntitlements Gets all the basic entitlements for the entity.

Inherited from interface sirrus.api.client.IChild

getParents Gets all the parents for this child.

Inherited from interface sirrus.api.client.IParent

addChild Adds a child to the container.

getChildren Gets all the children within the parent.

removeChild Removes a child from the container.
88 Administrative Java API: Participants

RSA ClearTrust Developer’s Guide
Users
An IUser object is a user who will attempt to view or use an RSA ClearTrust-
protected URL or other resource. Users are usually collected into groups and are given
rights to resources via basic entitlements and SmartRules. A user may be a member of
many groups.

The following table describes the methods of IUser.

Warning: Do not confuse users with administrative users; they are separate and
unrelated objects. See “Administrative User” on page 80.

Table 4.7 User Methods

Method Description

getCreationDate Allows entities to query the date a group was created in the Entitlements Database.

getDN Gets the Distinguished Name for the user.

getEmailAddress Gets the user’s email address.

getEndDate Gets the end date for the user’s account.

getFirstName Gets the user’s first name.

getLastName Gets the user’s last name.

getStartDate Gets the start date for the user’s account.

getUserProperties Gets all the user properties associated with the user.

getUserProperty Gets a Property for a user.

isAdminLockedout Determines whether the user is locked out of the system.

isSuperHelpDesk Determines whether the user is a super helpdesk user.

isSuperUser Determines whether the user is a superuser.

setAdminLockedout Sets whether the user is locked out of the system.

setDN Sets the Distinguished Name for the user. When creating a user, please note that its
name may not contain any of the following characters: “,”, “+”, “"”, “\”, “<“, “>” or “;”.

setEmailAddress Sets the user’s email address.

setEndDate Sets the end date for the user’s account.

setFirstName Sets the user’s first name.

setLastName Sets the user’s last name.

setPassword Sets the user’s password.

setStartDate Sets the start date for the user’s account.

setSuperHelpDesk Sets the user’s super helpdesk status.

setSuperUser Sets the user’s super user status.
Administrative Java API: Participants 89

RSA ClearTrust Developer’s Guide
setUserProperty Sets a user property for a user.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object. When creating a user, please note that its name may
not contain any of the following characters: “,”, “+”, “"”, “\”, “<“, “>” or “;”.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Inherited from interface sirrus.api.client.IOwnable

getAdministrativeGroup Gets the administrative group that will own the ownable object.

getAdministrativeGroupName Gets the name of the administrative group that the ownable object is in.

isPublic Determines whether the object is viewable by any administrative user.

setAdministrativeGroup Sets the administrative group that will own the ownable object.

setPublic Sets the public flag.

Inherited from interface sirrus.api.client.IEntity

createExplicitEntitlement Creates a new basic entitlement for this entity, the specified application, and the
specified application function.

getExplicitEntitlement Gets this entity’s basic entitlement for the specified application and application
function.

getExplicitEntitlements Gets all the basic entitlements for the entity.

Inherited from interface sirrus.api.client.IChild

getParents Gets all the parents for this child.

Table 4.7 User Methods

Method Description
90 Administrative Java API: Participants

RSA ClearTrust Developer’s Guide
User Properties
An IUserProperty object is a user property, which is an extra detail about a user that
can be used as a criterion for access decisions, for Web personalization, etc. A user
property is stored in a field that has been declared and defined in a user property
definition (see “User Property Definitions” below). User property values are used by
SmartRules to determine authorizations for users.

User Property Definitions
An IUserPropertyDefinition object is a user property definition, which establishes an
extra data field on user records. In order to add a data field that is usable on all user
records, you must create a user property definition that establishes the name and
datatype of the user property. Once you have created and saved the user property
definition, you can begin storing data in the new user property.

Table 4.8 User Property Methods

Method Description

getUser Gets the user associated with this user property.

getValue Gets the value for this user property.

getValueType Gets the type of the user property.

isSet Determines whether this user property has been set.

setValue Sets the user property value as an object.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes the object from the entitlements database.

save Saves the object to the entitlements database.

Table 4.9 UserPropertyDefinition Methods

Method Description

getValueType Gets the type of this user property definition.

setValueType Sets the type of this user property definition.

isExportable Returns a boolean indicating whether or not UserProperties associated with this
definition are visible to Runtime API clients.

setExportable Sets the boolean indicating whether or not UserProperties associated with this
definition will be visible to Runtime API clients.
Administrative Java API: Participants 91

RSA ClearTrust Developer’s Guide
isHelpDeskAccessible Determines whether the user property definition can be seen by the super helpdesk
administrative user.

setHelpDeskAccessible Sets whether the user property definition can be seen by the super helpdesk
administrative user.

isReadOnly Determines whether the user property definition is read only.

setReadOnly Sets whether the user property definition is read only.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object.

Inherited from interface sirrus.api.client.IDescription

getDescription Gets the textual description of this object.

setDescription Sets the textual description of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Inherited from interface sirrus.api.client.IOwnable

getAdministrativeGroup Gets the administrative group that will own the ownable object.

setAdministrativeGroup Sets the administrative group that will own the ownable object.

getAdministrativeGroupNam
e

Gets the name of the administrative group that the ownable object is in.

isPublic Returns the boolean indicating whether this object is viewable by any administrative
user.

setPublic Determines whether this object is viewable by any administrative user.

Table 4.9 UserPropertyDefinition Methods

Method Description
92 Administrative Java API: Participants

RSA ClearTrust Developer’s Guide
Deprecated Interface: IRealm
IRealm is a deprecated interface for building collections of groups. As of 4.7, groups
maybe collected together in other groups, so realms are no longer needed. See
“Groups” on page 87.

Table 4.10 Methods of the deprecated IRealm interface

Method Description

getCreationDate Allows entities to query the date a realm was created in the Entitlements Database.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Inherited from interface sirrus.api.client.IOwnable

getAdministrativeGroup Gets the administrative group that will own the ownable object.

getAdministrativeGroupName Gets the name of the administrative group that the ownable object is in.

isPublic Determines whether the object is viewable by any administrative user.

setAdministrativeGroup Sets the administrative group that will own the ownable object.

setPublic Sets the public flag.

Inherited from interface sirrus.api.client.IEntity

createExplicitEntitlement Creates a new basic entitlement for this entity, the specified application, and the
specified application function.

getExplicitEntitlement Gets this entity’s basic entitlement for the specified application and application
function.

getExplicitEntitlements Gets all the basic entitlements for the entity.

Inherited from interface sirrus.api.client.IParent

addChild Adds a child to the container.

getChildren Gets all the children within the parent.

removeChild Removes a child from the container.
Administrative Java API: Participants 93

RSA ClearTrust Developer’s Guide
Policy Objects
Policy objects describe entitlements and rules that allow participants access to
resources.

• Entitlements — Governs a user’s access to an application function based on the
user’s name or his or her membership in a group.

• SmartRules — Governs a user’s access to an application function based on his or
her user properties.

Basic Entitlements (Explicit Entitlements)
The IExplicitEntitlement interface defines an explicit entitlement, which is usually
called a basic entitlement in the RSA ClearTrust system. A basic entitlement defines a
user’s or group’s access to an application.

In order to create an Entitlement, you must specify its Entity ID and its application ID.

An Entitlement specifically grants or denies a user or group permission to access an
application. Basic entitlements granted to a group apply to all users in that group.
Basic entitlements have a hierarchy; an entitlement granted or denied at the user level
overrides any conflicting entitlements at the group level. Likewise, an entitlement
granted or denied at the group level overrides any conflicting entitlement set on a
parent group of that group.

In other words, when using nested group structures, if a user has an entitlement
assigned at the level of a group and also has a conflicting entitlement assigned at the
level of a second group that is higher up the group/parent group hierarchy, then the
entitlement of the lowest-level group will take precedence. The reason for this is that
the lowest-level group is thought of as providing the most precise definition of the
user’s privileges.

For example, if group BronzeUsers is denied access to application CarLoanCalculator,
and the BronzeUsers group in turn contains a number of groups, then all the users in
all the sub-groups of BronzeUsers are denied access. If you wished to override this
denial for some users, there are two ways you could do it. One approach would be to
create a new group (say, group BronzeSpecial) for those users, make that group a
member of the BronzeUsers group, and give that group access to CarLoanCalculator.
The BronzeSpecial setting will override the BronzeUsers setting. The other approach
would be to grant access at the individual user level. For example, if you grant user
TBradshaw access to application CarLoanCalculator, this overrides any denials for
TBradshaw defined in the groups to which he belongs.
94 Administrative Java API: Policy Objects

RSA ClearTrust Developer’s Guide
SmartRules
The ISmartRule interface defines a SmartRule. A SmartRule is associated with a user
property definition and an application function.

Table 4.11 Explicit Entitlement (Basic Entitlement) Methods

Method Description

getApplicationFunction Gets the application function related to this basic entitlement.

getEntity Gets the Entity related to this basic entitlement.

isAccessible Determines whether the Entitlement allows the Entity access to an application.

setAccessible Sets the accessibility of the Entity to an application.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Table 4.12 SmartRule Methods

Method Description

getApplicationFunction Gets the application function associated with this SmartRule.

getCategory Gets the category set in this SmartRule.

getSmartRuleCriteria Gets the criteria set in this SmartRule.

getUserPropertyDefinition Gets the user property definition associated with this SmartRule.

setCategory Sets the category for this SmartRule.

setSmartRuleCriteria Sets the criteria for this SmartRule.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.
Administrative Java API: Policy Objects 95

RSA ClearTrust Developer’s Guide
Resources
The following resource objects are provided by the RSA ClearTrust API.

• Application — A logical grouping of resources and functions.

• Application function — A set of functionality within an application.

• URL — A resource labeled by a URI and associated with a particular application
and Web server.

• Web server — Associated with URIs, defining the location of the URIs.

• Server Tree — Represents a tree of URLs on a Web server

Applications
The IApplication interface defines an application.

An application consists of a collection of URLs specifying resources and a set of
application functions that delineate the possible ways in which that collection of
resources can be accessed or manipulated.

A user’s access to the resources is defined by a basic entitlement from the user to the
application.

• If a user is not associated with an application, then accessibility of the contained
URLs for the user is determined by how passive access has been defined.

• If a user is associated with an application, the accessibility is defined by whether
the association has been defined as accessible.

Table 4.13 IApplication Methods

Function Description

createApplicationFunction Creates a new application function.

createApplicationURL Creates an ApplicationURL and associates it with this application.

createSmartRule Creates a SmartRule associated with this application. See the code example on page
123.

getApplicationFunctions Gets all the application functions associated with this application.

getApplicationURLs Gets all the application’s URLs.

getVersion Gets the version of this application.

setVersion Sets the version of this application.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.IName

getName Gets the name of this object.
96 Administrative Java API: Resources

RSA ClearTrust Developer’s Guide
Application Functions
The IApplicationFunction interface defines an application function.

An application function is a ClearTrust representation of any type of function or
method in any type of custom application that you might build. Modeling a method as
an application function allows RSA ClearTrust to control access to that method. This
allows you to implement ClearTrust Agent-like controls (similar to building a
ClearTrust WAX) governing access to methods in your custom applications.

For example, if you are creating a non-Web Java application that has a sensitive
method that you do not wish to make available to all users, you can govern access to
this method by creating an ApplicationFunction for it. For a method called
updateBalance(), for example, you could create an ApplicationFunction record
called “update_balance” in the RSA ClearTrust policy datastore. The implementation
of your updateBalance() method will call RuntimeAPI.authorize() before
executing the rest of the method, passing as arguments a Map of the requesting user
and a Map representing the “update_balance” method. The authorize() call returns a
boolean indicating whether the user is allowed to execute the method.

When setting policies in the RSA ClearTrust system, you treat an ApplicationFunction
like you would treat an ApplicationURL. That is, you collect related
ApplicationFunctions (along with any related ApplicationURLs) into applications,
and you grant users or groups permission to use these applications,
ApplicationFunctions, and/or ApplicationURLs.

If you are not building stand-alone applications, then you will generally not need to
use ApplicationFunctions. For most dynamic Web content such as cgis on Web pages,

setName Sets the name of this object.

Inherited from interface sirrus.api.client.IDescription

getDescription Gets the textual description of this object.

setDescription Sets the textual description of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Inherited from interface sirrus.api.client.IOwnable

getAdministrativeGroup Gets the administrative group that will own the ownable object.

getAdministrativeGroupName Gets the name of the administrative group that the ownable object is in.

isPublic Determines whether the object is viewable by any administrative user.

setAdministrativeGroup Sets the administrative group that will own the ownable object.

setPublic Sets the public flag.

Table 4.13 IApplication Methods

Function Description
Administrative Java API: Resources 97

RSA ClearTrust Developer’s Guide
you will control access by creating an ApplicationURL that matches the URL request
string or the name of the cgi script being called. Once you have created Entitlements
based on these ApplicationURLs, the RSA ClearTrust Web Server Agents can control
access to the functions in the cgi script. In contrast, ApplicationFunctions are useful
for access checking in situations that do not involve URL requests, that is, in
situations where the RSA ClearTrust Agents cannot be used.

Table 4.14 IApplicationFunction Methods

Method Description

createSmartRule Creates a SmartRule associated with this application function. In previous versions, in
order to create any SmartRule whatsoever, you had to use this method
(IApplicationFunction.createSmartRule). Now, for most SmartRules, you will
instead use the IApplicationURL.createSmartRule or
IApplication.createSmartRule method. See the code example on page 123.

getApplication Gets the application associated with this application function.

getExplicitEntitlements Gets the basic entitlements associated with this application function

getSmartRules Gets the SmartRules associated with this application function.

isPolicyAllowBeforeDeny Returns the policy precedence for this application function. True means the ALLOW
policy overrides the DENY policy if there is a conflict.

setPolicyAllowBeforeDeny Sets the policy precedence for this application function. True means the ALLOW policy
overrides the DENY policy if there is a conflict.

Inherited from interface sirrus.api.client.IAPIObject

getUniqueIdentifier Returns the store-independent unqiue identifier of the object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object.

Inherited from interface sirrus.api.client.IDescription

getDescription Gets the textual description of this object.

setDescription Sets the textual description of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.
98 Administrative Java API: Resources

RSA ClearTrust Developer’s Guide
Application URLs
The IApplicationURL interface defines the ApplicationURL object.

An ApplicationURL object represents a resource labeled by a URI and associated with
a particular application and Web server. An ApplicationURL represents an accessible
URL that is part of a WebApplication.

Web Servers
The IWebServer interface defines a virtual Web server (potentially a group of many
physical Web servers) relative to which these URIs are defined.

A Web server object is associated with URIs, defining the location of the URIs. The
Web server also represents the location of the authorizer which performs accessibility
checking against the associated URIs.

A Web server defines a URL’s location through an associated-with relationship.

Table 4.15 ApplicationURL Methods

Method Description

createSmartRule Creates a SmartRule associated with this URI. See the code example
on page 123.

getApplication Gets the application that is identified by this URI.

getURI Gets the value of this URI.

getWebServer Gets the Web server that is associated with this URI.

setURI Sets the value of this URI.

setWebServer Sets the Web server that is associated with this IRI.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.IDescription

getDescription Gets the textual description of this object.

setDescription Sets the textual description of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.
Administrative Java API: Resources 99

RSA ClearTrust Developer’s Guide
The Web server object represents the location of an RSA ClearTrust authorizer which
performs accessibility checking against the associated URLs.

Table 4.16 Web Server Methods

Method Description

createServerTree Creates a new server tree on this Web server.

getHostname Gets the hostname of the computer on which the Web server is running.

getManufacturer Gets the maker of the Web server. Valid values are:
APACHE
MICROSOFT
NETSCAPE_ENTERPRISE
NETSCAPE_FASTTRACK

getPort Gets the port number to which the Web server is listening.

getServerTrees Gets all the Sever Trees that are associated with this Web server.

getWebApplicationURLs Gets all the Web application URLs associated with this Web server.

setHostname Sets the hostname of the computer on which the Web server is running.

setManufacturer Sets the maker of the Web server. Valid values are:
APACHE
MICROSOFT
NETSCAPE_ENTERPRISE
NETSCAPE_FASTTRACK

setPort Sets the Port Number to which the Web server is listening.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object.

Inherited from interface sirrus.api.client.IDescription

getDescription Gets the textual description of this object.

setDescription Sets the textual description of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Inherited from interface sirrus.api.client.IOwnable

getAdministrativeGroup Gets the administrative group that will own the ownable object.

getAdministrativeGroupName Gets the name of the administrative group that the ownable object is in.

isPublic Determines whether the object is viewable by any administrative user.

setAdministrativeGroup Sets the administrative group that will own the ownable object.

setPublic Sets the public flag.
100 Administrative Java API: Resources

RSA ClearTrust Developer’s Guide
Server Trees
The IServerTree interface defines a server tree.

A ServerTree object is associated with a Web server object. It represents a tree of
URLs on a Web server.

Table 4.17 IServerTree Methods

Method Description

getURI Gets the URI for this server tree.

setURI Sets the URI for this server tree.

Inherited from interface sirrus.api.client.IAPIObject

getPrimaryKey Gets the primary key of this object.

Inherited from interface sirrus.api.client.INamet

getName Gets the name of this object.

setName Sets the name of this object.

Inherited from interface sirrus.api.client.IDescription

getDescription Gets the textual description of this object.

setDescription Sets the textual description of this object.

Inherited from interface sirrus.api.client.ICreatable

delete Deletes this object from the entitlements database.

save Saves this object to the entitlements database.

Inherited from interface sirrus.api.client.IOwnable

getAdministrativeGroup Gets the administrative group that will own the ownable object.

getAdministrativeGroupNam
e

Gets the name of the administrative group that the ownable object is in.

isPublic Determines whether the object is viewable by any administrative user.

setAdministrativeGroup Sets the administrative group that will own the ownable object.

setPublic Sets the public flag.
Administrative Java API: Resources 101

RSA ClearTrust Developer’s Guide
Utility Classes

ISparseData
A set of RSA ClearTrust objects is typically loaded as an ISparseData object,
generally called a Sparse Data object. A Sparse Data holds a homogenous set of
objects and provides methods for retrieving individual objects or subsets of objects.

Sparse data objects are usable only as iterators over the data set. Due to the on-demand
availability of data in the physical data store, it is not possible to accurately fetch the
size of a data set without first retrieving the entire set. Applications should therefore
treat ISparseData objects as iterators. The correct way to iterate over them is shown in
the following example:

See the EditPropertyExample on page 115 for a more detailed example of using
Sparse Data objects.

try
{

int i = 0;
while (true)
{

Object obj = sparseData.getByIndex(i++);
// The sparse data is of size i or greater, process the object
....

}
}
catch (ObjectNotFoundException onf)
{

// We have read all of the entries in the result set,
// continue execution

}

Table 4.18 ISparseData Methods

Function Description

getByIndex(int index) Returns the object at the specified index.

getByName(java.lang.String name) Returns the object in the ISparseData collection with the specified name.

getByNames(java.lang.String[] names) Returns a subset of the ISparseData collection as an array of
IAPIObjects.

getByRange(int startRange, int endRange) Returns a subset of the ISparseData collection as an array of
IAPIObjects.
102 Administrative Java API: Utility Classes

RSA ClearTrust Developer’s Guide
Permissions
The IAdministrativePermissionChecker interface provides a set of operations that
determine whether the administrative role under which the API user is logged in has
permission to perform that action.

Table 4.19 IAdministrativePermissions Methods

Function Description

checkAddGroupToRealm Deprecated: Permission to add the specified group to the specified realm.

checkAddUserToGroup Permission to add the specified user to the specified group.

checkChangePassword Permission to change the password for the specified user.

checkCreateAdministrativeGroup Permission to create an administrative group.

checkCreateAdministrativeRole Permission to create an administrative role.

checkCreateAdministrativeRole Permission to create an administrative role in the specified administrative group.

checkCreateApplication Permission to create an application.

checkCreateApplicationFunction Permission to create an application function.

checkCreateExplicitEntitlemnt Permission to create a basic entitlement.

checkCreateGroup Permission to create a group.

checkCreatePasswordPolicy Permission to create a password.

checkCreateRealm Deprecated: Permission to create a realm.

checkCreateServerTree Permission to create a server tree.

checkCreateSmartRule Permission to create a SmartRule.

checkCreateUser Permission to create a user.

checkCreateUserPropertyDefinition Permission to create a Property Definition.

checkCreateWebServer Permission to create a Web server.

checkDeleteAdministrativeGroup Permission to delete the specified administrative group.

checkDeleteAdministrativeRole Permission to delete the specified administrative role.

checkDeleteApplication Permission to delete the specified application.

checkDeleteApplicationFunction Permission to delete the specified application function.

checkDeleteExplicitEntitlement Permission to delete the specified basic entitlement.

checkDeleteGroup Permission to delete the specified group.

checkDeletePasswordPolicy Permission to delete the specified password policy.

checkDeleteRealm Deprecated: Permission to delete the specified realm.

checkDeleteServerTree Permission to delete the specified server tree.

checkDeleteSmartRule Permission to delete the specified SmartRule.

checkDeleteUser Permission to delete the specified user.
Administrative Java API: Permissions 103

RSA ClearTrust Developer’s Guide
checkDeleteUserPropertyDefinition Permission to delete the specified Property Definition.

checkDeleteWebServer Permission to delete the specified Web server.

checkModifyAdministrativeGroup Permission to modify the specified administrative group.

checkModifyAdministrativeRole Permission to modify the specified administrative role.

checkModifyApplication Permission to modify the specified application.

checkModifyApplicationFunction Permission to modify the specified application function.

checkModifyExplicitEntitlemnt Permission to modify the specified basic entitlement.

checkModifyGroup Permission to modify the specified group.

checkModifyPasswordPolicy Permission to modify the specified password policy.

checkModifyfRealm Deprecated: Permission to modify the specified realm.

checkModifyServerTree Permission to modify the specified server tree.

checkModifySmartRule Permission to modify the specified SmartRule.

checkModifyUser Permission to modify the specified user.

checkModifyUserPropertyDefinition Permission to modify the specified Property Definition.

checkModifyWebServer Permission to modify the specified Web server.

checkModifyPasswordPolicy Permission to set the default password policy.

checkRemoveUserFromGroup Checks whether the user’s administrative role has permission to remove the
specified user from a group.

checkRemoveGroupFromRealm Deprecated: Checks whether the user’s administrative role has permission to
remove the specified group from a realm.

checkViewPasswordPolicy Checks whether the user has permission to view the password policies.

Table 4.19 IAdministrativePermissions Methods

Function Description
104 Administrative Java API: Permissions

RSA ClearTrust Developer’s Guide
Criteria
The criteria classes specify rules for matching a particular property type.

Boolean Criterion
The BooleanCriterion class specifies a rule for matching a Boolean Property.

Date Criterion
The DateCriterion class specifies a rule for matching a Date property.

Table 4.20 BooleanCriterion Methods

Method Description

BooleanCriterion BooleanCriterion constructor.

getBooleanValue Gets the Boolean value.

getObjectType Gets the criterion’s object type.

getOperator Gets the Boolean operator.

readObject Reads the criterion from the inStream.

setBooleanValue Sets the Boolean value.

setOperator Sets the boolean operator.

writeObject Writes the criterion to the outStream.

Table 4.21 DateCriterion Methods

Method Description

DateCriterion DateCriterion constructor.

getDateValue Gets the Date value.

getObjectType Gets the criterion’s object type.

getOperator Gets the Date operator.

readObject Reads the criterion from the inStream.

setDateValue Sets the Date value.

setOperator Sets the Date operator.

writeObject Writes the criterion to the outStream.
Administrative Java API: Criteria 105

RSA ClearTrust Developer’s Guide
Float Criterion
The FloatCriterion class specifies a rule for matching a Float property.

Integer Criterion
The IntegerCriterion class specifies a rule for matching an Integer property.

Searching
Searching for an object consists of specifying the proper criteria and invoking the
appropriate Search interface. The Criteria classes specify the rules for the various
criteria needed for searches. The Search interfaces perform the search.

Table 4.22 FloatCriterion Methods

Method Description

FloatCriterion FloatCriterion constructor.

getFloatValue Gets the Float value.

getObjectType Gets the criterion object type.

readObject Reads the criterion from the inStream.

setFloatValue Sets the Float value.

writeObject Writes the criterion to the outStream.

Inherited from interface sirrus.api.client.INameSearch

getOperator Gets the number operator.

setOperator Sets the number operator.

Table 4.23 IntegerCriterion Methods

Method Description

IntegerCriterion IntegerCriterion constructor.

getIntegerValue Gets the Integer value.

getObjectType Gets the criterion object type.

readObject Reads the criterion from the inStream.

setIntegerValue Sets the Integer value.

writeObject Writes the criterion to the outStream.

Inherited from interface sirrus.api.client.INameSearch

getOperator Gets the number operator.

setOperator Sets the number operator.
106 Administrative Java API: Searching

RSA ClearTrust Developer’s Guide
Administrative Group Search
The IAdministrativeGroupSearch interface allows users to specify criteria to search
for IAdministrativeGroups.

Application Search
The IApplicationSearch interface allows users to specify criteria to search for
IApplications.

Group Search
The IGroupSearch interface allows users to specify criteria to search for IGroups.

Table 4.24 IAdministrativeGroupSearch Methods

Method Description

Inherited from interface sirrus.api.client.search.IAPIObjectSearch

search Gets a SparseData of APIObjects, based on the current state of this Search object.

Inherited from interface sirrus.api.client.INameSearch

getNameCriterion Gets the name criterion.

setNameCriterion Sets the name criterion.

Table 4.25 IApplicationsSearch Methods

Method Description

Inherited from interface sirrus.api.client.search.IAPIObjectSearch

search Gets a SparseData of APIObjects, based on the current state of this Search object.

Inherited from interface sirrus.api.client.INameSearch

getNameCriterion Gets the name criterion.

setNameCriterion Sets the name criterion.

Table 4.26 IGroupSearch Methods

Method Description

Inherited from interface sirrus.api.client.search.IAPIObjectSearch

search Gets a SparseData of APIObjects, based on the current state of this Search object.

Inherited from interface sirrus.api.client.INameSearch

getNameCriterion Gets the name criterion.

setNameCriterion Sets the name criterion.
Administrative Java API: Searching 107

RSA ClearTrust Developer’s Guide
Deprecated: Realm Search
The deprecated IRealmSearch interface allows users to specify criteria to search for
IRealms. This interface is deprecated as of RSA ClearTrust 4.7 because realms will
soon be removed from the system.

User Property Definition Search
The IUserPropDefSearch interface allows users to specify criteria to search for
IUserPropertyDefinitions.

Web Server Search
The IWebServerSearch interface allows users to specify criteria to search for
IWebServers.

Table 4.27 IRealmSearch Methods

Method Description

Inherited from interface sirrus.api.client.search.IAPIObjectSearch

search Gets a SparseData of APIObjects, based on the current state of this Search object.

Inherited from interface sirrus.api.client.INameSearch

getNameCriterion Gets the name criterion.

setNameCriterion Sets the name criterion.

Table 4.28 IUserPropDefSearch Methods

Method Description

Inherited from interface sirrus.api.client.search.IAPIObjectSearch

search Gets a SparseData of APIObjects, based on the current state of this Search object.

Inherited from interface sirrus.api.client.INameSearch

getNameCriterion Gets the name criterion.

setNameCriterion Sets the name criterion.

Table 4.29 IWebServerSearch Methods

Method Description

Inherited from interface sirrus.api.client.search.IAPIObjectSearch

search Gets a SparseData of APIObjects, based on the current state of this Search object.

Inherited from interface sirrus.api.client.INameSearch

getNameCriterion Gets the name criterion.

setNameCriterion Sets the name criterion.
108 Administrative Java API: Searching

RSA ClearTrust Developer’s Guide
User Search
The IUserSearch interface allows users to specify criteria to search for IUsers.

Table 4.30 IUserSearch Methods

Method Description

clearUserPropertyCriterion Clears or removes the UserPropertyCriterion based on the UserProperty’s name.

getAccountEndCriterion Gets the account end date criterion.

getAccountStartCriterion Gets the account start date criterion.

getAllUserPropertyCriteria Retrieve an enumeration of all the UserPropertyCriteria that are currently set.

getDNCriterion Gets the Distinguished Name criterion.

getEmailAddressCriterion Gets the email address criterion.

getFirstNameCriterion Gets the first name criterion.

getLastNameCriterion Gets the last name criterion.

getOwnerCriterion Gets the owner criterion.

getSuperHelpDeskCriterion Gets the SuperHelpDesk criterion.

getSuperUserCriterion Gets the SuperUser criterion.

getUserIDCriterion Gets the user ID criterion.

getUserLockoutCriterion Gets the user lockout criterion.

lookupUserPropertyCriterion Looks up a UserPropertyCriterion based on the UserProperty name.

numOfUserPropertyCriteria Gets the number of UserPropertyCriteria set in this search.

putUserPropertyCriterion Adds a UserPropertyCriterion to this UserSearch.

setAccountEndCriterion Sets the account end date.

setAccountStartCriterion Sets the account start date.

setDNCriterion Sets the Distinguish Name criterion.

setEmailAddressCriterion Sets the email address criterion.

setFirstNameCriterion Sets the first name criterion.

setLastNameCriterion Sets the last name criterion.

setOwnerCriterion Sets the owner criterion.

setSuperHelpDeskCriterion Sets the SuperHelpDesk criterion.

setSuperUserCriterion Sets the SuperUser criterion.

setUserIDCriterion Sets the user ID criterion.

setUserLockoutCriterion Sets the user lockout criterion.
Administrative Java API: Searching 109

RSA ClearTrust Developer’s Guide
Examples

User Example
This Administrative API example, UserExample.java, creates a user, saves the user
to the database, modifies that user, and finally deletes it.

Before you can compile and run this program you should make sure that a user
property exists whose name matches the name used in the setUserProperty() call
below. You may need to expose an LDAP attribute in the RSA ClearTrust system as a
user property and/or edit the UserProperty name used in this program. See the
Developer's Guide for information on exposing attributes as user properties.

Before You Compile and Run the Program
Before you can compile and run this example, you may need to make the following
edits to the program and to your installation:

1. Edit the server name, server port, and use_ssl parameters of the APIServerProxy
constructor. The server name is the name of the machine where the Entitlements
Server is running. The port is the API server port on the Entitlements Server. By
default this is 5601, and it is generally not changed from the default.

2. Set the use_ssl setting to match the cleartrust.eserver.api.ssl. use or
cleartrust.net.ssl.use setting in your Entitlements Server’s eserver.conf
file. See Connecting With and Without SSL on page 3-1 for details.

3. Edit the four arguments of the serverProxy.connect() method. The four
arguments are the administrative user name, his/her password, the administrative
group to which the administrative user belongs, and his/her administrative role.
The values shown below are the defaults.

For instructions on compiling this example, see “Compiling Applications” on page 68.

APIServerProxy myServerProxy =
new APIServerProxy("localhost" //API Server name

,5601 //API Server Port
,false //Use SSL
);

myServerProxy.connect("admin",
"adminpassword",
"Default Administrative Group",
"Default Administrative Role");
110 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
Example: UserExample.java

package sirrus.samples.admin;

import java.util.Date;
import sirrus.api.client.*;

/**
* UserExample.java
*
* @version 4.7
* @since October 23, 2001
*/

public class UserExample {
public static void main (String[] args)
{

try
{

APIServerProxy myServerProxy =
new APIServerProxy("localhost" //API Server name

,5601 //API Server Port
,false //Use SSL
);

// Connect to the API Server Proxy.
myServerProxy.connect("admin",

"admin1234",
"Default Administrative Group",
"Default Administrative Role");

System.out.println ("Connected.");

// Create a User Object.
String userID = "testuser767";
boolean isPublic = true;
Date startDate = new Date();
Date endDate = new Date();
String firstName = "Joe";
String lastName = "Robertsham";
String emailAddr = "joebob@bigco.com";
String password = "Joes1InitialPassword";
boolean isSuperUser = false;
IUser user = myServerProxy.createUser(userID,

isPublic,
startDate,
endDate,
firstName,
lastName,
emailAddr,
password,
isSuperUser);

// Save the new user in the Entitlements database.
user.save();
System.out.println ("User " + user.getName() + " saved.");
Administrative Java API: Examples 111

RSA ClearTrust Developer’s Guide
Example continues:

// Modify the User's UserProperty.
// Note: This LDAP attribute must be exposed as a
// CT UserProperty before you run this program.
// See the comment at the beginning of this file.
user.setUserProperty("employeeType",

"Outside Sales");
user.save();
System.out.println ("User " + user.getName() + " modified.");

System.out.println ("Flushing cache.");
// Flush the cache so that all Auth Servers will see the new
// user. Note! You should call the flushCache() method only
// infrequently; overusing it can slow system performance.
// This is because flushCache() tells all the Auth Servers
// to reload their cached data.
myServerProxy.flushCache();
System.out.println ("Cache flush complete.");

// Display the UserProperties.
System.out.println ("Retrieving user properties...");
IUserProperty stringProp =

user.getUserProperty("employeeType");
System.out.println ("For user " + user.getName()

+ ", the value of " + stringProp.getName()
+ " is " + stringProp.getValue() + ".");

// Remove the user from the Entitlements database.
user.delete();

// Call flushCache to make the Auth Servers aware of
// the deletion.
myServerProxy.flushCache();
System.out.println ("User deleted.");

}
catch (Exception e)

{
e.printStackTrace();

}
}

}

112 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
User Property Example
EditPropertyExample shows how to load a user and work with his or her
UserProperties. RSA ClearTrust may be installed with or without write access to the
LDAP user datastore. The userToEdit.save() line in this program will only work if
you have write access.

Before you compile and run this example, you should do the following:

1. Edit the server name, server port, and use_ssl parameters of the APIServerProxy
constructor below.

2. Set the use_ssl setting to match the cleartrust.eserver.api. ssl.use or
cleartrust.net.ssl.use setting in your Entitlements Server's eserver.conf
file.

3. Edit the four arguments of the serverProxy.connect() method.

4. In your LDAP user datastore, make sure that you have saved at least one user to
work with.

5. In your LDAP user datastore, make sure that one or two attributes are exposed on
the user records you will use.

6. In the RSA ClearTrust Entitlements Manager, make sure you have created a
UserProperty Definition for each such exposed LDAP user attribute. This
example works with String properties.

For instructions on compiling this example, see “Compiling Applications” on page 68.
Administrative Java API: Examples 113

RSA ClearTrust Developer’s Guide
Example: EditPropertyExample.java

package sirrus.samples.admin;

import java.io.*;
import java.util.*;
import sirrus.api.client.*;

/**
* EditPropertyExample.java
*
* @version 4.7
* @since October 22, 2001
*/

public class EditPropertyExample
{

APIServerProxy serverProxy = null;

/*
*Method to connect to ClearTrust API Server
*/
private void connect()
{

try{
serverProxy = new APIServerProxy("localhost" //API Server name

,5601 //API Server Port
,false //Use SSL
);

serverProxy.connect("admin",
"admin1234",
"Default Administrative Group",
"Default Administrative Role");

}catch(IOException e){
System.out.println("\n\n IOError = " + e + "\n\n");

}catch(TransportException e){
System.out.println("\n\n Error in transport layer = " + e + "\n\n");

}catch(UserNotAuthorizedException e){
System.out.println("\n\n User unable to act as an Administrator.\n\n");

}catch(APIException e){
System.out.println("\n\n General API error = " + e + "\n\n");

}
}

114 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
Example continues:

/*
* Flushes the caches.
*/
private void flushCache()
{

if (serverProxy != null){
try{

serverProxy.flushCache();
}catch(java.io.IOException e){

e.printStackTrace();
}catch(NoAuthorizersAvailableException e){

e.printStackTrace();
}catch(TransportException e){

e.printStackTrace();
}

}
}

/*
* Method to disconnect from ClearTrust API server
*/
private void disconnect()
{

if (serverProxy != null){
try{

serverProxy.disconnect();
}catch(java.io.IOException e){

e.printStackTrace();
}catch(NotConnectedException e){

e.printStackTrace();
}

}
}

/*
* Loads a user
*/
private IUser loadUser(String userIdentifier)
{

ISparseData userSparse = null;
IUser loadedUser = null;

try{
userSparse = serverProxy.getUsers();
loadedUser = (IUser) userSparse.getByName(userIdentifier);
System.out.println("Successfully loaded the user " +

loadedUser.getName());
}catch(ObjectNotFoundException e){

System.out.println("Cannot find a user called " +
userIdentifier + "\n\n");
Administrative Java API: Examples 115

RSA ClearTrust Developer’s Guide
Example continues:

}catch(APIException e){
e.printStackTrace();

}catch(java.io.IOException e){
e.printStackTrace();

}

return loadedUser;
}

/*
* Prints a user's properties.
*/
private void printUserProps(IUser userToPrint)
{

// Retrieve a SparseData
ISparseData propsSparseData = userToPrint.getUserProperties();

// Find out how many items are in the SparseData
int itemCount = 0;
try{

while (true)
{

Object obj =
propsSparseData.getByIndex(itemCount++);

}
}catch(ObjectNotFoundException onf){

System.out.println ("Number of UserProperties: " + (itemCount-1));
}catch(BadArgumentException e){

e.printStackTrace();
}catch(TransportException e){

e.printStackTrace();
}catch(java.io.IOException e){

e.printStackTrace();
}

// Get the objects by range and print them.
try{

IAPIObject[] propArray =
propsSparseData.getByRange(0, itemCount-1);

for (int i = 0; i < propArray.length; i++)
{

IUserProperty returnedProp = (IUserProperty)propArray[i];
if(returnedProp.getName() != null &&

returnedProp.getValue() != null)
{

System.out.println ("Property (" +
returnedProp.getName() +
") has a value of " +

returnedProp.getValue().toString());
}

}
}catch(BadArgumentException e){

e.printStackTrace();
116 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
Example continues:

}catch(TransportException e){
e.printStackTrace();

}catch(java.io.IOException e){
e.printStackTrace();

}
}

/*
* Changes the value of a String user property.
*/
private void setStringUserProp(IUser userToEdit,

String propName,
String propValue)

{
// Retrieve a SparseData
ISparseData propsSparseData = userToEdit.getUserProperties();

// Iterates to find the property, then sets it
// and saves the user.
int itemCount = 0;
try{

while (true)
{

IUserProperty returnedProp =
(IUserProperty) propsSparseData.getByIndex(itemCount);

if((propName.compareTo(returnedProp.getName()))==0)
{

returnedProp.setValue(propValue);
userToEdit.setUserProperty(returnedProp.getName(),

returnedProp.getValue());
System.out.println("New value " + propValue +

" was set for Property (" +
returnedProp.getName() + ")");

userToEdit.save();
System.out.println("Saved");
return;

}
itemCount++;

}
}catch(ObjectNotFoundException e){

System.out.println ("Did not find a property called " + propName);
e.printStackTrace();

}catch(InvalidTypeException e){
System.out.println ("Wrong type for property " + propName);
e.printStackTrace();

}catch(BadArgumentException e){
e.printStackTrace();

}catch(TransportException e){
e.printStackTrace();
Administrative Java API: Examples 117

RSA ClearTrust Developer’s Guide
Example continues:

}catch(APIException e){
e.printStackTrace();

}catch(java.io.IOException e){
e.printStackTrace();

}
}

public static void main(String[] args)
{

EditPropertyExample apiClient = new EditPropertyExample();

//Initializing the connection to ClearTrust API server
apiClient.connect();

//Get user name
System.out.println("User name?");
BufferedReader bfReader =

new BufferedReader(new InputStreamReader(System.in));
String userNameIn = new String("0");
try{

userNameIn = bfReader.readLine();
}catch(Exception e){

e.printStackTrace();
}

//Get prop name
System.out.println("Name of UserProperty to edit?");
bfReader = new BufferedReader(new InputStreamReader(System.in));
String propNameIn = new String("0");
try{

propNameIn = bfReader.readLine();
}catch(Exception e){

e.printStackTrace();
}

//Get prop value
System.out.println("New value for UserProperty?");
bfReader = new BufferedReader(new InputStreamReader(System.in));
String propValueIn = new String("0");
try{

propValueIn = bfReader.readLine();
}catch(Exception e){

e.printStackTrace();
}

118 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
Example continues:

System.out.println("\n");
IUser userToInspect = apiClient.loadUser(userNameIn);
apiClient.printUserProps(userToInspect);
apiClient.setStringUserProp(userToInspect,

propNameIn,
propValueIn);

apiClient.flushCache();
apiClient.disconnect();

}
}

Administrative Java API: Examples 119

RSA ClearTrust Developer’s Guide
Application Function Example
You can enforce access control on any method of any application that you write by
modeling that method as an application function (IApplicationFunction). With your
method saved in the RSA ClearTrust policy datastore as an application function, your
application can make a Runtime API call to check a user’s access to that method.

For instructions on compiling examples, see “Compiling Applications” on page 68.

package sirrus.samples.admin;

import java.util.Date;
import sirrus.api.client.*;

/**
* ApplicationFunctionExample.java
*
* @version 4.7
* @since October 19, 2001
*/

public class ApplicationFunctionExample {
public static void main (String[] args)
{

try
{

APIServerProxy myServerProxy =
new APIServerProxy("localhost" //API Server name

,5601 //API Server Port
,false //Use SSL
);

// Connect to the APIServerProxy.
myServerProxy.connect("admin",

"admin1234",
"Default Administrative Group",
"Default Administrative Role");

System.out.println ("Connected");

// Create an Application.
IApplication app =

myServerProxy.createApplication(
"TestApplication",
"App Description",
"Ver2");

app.save();
System.out.println ("Application created");

// Create an ApplicationFunction based on the
// newly created Application.
IApplicationFunction appFunc =

app.createApplicationFunction("MyAppFunc",
"AppFunc Description");
120 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
Example continues:

appFunc.save();
System.out.println ("ApplicationFunction created");

// Retrieve a SparseData of the ApplicationFunctions.
ISparseData appFuncSparseData =

app.getApplicationFunctions();

// Find out how many ApplicationFunctions there are.
int numOfAppFuncs = 0;
try

{
while (true)

{
Object obj =

appFuncSparseData.getByIndex(numOfAppFuncs++);
}

}
catch (ObjectNotFoundException onf)

{
System.out.println ("numOfAppFuncs: " + (numOfAppFuncs-1));

}

// Get the objects by range.
IAPIObject[] appFuncArray =

appFuncSparseData.getByRange(0, numOfAppFuncs-1);
for (int i = 0; i < appFuncArray.length; i++)

{
IApplicationFunction retAppFunc =

(IApplicationFunction)appFuncArray[i];

System.out.println ("appFuncArray[" + i +
"].getName(): " +
retAppFunc.getName());

}

// Get the ApplicationFunction we created by its name.
IApplicationFunction retByNameAppFunc =

(IApplicationFunction)appFuncSparseData.
getByName(appFunc.getName());

System.out.println ("retByNameAppFunc: " +
retByNameAppFunc);

System.out.println ("Deleting ApplicationFunction: " +
appFunc.getName());

appFunc.delete();
Administrative Java API: Examples 121

RSA ClearTrust Developer’s Guide
Example continues:

System.out.println ("ApplicationFunction deleted");

System.out.println ("Deleting Application: " +
app.getName());

app.delete();
System.out.println ("Application deleted");

// Disconnect from the APIServer.
System.out.println ("Disconnecting from the APIServer");
myServerProxy.disconnect();
System.out.println ("Disconnected");

}
catch (Exception e)

{
e.printStackTrace();

}
}

}

122 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
SmartRule Example
This Administrative API example, SmartRuleExample.java, creates a SmartRule and
tests it on a user. The SmartRule will allow access to the "TestApp" application if the
user's "employeeType" Property contains the word "Sales".

Before you begin, you must take the following steps:

• Create the following data items in your data store. In most cases, you will need to
run the ClearTrust Entitlement Manager application and save each item.

• a user called TestUser

• a user property definition called employeeType

• a Web server called TestWebServer

• an application called TestApp

• an ApplicationURL, "/testpage.html" on the TestWebServer

• add the ApplicationURL "/testpage.html" to the TestApp application

• In your LDAP admininistration tool (for example, the iPlanet Console if you use
iPlanet) make sure the “employeeType” attribute is available (writeable) on your
user entries. Unless you have modified the default iPlanet schema, employeeType
should be available. This is a standard attribute, so you should not have to define
the attribute from scratch.

For instructions on compiling examples, see “Compiling Applications” on page 68.
Administrative Java API: Examples 123

RSA ClearTrust Developer’s Guide
SmartRule Example

package sirrus.samples.admin;

import java.util.Date;

import sirrus.api.client.*;
import sirrus.api.client.criteria.*;

/**
* SmartRuleExample
*
* @version 4.7
* @since February 10, 2001
*/

public class SmartRuleExample {
public static void main (String[] args)
{

try
{

APIServerProxy myServerProxy =
new APIServerProxy("localhost", // API Server name

5601, // API Server port
false); // Use SSL

// Connect to the APIServerProxy.
myServerProxy.connect("admin",

"admin1234",
"Default Administrative Group",
"Default Administrative Role");

System.out.println ("Connected");

// Load the sample UserPropertyDefinition
IUserPropertyDefinition userPropDef =

(IUserPropertyDefinition)myServerProxy.
getUserPropertyDefinitions().
getByName("employeeType");

System.out.println ("Got the UserPropertyDefinition");

// Load the sample Application
IApplication app = (IApplication)

myServerProxy.getApplications().
getByName("TestApp");

System.out.println ("Got the Application");
System.out.println (app.getName() +

" has resources " +
app.getApplicationURLs().toString());
124 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
Example continues:

// Create and save the SmartRule
StringCriterion sampleCriterion = new

StringCriterion(StringCriterion.CONTAINS, "Sales");
ISmartRule smartRule = app.createSmartRule(userPropDef);
smartRule.setCategory(ISmartRule.ALLOW);
smartRule.setSmartRuleCriterion(sampleCriterion);
smartRule.save();
System.out.println ("Created and saved the SmartRule");

// Load the sample User
IUser user = (IUser)

myServerProxy.getUsers().getByName("TestUser");
System.out.println ("Got the User");

// Set the User's Property and save
user.setUserProperty("employeeType", "Inside Sales");
user.save();
System.out.println ("Changed the User's UserProperty");

// Entitlement changes have occurred; must clear caches.
myServerProxy.flushCache();

// Test access
String userName = "TestUser";
String password = null; //Password not needed; leave null
String webServerName = "TestWebServer";
String uriString = "/testpage.html";

boolean hasAccess = false;
hasAccess = myServerProxy.checkAccess(userName,

password,
webServerName,
uriString);

myServerProxy.disconnect();

if (hasAccess)
{

System.out.println ("Success!\n" +
userName +
" has access privileges to " +
uriString + " on " + webServerName);

}

Administrative Java API: Examples 125

RSA ClearTrust Developer’s Guide
Example continues:

else
{

System.out.println ("Failure!\n" +
userName +
" should have access privileges to " +
uriString + " on " + webServerName);

System.out.println ("Possible causes are:\n" +
"1. The user or a parent group " +
"has an overriding " +
"Entitlement assigned to it.\n" +

"2. The user's account has expired.\n" +
"3. The user is locked out.");

return;
}

}
catch (Exception e)

{
e.printStackTrace();

}
}

}

126 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
User Search Example
This Administrative API example, UserSearchExample, shows you how to use the
Search and Criteria packages to look up users. These search utilities work in the same
way for most other administrative objects such as IUserProperties and IWebServers.
For more information, see the Javadocs for the sirrus.api.client.search package.

Before you begin, you may need to do some of the following:

• Make sure the following exist in your LDAP data store. In most cases, you
will need to run the RSA ClearTrust Entitlements Manager application and
save each item.

• a UserPropertyDefinition called employeeType

• a UserPropertyDefinition called initials

• a user with values set for the employeeType and initials properties. You can
edit the property values or edit the search strings in this program so that the
search will succeed.

• In your LDAP administration tool (e.g. Netscape Console) make sure the
employeeType and initials attributes are writable on your user entries.

For instructions on compiling this example, see “Compiling Applications” on page 68.
Administrative Java API: Examples 127

RSA ClearTrust Developer’s Guide
UserSearchExample

package sirrus.samples.admin;

import sirrus.api.client.*;
import sirrus.api.client.search.*;
import sirrus.api.client.criteria.*;

/**
* UserSearchExample.java
*
* @version 4.7
* @since October 23, 2001
*/

public class UserSearchExample {
public static void main (String[] args)
{

try
{

APIServerProxy myServerProxy = new
APIServerProxy("localhost",

5601,
false);

// Connect to the APIServerProxy.
myServerProxy.connect("admin",

"admin1234",
"Default Administrative Group",
"Default Administrative Role");

System.out.println ("Connected");

// Obtain a UserSearch object.
IUserSearch userSearch =

myServerProxy.searchUserObjects();

// Add a first UserPropertyCriterion, which will check
// if the value of the 'employeeType' property starts with
// the string "Outside".
userSearch.putUserPropertyCriterion(new

UserPropertyCriterion("employeeType", new
StringCriterion(StringCriterion.STARTS_WITH,

"Outside")));

// Add another UserPropertyCriterion, which will check
// if the value of the 'initials' property contains
// the string "(TU)".
userSearch.putUserPropertyCriterion(new

UserPropertyCriterion("initials", new
StringCriterion(StringCriterion.CONTAINS,

"TU")));
128 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
Example continues:

// Obtain the SparseData of Users matching the
// specified Criteria.
ISparseData usersInSearch = userSearch.search();

// Find out how many users are in the SparseData
int numOfUsers = 0;
try
{

IAPIObject[] retObj = usersInSearch.getByRange(0,Integer.MAX_VALUE);
numOfUsers = retObj.length;

System.out.println ("Number of Users returned "
+ "by the Search: "
+ (numOfUsers));

}catch(BadArgumentException e){
e.printStackTrace();

}catch(TransportException e){
e.printStackTrace();

}catch(java.io.IOException e){
e.printStackTrace();

}

// Get the objects by range and print them.
try{

IAPIObject[] userArray =
usersInSearch.getByRange(0, numOfUsers);

for (int i = 0; i < userArray.length; i++)
{

IUser returnedUser = (IUser)userArray[i];
if(returnedUser.getName()!= null)

{
System.out.println ("Loaded User: " +

returnedUser.getFirstName() +
" " +

returnedUser.getLastName());
}

}
}catch(BadArgumentException e){

e.printStackTrace();
}catch(TransportException e){

e.printStackTrace();
}catch(java.io.IOException e){

e.printStackTrace();
}

}
catch (Exception e)

{
e.printStackTrace();

}
}

}

Administrative Java API: Examples 129

RSA ClearTrust Developer’s Guide
130 Administrative Java API: Examples

RSA ClearTrust Developer’s Guide
5 Runtime C API
The RSA ClearTrust® Runtime API allows trusted C clients to perform
authentication, authorization, and other functions using the runtime functionality of
the RSA ClearTrust Authorization Servers. Using the information in this chapter
together with the function descriptions in the header files, developers can build
custom authentication or personalization programs that use or extend the
RSA ClearTrust system’s runtime functionality.

This Chapter
This chapter consists of:

• The “C Runtime API Overview”, below.

• Compilation instructions starting with “Installing and Compiling” on page 134.

• Instructions for connecting a Runtime API client, in “Connecting a Runtime C
API Client” on page 135.

• The “Runtime C API Reference” starting on page 141.

• An example program:

• “RSA SecurID Authentication Example” on page 153

The source code for the API example program is installed in

<CT_HOME>/api/runtime-c/example

C Runtime API Overview
The runtime functionality of the RSA ClearTrust Authorization Servers consists of
four main pieces:

• Authentication of users

• Authorization of users to resources

• SSO (single sign-on) token creation & manipulation

• User property retrieval

Runtime tasks are read-only; that is, they perform queries on the existing state of the
data in the RSA ClearTrust Servers, but do not involve changing or adding data. For
tasks involving updates, the RSA ClearTrust Administrative API should be used; see
Chapter 3, “Administrative C API”. Both APIs may be used in a single client program.
Runtime C API: This Chapter 131

RSA ClearTrust Developer’s Guide
Authentication
The credentials required for a user authentication operation depend on the type of
authentication. The Runtime API supports these authentication types:

• RSA ClearTrust basic authentication

• RSA SecurID authentication

• NT authentication.

• LDAP authentication (Note that in RSA ClearTrust 4.7, this authentication type is
equivalent to RSA ClearTrust basic authentication, since basic authentication
verifies the user’s password against an LDAP datastore. In future releases, basic
authentication will verify the password against whatever type of underlying
datastore you have configured to store users.)

In addition to the authentication types listed above, the API provides a mechanism to
extend the Authorization Servers to include additional custom forms of user
authentication.

Authorization
Authorization checks may be performed for either a Web resource (URL) or, more
generically, for a ClearTrust application function. Such checks invoke the full
RSA ClearTrust access control policy model, including both basic entitlements and
SmartRules.

The implementation of this API is based on network communications with one or
more RSA ClearTrust Authorization Servers. Clients may choose among a variety of
connection options, from using a single Authorization Server connection to building a
pool of connections to multiple Authorization Servers. Connection pools
automatically and transparently fail over requests in the event of a server crash or
network outage, and can be configured to distribute requests in a round-robin fashion.
Depending on system configuration, the Runtime API’s connections to the
Authorization Server may be protected using Anonymous SSL or Authenticated SSL.

Note: This chapter does not provide comprehensive function descriptions. See the
header files for function descriptions.

Note: Note that in version 4.7 the Runtime API does not support Certificate
Authentication. Previous versions of the Runtime API did support Certificate
Authentication (and in 4.7 the Web Server Agents still do support Certificate
Authentication; only the API does not).
132 Runtime C API: C Runtime API Overview

RSA ClearTrust Developer’s Guide
SSO Token Manipulation
To communicate authentication data between components, the Runtime API creates or
updates a user’s SSO (Single Sign-on) token when that user successfully
authenticates. These tokens are passed between the Authorization Server, Web servers,
application servers, and custom applications as a means of providing single sign-on
functionality.

Since SSO tokens contain sensitive information, the system may be set to require that
Runtime API clients connect over SSL before they can access token data. See “SSL
and Non-SSL Connection Options” on page 136.

Runtime API clients may also instruct the server to implicitly return the user’s token
each time a user is authenticated or authorized. To do this, the client must set the
SC_TOKENS_ENABLED flag to true when creating the Authorization Server
connection. You can set this flag in the credentials parameter of the
ct_create_pool_with_dispatchers_ext function. (See ct_runtime_api.h for
more details.)

User Property Retrieval
In addition to checking and communicating authentication and authorization for users,
the Runtime API provides access to users’ exportable custom properties. These are the
same user properties that are used in SmartRules. Because some properties may be
deemed too sensitive to externalize, only user properties which are defined to be
exportable are visible to Runtime API clients. (The “exportable” concept was
introduced in version 4.6.)

Since user properties can contain sensitive information, the system may be set to
require that Runtime API clients connect over SSL before they can access properties.
See “SSL and Non-SSL Connection Options” on page 136.

Runtime API clients may also instruct the server to implicitly return the user’s
properties each time a user is authenticated or authorized. To do this, the client must
set the SC_USER_PROPERTIES_ENABLED flag to true when creating the
Authorization Server connection. You can set this flag in the credentials parameter
of the ct_create_pool_with_dispatchers_ext function. (See ct_runtime_api.h
for more details.) Because user property retrieval slows the execution of an
authentication or authorization call, this flag defaults to false.

For information on creating user properties in your LDAP user data store, see the
“Data Integrity” section in the “Installing the LDAP Data Adapters” chapter of the
Installation and Configuration Guide.
Runtime C API: C Runtime API Overview 133

RSA ClearTrust Developer’s Guide
Installing and Compiling
This section explains the installed components that make up the API and provides
guidelines for building applications. For instructions on installing the APIs, see
Chapter 2, “Installing the RSA ClearTrust APIs”.

Location
The files you need to build and run Runtime API applications are installed when the
RSA ClearTrust Servers are installed. The files you need are in the following
directories:

<CT_HOME>/api/runtime-c/include
/lib
/example

• include contains the API header files. See the next section for descriptions.

• lib contains the API libraries

• example contains the example code from this chapter.

Header Files

API Files
The following header files define the methods and types of the RSA ClearTrust
Runtime API.

• ct_runtime_api.h this is the main file of the Runtime API. It contains the
ct_authenticate() and ct_authorize() functions, functions to establish a
Runtime API client connection, and functions to work with user SSO tokens and
user properties.

• ct_auth_result.h defines structs used to return authentication and authorization
results as well as the ct_auth_result_tostring() method for converting
ct_auth_result structures to strings.

• ct_auth_types.h establishes and documents the types of authentication
supported in the RSA ClearTrust system.

• ct_boolean.h defines the ClearTrust boolean type for use on unix and Windows.

• ct_callback.h contains the callback function for obtaining the passphrase for
unlocking the keystore when SSL is used between the C Runtime API client and
the RSA ClearTrust servers.

• ct_error.h defines structs used to return error messages as well as the
ct_error_tostring() method for converting ct_error structures to strings.
134 Runtime C API: Installing and Compiling

RSA ClearTrust Developer’s Guide
• ct_hash.h, ct_lock.h, ct_lock_impl.h, and ct_windows.h are included for
compilation only and do not include any exposed functions.

• ct_map.h and ct_map_utils.h contain utilities for working with Maps. Maps are
multivalued datatypes used in the RSA ClearTrust system to describe objects like
users and authentication results.

• ct_pool_manager.h contains methods for creating Authorization Server pools
that allow Runtime API clients to connect to RSA ClearTrust Authorization
Servers in a scalable manner that provides some failover.

• ct_resource_constants.h provides keys to indicate the type of an
RSA ClearTrust-protected resource.

• ct_result_constants.h establishes and documents the return values that are
used to indicate the success or failure of an authentication and/or authorization
attempt in the RSA ClearTrust system.

• ct_return_code_keys.h established the types of return values that the
Authorization Server can produce.

• ct_token_keys.h establishes the fields of the RSA ClearTrust SSO token.

• ct_user_constants.h contains the constant strings to be used as keys or values
in ct_map objects representing RSA ClearTrust users and their authentication
credentials in calls to the Runtime API.

Connecting a Runtime C API Client
Calls in the Runtime API are based on connection pools. A connection pool, also
known as an Authorization Server pool, is a grouping of Authorization Servers. The
pool is a mechanism for getting a connection to an Authorization Server. For most
functions that use an Authorization Server connection, you will find an equivalent
function that takes a pool as an argument, rather than a reference to a specific
Authorization Server.

For routines that require an Authorization Server, using an Authorization Server pool
is more fail-safe than naming a specific Authorization Server, since that named
Authorization Server might be down. If an Authorization Server goes down, the pool
will look for another based on a list of Authorization Servers provided by a Server
Dispatcher. For details, see the descriptions of the
ct_create_pool_with_dispatcher (see page 138) and
ct_create_pool_with_dispatcher_ext (see page 138) functions. (See also
ct_runtime_api.h.)

Before making any of the Runtime API calls that require a pool, the user needs to
create a connection pool using the pool manager (see also ct_pool_manager.h). The
pool manager is the collection of methods used to create and use Authorization Server
pools. The pool manager is based on a simple hash table, with an integer as its key.
This allows multiple Authorization Server pools to be used. The client only gets a
hash code to the pool. Access to the pools is allowed only through these codes.
Runtime C API: Connecting a Runtime C API Client 135

RSA ClearTrust Developer’s Guide
SSL and Non-SSL Connection Options
An RSA ClearTrust C Runtime API client may connect as an anonymous SSL client
or as a clear text (non-SSL) client. Anonymous SSL clients are not authenticated but
communicate over an encrypted SSL connection. Non-SSL clients communicate
without encryption, in clear text.

This section explains the cases in which you may wish to require SSL connections and
how to connect using the three approaches.

Access to Tokens and User Properties
In order to protect the sometimes sensitive information in SSO tokens and user
properties, RSA ClearTrust can be configured to check that a Runtime API client has
established a secure enough connection before returning a token or property value.

This configuration is done by setting the cleartrust.runtime_api.security
parameter in your Authorization Server’s configuration file (aserver.conf). This
parameter sets the minimum security required on the connection between the Runtime
API client and the Authorization Server in order to create/manipulate SSO tokens and
to retrieve user properties. Valid settings, in order of increasing security, are:

• cleartext for a minimum connection type of clear text. This allows
tokens/properties to be passed over any type of connection.

• anonymous for a minimum connection type of anonymous SSL. This allows
tokens/properties to be passed over anonymous or authenticated SSL connections.

• authenticated for a minimum connection type of authenticated SSL. This is the
default. This allows tokens/properties to be passed over authenticated SSL
connections only.

The following table summarizes the available levels of required security for
connections. In this table, a “Yes” indicates that the Runtime API client of that row
will be permitted to view tokens/user properties by an Authorization Server

Note: In order to assure the correct functioning of C Runtime API clients, make sure
that the cleartrust.dispatcher.list_port.force_anonymous parameter is set
to true in the Dispatcher’s configuration file. This parameter is intended mainly to
support future functionality in the Runtime API, but must be set to true in 4.7.
136 Runtime C API: Connecting a Runtime C API Client

RSA ClearTrust Developer’s Guide
configured with the cleartrust.runtime_api.security setting noted in that
column.

Token Access Example: No SSL
If the Authorization Server is configured with no SSL (in the aserver.conf, set
cleartrust.net.use.ssl=No) and you set

cleartrust.runtime_api.security=anonymous

or

cleartrust.runtime_api.security=authenticated

then all Runtime API clients connecting to this Authorization Server will not be able
to create/manipulate tokens or retrieve user properties. Only with this parameter set to
cleartext will your system permit Runtime API clients to access tokens and user
properties.

Token Access Example: Authenticated SSL
If the Authorization Server is configured to use authenticated SSL (the most secure
type of connection), then, regardless of how you set
cleartrust.runtime_api.security, the Runtime API clients will be able to
create/manipulate SSO tokens and retrieve user properties.

Table 5.1 Access matrix for Runtime API clients wishing to access tokens/user properties

Level of security required by Authori-
zation Server (per setting of
cleartrust.runtime_api.security)

cleartext anonymous authenti-
cated

R
un

tim
e

A
PI

 c
lie

nt
’s

co
nn

ec
tio

n
ty

pe

cleartext
cleartrust.net.ssl.use=NO
cleartrust.net.ssl.require_
authentication=false

Yes No No

anonymous
cleartrust.net.ssl.use=YES
cleartrust.net.ssl.require_
authentication=false

Yes Yes No

authenticated
cleartrust.net.ssl.use=YES
cleartrust.net.ssl.require_
authentication=true

Yes Yes Yes
Runtime C API: Connecting a Runtime C API Client 137

RSA ClearTrust Developer’s Guide
Connection Pool Functions and Keys
Two tables follow. The first explains the functions related to connection pools, and the
second explains the key settings that you can use to configure your connections.

Table 5.2 Connection Pool Functions

Function Description

ct_create_pool_with_dispatcher Creates a connection pool, using the ClearTrust Dispatcher for the list of
servers. This is typically the way to create a pool. If this is used,
depending on whether the pool is in round robin mode, the pool takes
care of finding a valid connection to an Authorization Server.
For user property retrieval and SSO token creation and manipulation, use
instead ct_create_pool_with_dispatchers_ext, described below.

ct_create_pool_with_dispatchers_ext Creates an Authorization Server connection pool using one Server
Dispatcher from its list of Dispatchers to provide the current list of active
Authorization Servers.
The pool created with this method will poll the active Server Dispatcher
periodically to get the latest list of active Authorization Servers. If that
Dispatcher goes down, the pool will fail over to the next specified
Dispatcher in its list. See the sd_host_names and sd_ports parameters.
The pool can be set to provide Authorization Servers based on a
geographic (or other) preference list. See the preference_list parameter.
Pools created with this method can use authenticated SSL or clear text for
communication. See the use_ssl parameter. If you wish to create a pool
that uses anonymous SSL, you must use the
ct_create_pool_with_dispatcher function instead.
If you wish to work with users' SSO tokens and user properties, you must
connect using authenticated SSL (use_ssl = true). In addition, if needed,
you can turn on implicit token and/or user property retrieval, which forces
every authentication or authorization call to return the user's SSO token
and/or user properties. For details, see CT_TOKENS_ENABLED and
CT_USER_PROPERTIES_ENABLED in ct_pool_manager.h, as well as
“SSO Token Manipulation” and “User Property Retrieval” on
page 133.

ct_create_pool_with_dispatchers_ext_v2 Works like ct_create_pool_with_dispatchers_ext, but also allows the user
to provide parameters for a routine for acquiring passphrases to unlock
keystore, and for opaque data returned to callback. This additional
information is passed in the “opaque” field.

ct_create_blank_pool Creates a connection pool, without a server_dispatcher address or any
servers. Creating a pool in this way allows the user to add servers from
their code, instead of relying on a ClearTrust Dispatcher to provide a list.

ct_create_blank_pool_ext Creates a connection pool, without a server_dispatcher address or any
servers. This function differs from the ct_create_blank_pool function in
that pools created with this function can use a geographic (or other)
preference_list to specify that some Authorization Servers on the list are
preferable to others based on location or some other criterion.
138 Runtime C API: Connecting a Runtime C API Client

RSA ClearTrust Developer’s Guide
ct_add_server_to_pool Used with ct_create_blank_pool to add a server to the given pool. Note
that one of the arguments passed to this function is an output argument,
ct_server_id. When calling this method, you must allocate a char* buffer
and pass it as the ct_server_id argument. This buffer will hold the new id
describing the Authorization Server. This is the key in the pool's server
table. RSA recommends a declaring a buffer of 1024 bytes for this. See
the header file, ct_pool_manager.h, for details.

ct_add_server_to_pool_ext Adds a new auth_server, which could have a location class, to the given
server pool. See note about ct_server_id in the description of
ct_add_server_to_pool, above.

ct_add_server_to_pool_ext_v2 Adds a new auth_server, which could have a location class, to the given
server pool. This version supports the opaque data field used to pass the
keystore passphrase. See note about ct_server_id in the description of
ct_add_server_to_pool, above.

ct_init_pool_table Initializes the pool.

ct_lookup_pool Attempts to locate the given pool index in the pool table.

ct_refresh_pool Refresh the given connection pool by getting a new server list from the
server list provider and creating new Authorization Server connection.
Pending API requests are not affected.

ct_shutdown_pool Closes all open connections in a given connection pool. Does not destroy
the pool, just closes all connections.

ct_destroy_pool Closes all open connections in a specified connection pool and frees all
associated memory.

ct_print_pool Prints the contents of the pool to stderr.

ct_remove_server_from_pool Removes an Authorization Server connection from a specified pool.

ct_release_server_reference In a multithreaded scenario, a connection to a particular Authorization
Server could close if another thread refreshes the connection pool. To
avoid this scenario, anytime a client is using a connection, it should have
a server reference. Once the client is done with the server, this call should
be made to ‘release’ the reference, and allow any waiting threads to
refresh the pool.

ct_grab_server_reference Gets a key to a server in the specified pool.

Table 5.2 Connection Pool Functions

Function Description
Runtime C API: Connecting a Runtime C API Client 139

RSA ClearTrust Developer’s Guide
Table 5.3 Connection Pool Keys

Key Description

CT_SSL_KEYSTORE This key contains the name of the PKCS12 keystore containing
certificates/private key.

CT_SSL_CALLBACK Used for the callback function that retrieves the passphrase to
unlock keystore. See ct_callback.h for details.

CT_TOKENS_ENABLED This key in the credentials map enables/disables the implicit
token manipulation functionality of the Runtime API for the
current connection. Set this to true to enable the token
functionality; false otherwise. When set to true, authentication
calls will return tokens. If this field is not set, the behavior
defaults to false.

CT_USER_PROPERTIES_ENABLED This key in the credentials map enables/disables the user
property retrieval functionality of the Runtime API for the current
connection. Set this to true to enable the functionality; false
otherwise. When set to true, authentication calls will return the
user's exportable properties. If this field is not set, the behavior
defaults to false.

CT_CALLBACK_KEYSTORE_PASSPHRASE Reason code for SSL/keystore callback routine. Indicates a
request for the passphrase used to unlock the keystore.

CT_CALLBACK_PRIVATE_KEY_PASSPHRASE Reason code for SSL/keystore callback routine. Indicates a
request for the passphrase used to unlock the private key.
140 Runtime C API: Connecting a Runtime C API Client

RSA ClearTrust Developer’s Guide
Runtime C API Reference

Client Keys
The constant strings used for describing users and credentials are defined in the
ct_user_constants.h header. These strings may be used as keys or values in ct_map
objects representing ClearTrust users and their authentication credentials in calls to
the Runtime API.

All user maps must contain a value for CT_RUNAPI_USER_ID_KEY,
CT_RUNAPI_USER_DN_KEY, CT_RUNAPI_USER_CERT_KEY, or
CT_RUNAPI_TOKEN_KEY, but not more than one of these. Whichever value is
present will determine how the user is identified in ClearTrust:

• by user ID,

• by distinguished name,

• by the DN contained in a certificate, or

• by the ID contained in a SSO token, respectively.

In addition, for calls to ct_authenticate() or ct_authenticate_pool(), a value for
CT_RUNAPI_AUTHENTICATION_TYPE must be present for the user map to be
valid. This key-value pair may also be optionally provided in calls to ct_authorize()
or ct_authorize_pool().

Table 5.4 Client Keys

Key Description

CT_RUNAPI_USER_ID_KEY The key for the ID of a user, as known to RSA ClearTrust. A valid user
map must have a value of non-zero length for this key, for
CT_RUNAPI_USER_DN_KEY, for CT_RUNAPI_USER_CERT_KEY,
or for CT_RUNAPI_TOKEN_KEY, but ONLY one of these. Whichever
value is present will determine how the user is identified in
RSA ClearTrust.

CT_RUNAPI_USER_DN_KEY The key for the distinguished name of a user, as known to
RSA ClearTrust. A valid user map must have a value of non-zero
length for this key, for CT_RUNAPI_USER_ID_KEY, for
CT_RUNAPI_USER_CERT_KEY, or for CT_RUNAPI_TOKEN_KEY,
but ONLY one of these. Whichever value is present will determine how
the user is identified in RSA ClearTrust.

CT_RUNAPI_USER_CERT_KEY The key for the cert of a user, as known to RSA ClearTrust. A valid
user map must have a value of non-zero length for this key, for
CT_RUNAPI_USER_ID_KEY, for CT_RUNAPI_USER_DN_KEY, or
for CT_RUNAPI_TOKEN_KEY, but ONLY one of these. Whichever
value is present will determine how the user is identified in
RSA ClearTrust.
Runtime C API: Runtime C API Reference 141

RSA ClearTrust Developer’s Guide
CT_RUNAPI_TOKEN_KEY The key for this user's authentication token. A valid user map must
have a value of non-zero length for this key, for
CT_RUNAPI_USER_ID_KEY, for CT_RUNAPI_USER_DN_KEY, or
for CT_RUNAPI_USER_CERT_KEY, but ONLY one of these.
Whichever value is present will determine how the user is identified in
RSA ClearTrust. In order for a user to be identified by a token, the
token functionality must be enabled (see discussion of
mutually-authenticated SSL in ct_runtime_api.h). If a token is used as
the user ID in an operation involving authentication (i.e. authenticate()
or authorize() with CT_RUNAPI_AUTHENTICATION_TYPE specified)
and the authentication succeeds, the token returned under
CT_AUTH_TOKEN_STR will be an updated version of this token.

CT_RUNAPI_AUTHENTICATION_TYPE The value of this key indicates what type of authentication is being
requested in a call to ct_authenticate() or authorize().
Currently, the permissible built-in values for
CT_RUNAPI_AUTHENTICATION_TYPE are
SC_AUTH_TYPE_BASIC, SC_AUTH_TYPE_NT,
SC_AUTH_TYPE_LDAP, SC_AUTH_TYPE_CERT, and
SC_AUTH_TYPE_SECURID (all defined in ct_auth_types.h), and
SC_AUTH_TYPE_USER_CHECK (defined below). This last value is
used merely to verify the existence of a user in the Entitlements
database. No credentials need be supplied. The other forms of
authentication each require some credentials to succeed. The
appropriate credentials should be packed into a string and placed into
the user map under the key CT_RUNAPI_CREDENTIALS_KEY.
Client programs may alternatively supply a custom value. In this case,
the auth server will look for and drive the class
sirrus.runtime.customauth.Authenticator whose
getAuthenticationType() method returns the same custom value. The
Authenticator can then make use of whatever custom credential values
are appropriate to that authentication type. To avoid conflicts with
pre-defined auth types, custom values should not begin with the prefix
"SC_".
A value for this key must be present in the user map passed to
ct_authenticate() or ct_authenticate_pool(), but is optional for
ct_authorize() or ct_authorize_pool().
In the latter case, if it is not present the authentication type implicitly
defaults to SC_AUTH_TYPE_USER_CHECK. In other methods that
require a user map argument (such as ct_create_token() and
ct_create_token_pool()), any value supplied for this key will be
ignored.

Table 5.4 Client Keys

Key Description
142 Runtime C API: Runtime C API Reference

RSA ClearTrust Developer’s Guide
SC_AUTH_TYPE_USER_CHECK The value to use for CT_RUNAPI_AUTHENTICATION_TYPE to drive
a simple user validation check. This built-in authentication method
validates that the user exists in the RSA ClearTrust database. No
additional credential need be supplied. Note that his check is also
implicitly made for each of the built-in authentication types, but is NOT
made for any custom authentication type.
The possible return codes for this type of authentication are:
VALID_USER
UNKNOWN_USER
INACTIVE_ACCOUNT
EXPIRED_ACCOUNT
ADMIN_LOCKOUT

CT_RUNAPI_CREDENTIALS_KEY The key for a user's credentials. All of the currently supported built-in
authentication types except for SC_AUTH_TYPE_USER_CHECK (i.e.
SC_AUTH_TYPE_BASIC, SC_AUTH_TYPE_LDAP,
SC_AUTH_TYPE_NT, SC_AUTH_TYPE_CERT and
SC_AUTH_TYPE_SECURID) require an appropriate value for this
key. (Another exceptional case is when
CT_RUNAPI_SECURID_NEW_PIN_KEY or
CT_RUNAPI_SECURID_NEXT_CODE_KEY is used. Read their
descriptions below for more details.)
Implementations of custom authentication types may re-use this key or
define their own.

CT_RUNAPI_SECURID_NEW_PIN_KEY The key for a user's new SecurID pin. This is used by the
SC_AUTH_TYPE_SECURID authentication type. The
CT_RUNAPI_CREDENTIALS_KEY should not be set in this situation.
This field is ONLY used when the token is in the
CT_AUTH_NEW_PIN_REQUIRED_STR mode and the user needs to
provide his new pin to the system. This field contains the user's
desired new pin only, not the user's whole SecurID passcode.

Table 5.4 Client Keys

Key Description
Runtime C API: Runtime C API Reference 143

RSA ClearTrust Developer’s Guide
CT_RUNAPI_SECURID_NEXT_CODE_KEY The key for a user's SecurID next code. This field should contain the
SecurID tokencode only, which does not include user's pin. This is
used by the SC_AUTH_TYPE_SECURID authentication types. The
CT_RUNAPI_CREDENTIALS_KEY should not be set in this situation.
This field is ONLY used when the token is in the
CT_AUTH_NEXT_CODE_REQUIRED_STR mode and the user
needs provide his next SecurID tokencode to the system.

CT_RUNAPI_SERVER_STATE The key indicating the user's current authentication state in a
multistate authentication routine.
When doing SecurID authentication, if an initial authentication attempt
results in the SecurID ACE Agent requesting the next code or a new
pin, the Authorization Server will return a state token to the api user,
with the key CT_AUTH_SERVER_STATE set. When the Runtime API
client makes its follow-on authentication attempt, it MUST insert the
CT_AUTH_SERVER_STATE into this field,
CT_RUNAPI_SERVER_STATE, and submit this state along with the
next code or new pin information.
NOTE that the ct_create_user_securid_*_map functions will take care
of the details of doing the map.
The CT_RUNAPI_SERVER_STATE field should be thought of as
opaque to the Runtime API client. The actual contents of the field are a
set of values that guarantee the correct Authorization Server will
service the request.
See also CT_AUTH_SERVER_STATE in ct_result_constants.h

Table 5.4 Client Keys

Key Description
144 Runtime C API: Runtime C API Reference

RSA ClearTrust Developer’s Guide
Authentication Types
The authentication types are defined in ct_auth_types.h. Their descriptions are
reprinted in the sections that follow.

SC_AUTH_TYPE_BASIC
This constant denotes the RSA ClearTrust basic authentication mode. The submitted
user name and password are verified against those stored in the RSA ClearTrust user
datastore.

For this type of authentication, the other needed properties are (from
ct_user_constants.h):

• CT_RUNAPI_USER_ID_KEY (or other user identifier)

• CT_RUNAPI_CREDENTIALS_KEY

For this type of authentication, the possible values for the key
CT_AUTH_AUTHENTICATION_RESULT_STR in maps returned from
ct_authenticate(), ct_authenticate_pool(), ct_authorize(), or ct_authorize_pool() are
(from ct_result_constants.h):

• CT_AUTH_VALID_USER_STR

• CT_AUTH_UNKNOWN_USER_STR

• CT_AUTH_INACTIVE_ACCOUNT_STR

• CT_AUTH_EXPIRED_ACCOUNT_STR

• CT_AUTH_ADMIN_LOCKOUT_STR

• CT_AUTH_INVALID_PASSWORD_STR

• CT_AUTH_EXPIRED_PASSWORD_STR

• CT_AUTH_EXPIRED_PASSWORD_NEW_USER_STR

• CT_AUTH_EXPIRED_PASSWORD_FORCED_STR

SC_AUTH_TYPE_NT
This constant denotes the Windows NT authentication mode. The submitted user
name and password are verified against those stored in the Microsoft Windows
PDC/BDC user account records. For this type of authentication, the other needed
properties are (from ct_user_constants.h):

• CT_RUNAPI_USER_ID_KEY (or other user identifier)

• CT_RUNAPI_CREDENTIALS_KEY

• CT_RUNAPI_NT_DOMAIN_KEY

For this type of authentication, the possible values for the key
CT_AUTH_AUTHENTICATION_RESULT_STR in maps returned from
ct_authenticate(), ct_authenticate_pool(), ct_authorize(), or ct_authorize_pool() are
(from ct_result_constants.h):
Runtime C API: Runtime C API Reference 145

RSA ClearTrust Developer’s Guide
• CT_AUTH_VALID_USER_STR

• CT_AUTH_INACTIVE_ACCOUNT_STR

• CT_AUTH_EXPIRED_ACCOUNT_STR

• CT_AUTH_ADMIN_LOCKOUT_STR

• CT_AUTH_NT_AUTH_FAILED_STR

• CT_AUTH_EXPIRED_PASSWORD_STR

SC_AUTH_TYPE_CERT (not supported in RSA ClearTrust 4.7)

The SC_AUTH_TYPE_CERT constant denotes the Certificate authentication mode.
For this type of authentication, the other needed properties are (from
ct_user_constants.h):

CT_RUNAPI_USER_CERT_KEY

For this type of authentication, the possible values for the key
CT_AUTH_AUTHENTICATION_RESULT_STR in maps returned from
ct_authenticate(), ct_authenticate_pool(), ct_authorize(), or ct_authorize_pool() are
(from ct_result_constants.h):

• CT_AUTH_VALID_USER_STR

• CT_AUTH_UNKNOWN_USER_STR

• CT_AUTH_INACTIVE_ACCOUNT_STR

• CT_AUTH_EXPIRED_ACCOUNT_STR

• CT_AUTH_ADMIN_LOCKOUT_STR

SC_AUTH_TYPE_SECURID
This constant denotes the SecurID authentication mode. For this type of
authentication, the other needed properties that must be passed as arguments are:

(a) For the first try:

• CT_RUNAPI_USER_ID_KEY (or other user identifier)

• CT_RUNAPI_CREDENTIALS_KEY containing SecurID passcode

(b) When the returned value of CT_AUTH_AUTHENTICATION_RESULT_STR is
CT_AUTH_NEW_PIN_REQUIRED_STR:

• CT_RUNAPI_USER_ID_KEY (or other user identifier)

• CT_RUNAPI_SECURID_NEW_PIN_KEY

Note: Note that in version 4.7 the Runtime API does not support Certificate
Authentication. Previous versions of the Runtime API did support Certificate
Authentication (and in 4.7 the Web Server Agents still do support Certificate
Authentication; only the API does not).
146 Runtime C API: Runtime C API Reference

RSA ClearTrust Developer’s Guide
• CT_AUTH_SERVER_STATE

(c) When the returned value of CT_AUTH_AUTHENTICATION_RESULT_STR is
CT_AUTH_NEW_PIN_ACCEPTED_STR:

• CT_RUNAPI_USER_ID_KEY (or other user identifier)

• CT_RUNAPI_CREDENTIALS_KEY containing SecurID passcode

• CT_AUTH_SERVER_STATE

(d) When the returned CT_AUTH_AUTHENTICATION_RESULT_STR is
CT_AUTH_NEXT_CODE_REQUIRED_STR:

• CT_RUNAPI_USER_ID_KEY (or other user identifier)

• CT_RUNAPI_SECURID_NEXT_CODE_KEY

• CT_AUTH_SERVER_STATE

For this type of authentication, the possible values for the key
CT_AUTH_AUTHENTICATION_RESULT_STR in maps returned from
ct_authenticate(), ct_authenticate_pool(), ct_authorize(), or ct_authorize_pool() are
(from ct_result_constants.h):

• CT_AUTH_VALID_USER_STR

• CT_AUTH_INACTIVE_ACCOUNT_STR

• CT_AUTH_EXPIRED_ACCOUNT_STR

• CT_AUTH_ADMIN_LOCKOUT_STR

• CT_AUTH_NEXT_CODE_REQUIRED_STR

• CT_AUTH_NEW_PIN_REQUIRED_STR

• CT_AUTH_NEW_PIN_REJECTED_STR

• CT_AUTH_NEW_PIN_ACCEPTED_STR

• CT_AUTH_SECURID_AUTH_FAILED_STR

SC_AUTH_TYPE_LDAP
This constant denotes the LDAP authentication mode. This built-in authentication
method validates that the user exists both in the ClearTrust database and in LDAP, and
that the value supplied for CT_RUNAPI_CREDENTIALS_KEY is the correct LDAP
password.

The user's identifier (i.e. whichever of CT_RUNAPI_USER_ID_KEY,
CT_RUNAPI_USER_DN_KEY, CT_RUNAPI_TOKEN_KEY, or
CT_RUNAPI_USER_CERT_KEY is present) must match the appropriate field in
LDAP, as determined by the parameter cleartrust.aserver.ldapauth.ldapattr_map_scuid
in the server-side webagent.conf file.

For this type of authentication, the other needed properties are (from
ct_user_constants.h):

• CT_RUNAPI_USER_ID_KEY (or other user identifier)
Runtime C API: Runtime C API Reference 147

RSA ClearTrust Developer’s Guide
• CT_RUNAPI_CREDENTIALS_KEY

For this type of authentication, the possible values for the key
CT_AUTH_AUTHENTICATION_RESULT_STR in maps returned from
ct_authenticate(), ct_authenticate_pool(), ct_authorize(), or ct_authorize_pool() are
(from ct_result_constants.h):

• CT_AUTH_VALID_USER_STR

• CT_AUTH_UNKNOWN_USER_STR

• CT_AUTH_INACTIVE_ACCOUNT_STR

• CT_AUTH_EXPIRED_ACCOUNT_STR

• CT_AUTH_ADMIN_LOCKOUT_STR

• CT_AUTH_INVALID_PASSWORD_STR

SC_AUTH_TYPE_CUSTOM
SC_AUTH_TYPE_CUSTOM signifies a custom authentication type implemented as
a WAX (Web Agent eXtension) authentication handler. See “Invoking a WAX
Authentication Method” on page 215.

This constant may be used only as a key in SSO tokens, where it signifies that the user
has already authenticated with a “CUSTOM” authentication method implemented in
your Web Server Agent.

This constant cannot be used as a CT_RUNAPI_AUTHENTICATION_TYPE in user
maps when requesting an authentication via the Runtime API, because this type of
authentication is performed in the RSA ClearTrust Web Server Agent, not in the
Authorization Server. The Runtime API provides access only to those authentications
that are performed by the Authorization Server.

NOTE: SC_AUTH_TYPE_CUSTOM is NOT the same as custom authentication
types implemented in the auth servers using the sirrus.runtime.customauth package.
148 Runtime C API: Runtime C API Reference

RSA ClearTrust Developer’s Guide
Runtime Functions
The C Runtime API functions of ct_runtime_api.h provide access to all of the
Authorization Server functionality. These functions fall into five major sections:

• authentication

• authorization

• token manipulation

• user property retrieval

• miscellaneous functions such as cache clearing.

The runtime functions are provided to work either directly with a specified
Authorization Server, or to work with a server pool provided by a Dispatcher Server.
The difference between them is that for a server pool, the pool is searched and an
available Authorization Server supplied automatically.

Table 5.5 Runtime Functions: Authorization and Authentication

Function Description

init_ct_runtime_api_with_ssl Initializes the Runtime API. You must call this method (or init_ct_runtime_api)
before calling any other method in the Runtime API.
This method takes a boolean input parameter, "initialize_ssl". If TRUE, this
method will initialize the OpenSSL library as well as performing all other
initializations required for the Runtime API. If FALSE, this method will
initialize everything except OpenSSL.
Skipping OpenSSL initialization is useful for runtime API clients running in
environments in which SSL has already been initialized externally to the API.
In particular, you must set this to FALSE for Runtime API clients running
within the ClearTrust Web Server Agent Extension (WAX) environment.
This method returns a boolean, TRUE if the initialization completed
successfully, FALSE if the API has previously been initialized.

ct_authorize Checks whether the specified user has permission to access the specified
resource.The check is performed by the specified Authorization Server.
When calling ct_authorize(), you must specify the user in the input ct_map,
“user”; the requested resource in the input ct_map, “resource”; and the
Authorization Server in the input ct_map, “server_key”. The method will
return the authorization results in an output ct_map called “auth_results”,
under the key “CT_AUTH_ AUTHORIZATION_RESULT_STR.”
This and all authorization methods can be set to return the user’s SSO token;
see “SSO Token Manipulation” on page 133. Also, all authorization
methods can be set to return the user’s properties; see “User Property
Retrieval” on page 133.

ct_authorize_pool Checks whether the specified user has permission to access the specified
resource. The check is performed by an Authorization Server from the
specified server pool. Inputs and outputs are the same as those for
ct_authorize, with the exception that, in this function, a pool_key is passed to
specify an Authorization Server Pool, rather than a server_key indicating a
specific Authorization Server.
Runtime C API: Runtime C API Reference 149

RSA ClearTrust Developer’s Guide
ct_check_resource_status Determines whether the specified resource is protected for the specified
server.

ct_check_resource_status_pool Determines whether the specified resource is protected for the specified
server pool.

ct_authenticate Determines whether the specified user is a valid user in the database using
the specified server. This and all authentication methods can be set to return
the user’s SSO token; see “SSO Token Manipulation” on page 133.
Also, all authentication methods can be set to return the user’s properties;
see “User Property Retrieval” on page 133.

ct_authenticate_pool Determines whether the specified user is a valid user in the database using a
server pool.

ct_clear_server_caches Clears server caches for the specified server.

ct_clear_server_caches_pool Clears server caches for a server in the server pool.

ct_map_get_default_auth_result Returns an auth_result struct containing an error code, with a corresponding
string, given a typical map of results from the Authorization Server (from a
built-in call to the server).

Table 5.5 Runtime Functions: Authorization and Authentication

Function Description

Table 5.6 Runtime Functions: User Properties

Function Description

ct_get_user_properties Uses the specified server, and requests all exportable properties for the specified user.

ct_get_user_properties_pool Uses the specified pool, finds an available server, and requests all exportable
properties for the specified user.

ct_get_user_property Uses the specified server, and requests a specific property by name for the specified
user.

ct_get_user_property_pool Uses the specified pool, finds an available server, and requests a specific property by
name for the specified user.

Table 5.7 Runtime Functions: SSO Tokens

Function Description

ct_create_token Uses the specified server to create a new SSO token.

ct_create_token_pool Uses the specified server pool to create a new SSO token.

ct_set_token_value Uses the specified server to set a key-value pair in a token.

ct_set_token_value_pool Uses the specified server pool to set a key-value pair in a token.

ct_get_token_value Uses the specified server to get the value corresponding to a given key in a token.

ct_get_token_value_pool Uses the specified server pool to get the value corresponding to a given key in a token.
150 Runtime C API: Runtime C API Reference

RSA ClearTrust Developer’s Guide
Maps
Maps consist of key-value pairs. Maps are used as arguments to the Runtime API. For
custom functionality, the maps themselves are provided to the client. The functions
listed below are documented fully in the ct_map.h and ct_map_utils.h headers.

ct_set_token_values Uses the specified server to set one or more key-value pairs in a token.

ct_set_token_values_pool Uses the specified server pool to set one or more key-value pairs in a token.

ct_get_token_values Uses the specified server to get all of the values contained in a token.

ct_get_token_values_pool Uses the specified server pool to get all of the values contained in a token.

ct_validate_token Uses the specified server to validate a token. A token is considered valid if it can be
decrypted with one of the crypto keys currently active in the system. For a given valid
token, this function returns a new token which is the same as the original but with the
touch time updated.

ct_validate_token_pool Uses the specified server pool to validate a token. A token is considered valid if it can be
decrypted with one of the crypto keys currently active in the system. For a given valid
token, this function returns a new token which is the same as the original but with the
touch time updated.

Table 5.7 Runtime Functions: SSO Tokens

Function Description

Table 5.8 Runtime Functions: Utilities

Function Description

ct_get_version Returns a string indicating what version of RSA ClearTrust this is. This returns the
version of the client-side code only (i.e. the server is not queried for its version).

ct_test_server Checks whether the Authorization Server is still responding. Returns CT_OK if all is
well.

ct_test_server_pool Checks whether all the Authorization Servers in the pool are responding. Returns
CT_OK only if all servers in the pool are alive.

Table 5.9 Map Functions defined in ct_map.h

Function Description

ct_create_map Creates a map object.

ct_map_find Gets the value associated with the specified map key.

ct_map_insert Inserts a key-value pair into the specified map.

ct_map_remove Removes a key-value pair from the specified map.

ct_map_destroy Destroys the specified map, including all of its key-value pairs. See also ct_destroy_three_maps
and ct_destroy_two_maps in ct_map_utils.h below.

ct_map_clear Destroys all key-value pairs in the specified map, but leaves the map intact. See also
ct_clear_three_maps in ct_map_utils.h below.
Runtime C API: Runtime C API Reference 151

RSA ClearTrust Developer’s Guide
Table 5.10 Map Functions defined in ct_map_utils.h

Function Description

ct_create_user_map Creates a user map for user authentication. (Only verifies the user name.)

ct_create_user_dn_map Creates a user map for user authentication with a distinguished name (dn).

ct_create_user_basic_map Creates a user map for basic user authentication. (Contains user name
and password.)

ct_create_user_dn_basic_map Creates a user map for basic user authentication (user name and
password) with a distinguished name rather than a simple user name.

ct_create_user_ldap_map Creates a user map for user authentication (user name and password) on
an LDAP system.

ct_create_user_dn_ldap_map Creates a user map for user authentication (user name and password) with
a distinguished name (dn) in an LDAP system.

ct_create_user_securid_map Creates a user map for SecurID authentication (user name and pin +
passcode).

ct_create_user_securid_new_pin_map Creates a user map for SecurID authentication (user name and pin +
passcode, where the pin is the new pin number).

ct_create_user_securid_next_code_map Creates a user map for SecurID authentication (user name and pin +
passcode, where passcode is the user’s next passcode).

ct_create_user_nt_map Creates a user map for NT user authentication (user name and password).

ct_create_web_resource_map Creates a Web resource map required for authorizing access to a Web
resource.

ct_create_app_function_map For a specified application function (as defined in your RSA ClearTrust
entitlements policies), creates the resource map required in order to
authorize access to that function.

ct_destroy_three_maps Destroys three maps. Often, when calling some of the ct_runtime_api
(ct_runtime_api.h) functions, three maps are required. This replaces three
calls to the ct_map_destroy function (ct_map.h) when the maps are no
longer necessary.

ct_destroy_two_maps Destroys two maps. Often, when calling some of the ct_runtime_api
(ct_runtime_api.h) functions, two maps are required. This replaces two
calls to the ct_map_destroy function (ct_map.h) when the maps are no
longer necessary.

ct_clear_three_maps Clears three maps. Often, when calling some of the ct_runtime_api
(ct_runtime_api.h) functions, three maps are required. This replaces three
calls to the ct_map_clear function (ct_map.h) when the maps' contents are
no longer necessary.
152 Runtime C API: Runtime C API Reference

RSA ClearTrust Developer’s Guide
Examples

RSA SecurID Authentication Example
This Runtime API example authenticates a user using the RSA SecurID method of
authentication.

/*
* securid_example.c
*
* Last updated February 12, 2002.
*/

#include "stdio.h"
#include "ct_runtime_api.h"
#include "ct_map_utils.h"
#include "ct_result_constants.h"

void print_map(const char* msg, ct_map* map)
{

char map_string[1024];
int map_len = 1024;
ct_map_print(map, map_string, &map_len);
printf(" %s : %s.\n" , msg, map_string);

}

void main(void)
{

ct_pool_index pool_key ;
char err_msg[1024];
char username[20];
char temp[20];
char pass[20];

boolean error = FALSE;
ct_map* user_map = NULL;
ct_map* result_map = ct_create_map();
int i = 0;
char* state = NULL;

init_ct_runtime_api_with_ssl(TRUE);
error = ct_create_pool_with_dispatcher(pool_key,

TRUE, // round robin
3, // retries
10, // AS timeout
"discovery", //dispatcher host
"2608", //dispatcher port
20, // dispatcher timeout
FALSE, // SSL
err_msg);

printf(" Created pool from dispatcher.\n");
Runtime C API: Examples 153

RSA ClearTrust Developer’s Guide
securid_example.c continues:

printf(" Input the User Name: ");
fgets(temp, 20, stdin);
sscanf(temp, "%s\n", username);

printf(" Input the user's pin+passcode: ");
fgets(temp, 20, stdin);
sscanf(temp, "%s\n", pass);

user_map = ct_create_user_securid_map(username, pass, state);
print_map(" The user map is ", user_map);
ct_authenticate_pool(pool_key,

user_map,
result_map);

if (user_map)
ct_map_destroy(user_map);

print_map ("The result map is ", result_map);
if (!strcmp(ct_map_find(result_map, CT_AUTH_AUTHENTICATION_RESULT_STR),

CT_AUTH_VALID_USER_STR))
{

printf(" The authentication was successful. \n");
state = NULL;

}
else if (!strcmp(ct_map_find(result_map,

CT_AUTH_AUTHENTICATION_RESULT_STR),
CT_AUTH_SECURID_AUTH_FAILED_STR))

{
printf(" The authentication failed. \n");
state = NULL;

}
else if (!strcmp(ct_map_find(result_map,

CT_AUTH_AUTHENTICATION_RESULT_STR),
CT_AUTH_NEW_PIN_REQUIRED_STR))

{
char new_pin[10];
ct_map * new_pin_map = NULL;

char* server_key = strdup(ct_map_find(result_map,
CT_AUTH_SERVER_KEY));

printf(" You must create a new pin now.\n");
printf(" Please type in your new pin:");
fgets(temp, 6, stdin);
sscanf(temp, "%s\n", new_pin);
state = strdup(ct_map_find(result_map,

CT_AUTH_SERVER_STATE));
154 Runtime C API: Examples

RSA ClearTrust Developer’s Guide
securid_example.c continues:

new_pin_map = ct_create_user_securid_new_pin_map(username,
new_pin,
state);

ct_map_clear(result_map);

ct_authenticate(server_key ,
new_pin_map,
result_map);

print_map (" The result map is ", result_map);
if (!strcmp(ct_map_find(result_map,

CT_AUTH_AUTHENTICATION_RESULT_STR),
CT_AUTH_NEW_PIN_ACCEPTED_STR))

{
ct_map* new_user_map = NULL;
printf(" The new pin was accepted. \n");
printf(" Please input pin+passcode: ");
fgets(temp, 32, stdin);
sscanf(temp, "%s\n", pass);
state = strdup(ct_map_find(result_map,

CT_AUTH_SERVER_STATE));
new_user_map = ct_create_user_securid_map(username,

pass,
state);

print_map("The user map is ", new_user_map);
ct_map_clear(result_map);
ct_authenticate(server_key,

new_user_map,
result_map);

print_map(" The result map is " ,
result_map);

if (new_user_map)
ct_map_destroy(new_user_map);

state = NULL;
}
else
{

printf(" Sorry. The new pin was rejected.\n");
state = NULL;

}

if (new_pin_map)
ct_map_destroy(new_pin_map);

}

Runtime C API: Examples 155

RSA ClearTrust Developer’s Guide
securid_example.c continues:

else if (!strcmp(ct_map_find(result_map,
CT_AUTH_AUTHENTICATION_RESULT_STR),

CT_AUTH_NEXT_CODE_REQUIRED_STR))
{

char next_code[6];
char* server_key = strdup(ct_map_find(result_map,

CT_AUTH_SERVER_KEY));
ct_map* next_code_map = NULL;
state = strdup(ct_map_find(result_map,

CT_AUTH_SERVER_STATE));
printf(" Please input the next code on your token: ");
fgets(temp, 32, stdin);
sscanf(temp, "%s\n", next_code);
next_code_map = ct_create_user_securid_next_code_map(username,

next_code,state);
ct_map_clear(result_map);
ct_authenticate(server_key,

next_code_map,
result_map);

print_map (" The result map is ",
result_map);

state = NULL;
if (next_code_map)

ct_map_destroy (next_code_map);
}

if (result_map)
ct_map_destroy(result_map);

}

156 Runtime C API: Examples

RSA ClearTrust Developer’s Guide
6 Runtime Java API
The RSA ClearTrust® Runtime API allows trusted Java clients to perform
authentication, authorization, and other functions using the runtime functionality of
the RSA ClearTrust Authorization Servers. Using the information and examples in
this chapter, together with the details provided in the RSA ClearTrust online Javadoc
documentation, developers can build custom authentication or personalization
programs that use or extend the RSA ClearTrust runtime functionality.

The RSA ClearTrust runtime methods are provided by the RuntimeAPI interface.
RuntimeAPI and its supporting classes and interfaces are contained in the package
sirrus.runtime.

Clients construct implementations of the RuntimeAPI interface using the static factory
methods on the APIFactory class. These implementations are based on network
communications with one or more RSA ClearTrust Authorization Servers.

An RSA ClearTrust Runtime API client may connect to the RSA ClearTrust Servers
as an authenticated SSL client, an anonymous SSL client, or as a non-SSL client.
Depending on your configuration, Runtime API applications may be required to
connect over SSL in order to access and update user properties and SSO tokens. See
“Client Connection Options” on page 162 for details.

See the RSA ClearTrust Runtime API Javadocs for precise descriptions of the
Runtime API classes and methods. You can find the Javadocs in your RSA ClearTrust
installation in the directory <CT_HOME>/api/runtime-j/doc/index.html.

This Chapter
This chapter consists of:

• an “Overview” of the Runtime API starting on page 158.

• compilation instructions starting with “Installing and Compiling” on page 161.

• reference information beginning with the “Packages” section on page 167.

• example programs with instructions:

• “Runtime API Example Without SSL” on page 172

• “Runtime API Example With SSL” on page 177

• “RSA SecurID Authentication Example” on page 183

The source code for these API example programs is installed in

<CT_HOME>/api/runtime-j/example
Runtime Java API: This Chapter 157

RSA ClearTrust Developer’s Guide
Overview

What the Runtime API Does
The runtime functionality of the RSA ClearTrust Authorization Servers consists of:

• authentication of users.

• authorization of users to resources.

• SSO (single sign-on) token creation and manipulation.

• user property retrieval.

Authentication
Authentication, done by the RuntimeAPI.authenticate() method, confirms the
identity of a user based on a set of credentials supplied by that user. The credentials
required for a user authentication operation depend on the type of authentication being
performed. You will specify the type of authentication required for a given resource
(for example, a specific html page) on your network by setting the
cleartrust.agent.auth_resource_list parameter in the RSA ClearTrust Web
Server Agent’s configuration file.

The Runtime API supports these authentication types:

• RSA ClearTrust basic authentication

• RSA SecurID authentication

• NT authentication

• LDAP authentication (Note that in RSA ClearTrust 4.7, this authentication type is
equivalent to RSA ClearTrust basic authentication, since basic authentication
verifies the user’s password against an LDAP datastore. In future releases, basic
authentication will verify the password against whatever type of underlying
datastore you have configured to store users.)

In addition to the authentication types listed above, the API provides a mechanism to
extend the Authorization Servers to include additional custom forms of user
authentication.

For details on authentication, see authenticate() in Table 6.2 on page 168.

Note: Note that, in version 4.7, the Runtime API does not support Certificate
Authentication. Previous versions of the Runtime API did support Certificate
Authentication (and in 4.7, the Web Server Agents still do support Certificate
Authentication; only the API does not).
158 Runtime Java API: Overview

RSA ClearTrust Developer’s Guide
Authorization
Authorization, done by the RuntimeAPI.authorize() method, checks whether a user
has access to a specified resource. Authorization checks may be performed for a Web
resource (a URL modeled as an IApplicationURL), an application (IApplication), or
an application function (IApplicationFunction). When checking authorization, the
Authorization Server invokes the RSA ClearTrust access control policy model,
including basic entitlements and SmartRules. For details on the RSA ClearTrust
policy model, see the RSA ClearTrust Administrator’s Guide 4.7.

If desired, you can have the authorize() method perform user authentication as well
as authorization. This is done by including an AUTHENTICATION_ TYPE
designation in the user credentials Map passed to authorize().

For details on authorization, see authorize() in Table 6.2 on page 168.

SSO Token Manipulation
To maintain session state and to communicate authentication data between
components, the Runtime API creates or updates a user’s SSO (Single Sign-on) token
when that user successfully authenticates. These tokens are passed between the
Authorization Server, Web servers, application servers, and custom applications as a
means of providing single sign-on functionality.

Since tokens contain sensitive session information, you may wish to allow only
securely connected Runtime clients to create and manipulate tokens. The
cleartrust.runtime_api.security setting in the Authorization Server’s
configuration file lets you do this. See “Client Connection Options” on page 162 for
details.

Runtime API clients may instruct the server to implicitly return the user’s token each
time authenticate() or authorize() is called. To do this, the client must set the
SC_TOKENS_ENABLED flag to true when creating the connection. The flag is set in
the credentials Map passed when calling a create method in the APIFactory (for
example, the createAuthServerConnection() method).

For information on using tokens, see getTokenValue() and related methods in Table
6.2 on page 168.

User Property Retrieval
Runtime API clients can view and update any user property value, as long as that user
property is defined as exportable. User properties are optional fields that can be added
to user records to store additional information about the user. Typically, user
properties contain data to be evaluated by SmartRules.

User properties are created via the Administrative API or the RSA ClearTrust
Entitlements Manager application. When the property is created, its exportable flag
must be set to true if Runtime API clients are to see values stored in that property.
Because some properties may be deemed too sensitive to externalize, only user
properties which are defined to be exportable are visible to Runtime API clients.

Since user properties may contain confidential user information, you may wish to
allow only securely connected Runtime clients to view and/or update user property
Runtime Java API: Overview 159

RSA ClearTrust Developer’s Guide
data. The cleartrust.runtime_api.security setting in the Authorization Server’s
configuration file lets you do this. See “Client Connection Options” on page 162 for
details.

Runtime API clients may instruct the server to implicitly return the user’s properties
each time authenticate() or authorize() is called. To do this, the client must set
the SC_USER_PROPERTIES_ENABLED flag to true when creating the connection.
The flag is set in the credentials Map passed when calling a create method in the
APIFactory (for example, the createAuthServerConnection() method). Because
user property retrieval slows the execution of an authentication or authorization call,
this flag defaults to false.

For information on user properties, see getUserProperty() in Table 6.2 on page 168.
For information on creating user properties in your LDAP user data store, see the
“Data Integrity” section in the “Installing the LDAP Data Adapters” chapter of the
RSA ClearTrust Installation and Configuration Guide 4.7.

Runtime API Relies on Authorization Servers
A Runtime API client application that you build will connect to an Authorization
Server to perform authentication, authorization, and most other tasks. The client
application may connect to a single Authorization Server, or it may use an
RSA ClearTrust Dispatcher to build a pool of connections to many Authorization
Servers. Connection pools automatically and transparently fail over requests in the
event of an Authorization Server crash or network outage, and can be configured to
distribute requests across available servers in the pool in a round-robin fashion.

Runtime API Calls Are Threadsafe
RuntimeAPI methods are fully thread-safe (i.e. a single RuntimeAPI object can
service requests from multiple threads with no need for additional synchronization
code).

Runtime API vs. Administrative API
The purpose of a Runtime API client is to respond to a user’s request by
authenticating the user and authorizing him or her to use a ClearTrust-protected
resource. Administrative API clients, on the other hand, are used to update users’
access permissions to ClearTrust-protected resources and, optionally, to maintain user
records.

The Runtime API differs from the Administrative API in that runtime tasks are
read-only; that is, they perform queries on the existing state of the data in the
RSA ClearTrust Servers, but do not involve changing or adding data. To perform
tasks involving updates, you must use the RSA ClearTrust Administrative API, as
explained in Chapter 4, “Administrative Java API”. Both APIs may be used in a single
client program.
160 Runtime Java API: Overview

RSA ClearTrust Developer’s Guide
Because a Runtime API client application will not make changes to RSA ClearTrust
data, it does not need to provide a ClearTrust administrator ID and password at
startup. Administrative API applications must always log in with an ID and password.

Runtime client applications differ further in that they connect to Authorization
Servers, while Administrative API applications connect to the RSA ClearTrust API
Server, which is part of the Entitlements Server.

Installing and Compiling
This section explains the installed components that make up the API and provides
guidelines for building applications. For instructions on installing the APIs, see
Chapter 2, “Installing the RSA ClearTrust APIs”.

Compiling Applications
In order to compile and run API programs, you must have the Runtime API jar,
ct_runtime_api.jar, installed and included in your SOURCEPATH and CLASSPATH.
You will find this jar file installed as:

<CT_HOME>/api/runtime-j/lib/ct_runtime_api.jar

In addition, if your Runtime API client program will connect over SSL
(“cleartrust.api.server.use_ssl=true” and related settings), you will also need
following jar files in your SOURCEPATH and CLASSPATH. You will find these jars in
your RSA ClearTrust installation in the <CT_HOME>/lib directory.

RSA SSL software:

• certj.jar

• jsafe.jar

• jsafeJCE.jar

• rsajsse.jar

• sslj.jar

JCSI Keystore software:

• jcsi_base.jar

• jcsi_provider.jar

Sun security infrastructure:

• jce1_2-do.jar

• jcert.jar

• jnet.jar

• jsse.jar
Runtime Java API: Installing and Compiling 161

RSA ClearTrust Developer’s Guide
Client Connection Options
An RSA ClearTrust Java Runtime API client may connect as an authenticated SSL
client, an anonymous SSL client, or as a clear text (non-SSL) client. Authenticated
clients communicate with the RSA ClearTrust Servers via a mutually authenticated,
encrypted SSL connection. Anonymous SSL clients are not authenticated but
communicate over an encrypted SSL connection. Non-SSL clients communicate
without encryption, in cleartext.

This section explains the cases in which you may wish to require SSL connections and
how to connect using the three approaches.

Access to Tokens and User Properties
In order to protect the sometimes sensitive information in SSO tokens and user
properties, RSA ClearTrust can be configured to check that a Runtime API client has
established a secure enough connection before returning a token or property value.

This configuration is done by setting the cleartrust.runtime_api.security
parameter in your Authorization Server’s configuration file (aserver.conf). This
parameter sets the minimum security required on the connection between the Runtime
API client and the Authorization Server in order to create/manipulate SSO tokens and
to retrieve user properties. Valid settings, in order of increasing security, are:

• cleartext for a minimum connection type of clear text. This allows
tokens/properties to be passed over any type of connection.

• anonymous for a minimum connection type of anonymous SSL. This allows
tokens/properties to be passed over anonymous or authenticated SSL connections.

• authenticated for a minimum connection type of authenticated SSL. This is the
default. This allows tokens/properties to be passed over authenticated SSL
connections only.

The following table summarizes the available levels of required security for
connections. In this table, a “Yes” indicates that the Runtime API client of that row
will be permitted to view tokens/user properties by an Authorization Server
162 Runtime Java API: Client Connection Options

RSA ClearTrust Developer’s Guide
configured with the cleartrust.runtime_api.security setting noted in that
column.

Token Access Example: No SSL
If the Authorization Server is configured with no SSL (in the aserver.conf, set
cleartrust.net.use.ssl=No) and you set

cleartrust.runtime_api.security=anonymous

or

cleartrust.runtime_api.security=authenticated

then all Runtime API clients connecting to this Authorization Server will not be able
to create/manipulate tokens or retrieve user properties. Only with this parameter set to
cleartext will your system permit Runtime API clients to access tokens and user
properties.

Token Access Example: Authenticated SSL
If the Authorization Server is configured to use authenticated SSL (the most secure
type of connection), then, regardless of how you set
cleartrust.runtime_api.security, the Runtime API clients will be able to
create/manipulate SSO tokens and retrieve user properties.

Table 6.1 Access matrix for Runtime API clients wishing to access tokens/user properties

Level of security required by Authori-
zation Server (per setting of
cleartrust.runtime_api.security)

cleartext anonymous authenti-
cated

R
un

tim
e

A
PI

 c
lie

nt
’s

co
nn

ec
tio

n
ty

pe

cleartext
cleartrust.net.ssl.use=NO
cleartrust.net.ssl.require_
authentication=false

Yes No No

anonymous
cleartrust.net.ssl.use=YES
cleartrust.net.ssl.require_
authentication=false

Yes Yes No

authenticated
cleartrust.net.ssl.use=YES
cleartrust.net.ssl.require_
authentication=true

Yes Yes Yes
Runtime Java API: Client Connection Options 163

RSA ClearTrust Developer’s Guide
Connecting Over Authenticated SSL
With an Authenticated SSL connection, the client will exchange credentials with the
RSA ClearTrust Servers so that each party may authenticate the other, and then the
client and servers will communicate over an encrypted SSL connection.

In order to require that Runtime API clients connect in this way, you must make the
following settings in the Authorization Server’s aserver.conf file:

In order to connect over authenticated SSL, the client program needs to load its
cryptography and certificate providers, load a keystore from a keystore file, and pass
the keystore to the APIFactory to create and connect the authenticated RuntimeAPI
client session. The following sections explain these steps.

Add a Security Provider
To accomplish the first step, adding the security provider, call the following methods
from the sirrus.util.crypt.SecurityProviderLoader class before you read in
your keystore. The security provider handles key generation, conversion, and
management.

Create Keystore
Next, you can create the keystore by reading in the contents of the client keystore file.
You must provide a passphrase to unlock the keystore, and you must have access to
the valid client keystore file for this client. To simplify the keystore-loading calls, we
will define the following constants:

clearTrust.net.ssl.use=yes
cleartrust.net.ssl.require_authentication=yes

SecurityProviderLoader.loadCryptoProviders();
SecurityProviderLoader.loadCertificateProviders();

KeyStore clientKeyStore = null;
String keystoreFile ="c:\\temp\\kca.p12";
String keystorePassword = "abc123";
char[] myKeystorePhrase = keystorePassword.toCharArray();
164 Runtime Java API: Client Connection Options

RSA ClearTrust Developer’s Guide
The keystore can be loaded as follows:

Add Keystore to Credentials Map and Connect
Finally, you can connect as follows:

• Create a credentials Map containing the keystore and passphrase (in the
SC_SSL_KEYSTORE and SC_SSL_PRIVATE_KEY_PASSPHRASE fields,
respectively).

• Create a ServerDescriptor with the SSL setting (here called “useSSL”), the name
of the Dispatcher machine, and the port of the Dispatcher.

• Create and connect the authenticated SSL session by providing the credentials
Map and ServerDescriptor to the APIFactory.

The RuntimeAPI object should be declared in the main body of your class:

To simplify the connection calls, we will define the following constants:

try
{

SecurityProviderLoader.loadCryptoProviders();
SecurityProviderLoader.loadCertificateProviders();

clientKeyStore = KeyStore.getInstance("PKCS12", "DSTC_PKCS12");
clientKeyStore.load(new FileInputStream(keystoreFile), myKeystorePhrase);

}
catch (Exception e)

{
System.out.println("Exception in Keystore.");
e.printStackTrace();
return;

}

Note: The application’s search for the keystore file depends on whether the
CT_ROOT environment variable has been set. If CT_ROOT is defined, then the
Runtime API application assumes the keystore path is relative to <CT_ROOT>/conf.
If no file is found at this location, then the application assumes the path is relative to
the present working directory and looks there. If CT_ROOT is not defined, then the
application looks for the file relative to the present working directory. (The present
working directory is the directory where the Java session was launched.)

private RuntimeAPI runtimeAPI= null;

ServerDescriptor dispatcher = null;
String dispatchServer = "localhost";
int dispatchServerPort = 5608;
boolean useSSL = true;
Map runtimeCredentials = new HashMap();
Runtime Java API: Client Connection Options 165

RSA ClearTrust Developer’s Guide
The following lines show how you create the credentials, create the ServerDescriptor,
and connect.

The code segments above are taken from the complete example program beginning on
page 177.

For information on setting up your RSA ClearTrust Servers for SSL communication,
consult the section “Configuring RSA ClearTrust to Use Authenticated SSL” in the
RSA ClearTrust Installation and Configuration Guide 4.7.

Connecting Over Anonymous SSL
Anonymous SSL clients are not authenticated but communicate over an encrypted
SSL connection.

In order the require that Runtime API clients connect in this way, you must make the
following settings in the Authorization Server’s aserver.conf file:

cleartrust.net.ssl.use=YES
cleartrust.net.ssl.require_authentication=false
cleartrust.runtime_api.security=anonymous

Connecting Without SSL
Non-SSL clients communicate without encryption.

In order the require that Runtime API clients connect in this way, you must make the
following settings in the Authorization Server’s aserver.conf file:

cleartrust.net.ssl.use=NO
cleartrust.net.ssl.require_authentication=false
cleartrust.runtime_api.security=cleartext

runtimeCredentials.put(CredentialConstants.SC_SSL_KEYSTORE,
clientKeyStore);

runtimeCredentials.put(CredentialConstants.SC_SSL_PRIVATE_KEY_PASSPHRASE,
myKeystorePhrase);

dispatcher = new ServerDescriptor(dispatchServer,
dispatchServerPort,
useSSL);

try
{

runtimeAPI =
APIFactory.createFromServerDispatcher(runtimeCredentials,

dispatcher);
}
catch(RuntimeAPIException e)
{

System.out.println("Error connecting.");
e.printStackTrace();

}

166 Runtime Java API: Client Connection Options

RSA ClearTrust Developer’s Guide
Packages
The Runtime API consists of two packages:

• sirrus.runtime — API to the runtime functionality of the RSA ClearTrust
system, as provided by the Authorization Servers.

• sirrus.runtime.customauth — mechanism for adding custom authentication
types to the RSA ClearTrust system.

All the core methods of the API are contained in the sirrus.runtime package. The
RuntimeAPI interface describes these methods, and the APIFactory class provides
methods for instantiating objects that implement RuntimeAPI. All methods are fully
thread-safe (i.e., a single RuntimeAPI object can service requests from multiple
threads with no need for additional synchronization code).

The sirrus.runtime.customauth package allows you to build applications that
implement custom forms of user authentication. This package is not described further
in this document. Consult the online Javadoc documentation for details.

Interfaces
This section describes the interfaces provided by the Runtime API.

Interface RuntimeAPI
The RuntimeAPI interface provides nearly all of the methods that a Runtime API
client will use. To begin using the RuntimeAPI methods, the client application will
first use one of the APIFactory methods to create a RuntimeAPI-implementing object
that is connected to an Authorization Server or to a pool of Authorization Servers. The
createAuthServerConnection methods create a RuntimeAPI object connected to
one Authorization Server, and the createFromServerDispatcher methods and
createFromServerList methods create a RuntimeAPI object that is connected to a
pool of Authorization Servers. A pool of connections provides failover and, if desired,
load-balancing.

In addition to the main runtime functions described in “What the Runtime API Does”
on page 158, a Runtime API object provides a number of utility functions:

• checkResourceStatus() to check whether a given resource is protected;

• clearServerCaches() to force the Authorization Server(s) to clear their caches

• testServer() to “ping” the Authorization Server(s);

• and close() to close all of the Runtime API client application’s connections to
the Authorization Server(s).

See Table 6.2 for a complete list of RuntimeAPI methods.
Runtime Java API: Packages 167

RSA ClearTrust Developer’s Guide
The arguments and returned values of many of the RuntimeAPI methods have the
type java.util.Map, an interface in the standard Java collections API. Each such map
is expected to contain one or more key-value pairs describing the argument or result in
question.

The keys and possible values for maps representing users, user credentials, and
resources are documented in UserConstants (see page 169), CredentialConstants
(see page 170), and ResourceConstants (see page 170). ResultConstants (see page
170) describes what keys and values may be expected in maps returned by the API
methods. The Javadoc comments for the RuntimeAPI methods contains additional
details on the possible return values for each call.

All methods except testServer() and close() may throw a
RuntimeAPIException. This indicates a catastrophic error in servicing the request; for
example, an Authorization Server connection could not be established, or the
connection has already been closed with the close() method. Note that in the case
that this instance of RuntimeAPI is backed by an Authorization Server pool (that is,
the instance was obtained by calling APIFactory.createFromServerDispatcher(),
APIFactory. createFromServerDispatchers(), or APIFactory.
createFromServerList()), a RuntimeAPIException can occur only after all
servers in the pool have been tried, and each has failed to service the request.

The following table describes the RuntimeAPI interface methods.

Table 6.2 Interface RuntimeAPI Methods

Method Description

authenticate Authenticates a user.

authorize Authorizes a user to a resource.

createToken Creates a new SSO token for a user.

getTokenValue Get the value for a particular key in the given token.

getTokenValues Get all the keys and values in the given token.

setTokenValue Set a value for a key in the given token, and return the resulting new token.

setTokenValues Set the values of multiple keys in the given token, and return the resulting new token.

getUserProperty Return the value of the given property for the user.

getUserProperties Returns the values of all exportable user properties for a user.

testServer Pings the server that implements this interface.

checkResourceStatus Checks the protection status of a given resource.

clearServerCaches Clears the server cache of all the Authorization Servers to which this Runtime client is
connected. If this client is backed by an Authorization Server pool, the caches of all servers
in the pool will be cleared.

close Closes all connections to all the Authorization Server(s) backing this Runtime client.
168 Runtime Java API: Interfaces

RSA ClearTrust Developer’s Guide
Interface UserConstants
This class contains constant Strings to be used as keys or values in Map objects
representing RSA ClearTrust users and their authentication credentials in calls to the
RuntimeAPI.

All user Maps must contain a value for SC_USER_ID, SC_USER_DN,
SC_USER_CERT, or SC_TOKEN, but NOT more than one of these. Whichever value
is present will determine how the user is identified in the RSA ClearTrust system: by
user ID, by distinguished name, by the DN contained in a certificate, or by the ID
contained in an SSO token, respectively. In addition, for calls to authenticate(),
a value for AUTHENTICATION_TYPE must be present; this key-value pair may also
be optionally provided in calls to authorize(), forcing the authorize() call to
first authenticate the user.

Interface TokenKeys
This class contains constant Strings that may be used as keys in an RSA ClearTrust
SSO token. A token is an encrypted String which encodes a set of key-value pairs.
Values are associated with keys in a token using the RuntimeAPI.setTokenValue()
method, and can be retrieved using RuntimeAPI.getTokenValue().

In addition to the keys listed here, the Strings denoting authentication types listed in
AuthTypes are also valid keys in an SSO token. The value associated with an auth
type string will be either true or false, indicating whether or not authentication of
that type has been successfully performed.

Interface AuthTypes
This interface contains a small set of constant strings which denote the various types
of authentication supported in the RSA ClearTrust system. These strings are used as
follows:

• as values for UserConstants.AUTHENTICATION_TYPE in user Maps
passed to Runtime.authenticate() or Runtime. authorize()

• as keys in an RSA ClearTrust SSO token.

In a token, one or more of these strings may be associated with the value “true”,
indicating that the corresponding type of authentication has succeeded. Any other
value indicates that the authentication type either hasn’t been attempted, or was
attempted and failed.

Note: In this version of the API, only these keys and the ones from AuthTypes may
be used in a token. Clients are responsible for encoding and decoding any custom
key-value pairs they may need into a value for the key
TokenKeys.SC_CUSTOM_DATA.
Runtime Java API: Interfaces 169

RSA ClearTrust Developer’s Guide
If custom authentication types are deployed, their identifying strings should not begin
with the prefix “SC_”, to ensure uniqueness.

Interface ResourceConstants
This interface defines the constant Strings to be used as keys and values in a Map
object representing an RSA ClearTrust resource (either a URL or an application
function) in calls to the RuntimeAPI.

When you create a Map for a URL, its TYPE will be WEB_RESOURCE and it will
have a WEB_SERVER_NAME and a URI string. For example, you could build a map
for the URL, “/myPage.html”, as follows:

When you create a Map for an application function, its TYPE will be
APP_FUNCTION and it will have an APPLICATION_NAME and a
FUNCTION_NAME.

Interface ResultConstants
This interface defines the constant Strings that are used as keys or values in Map
objects returned by calls to RuntimeAPI methods. Most result Maps must have a value
for the key RETURN_CODE and may have additional key-value pair(s) depending on the
context. See the Javadoc documentation of each method in RuntimeAPI for a list of the
ResultConstants that can be returned by that method.

Interface CredentialConstants
This interface defines the constant strings used to supply client authentication
credentials to the APIFactory when creating a RuntimeAPI object. For SSL-connected
clients, you must supply the client application’s keystore in the SC_SSL_KEYSTORE
key and the password for the client’s key in the
SC_SSL_PRIVATE_KEY_PASSPHRASE key.

To turn on automatic retrieval of users’ SSO tokens, set the
SC_TOKENS_ENABLED key to true. To turn on automatic retrieval of user
properties, set the SC_USER_PROPERTIES_ENABLED key to true.

Map myResource = new HashMap();
myResource.put(ResourceConstants.TYPE, ResourceConstants.WEB_RESOURCE);
myResource.put(ResourceConstants.WEB_SERVER_NAME, "myApacheServer");
myResource.put(ResourceConstants.URI, "/myPage.html");
170 Runtime Java API: Interfaces

RSA ClearTrust Developer’s Guide
Runtime API Classes
This section summarizes the Runtime API classes.

Class APIFactory
The APIFactory class extends java.lang.Object.

This class provides a small set of static methods which construct and return objects
which implement the RuntimeAPI interface. These factory methods provide the
starting point for all Runtime API client applications.

The simplest factory method is createAuthServerConnection(), which opens and
returns a single connection to a single Authorization Server. The other methods each
build a pool of Authorization Server proxies with some connection management and
failover capability built in. The differences among these methods lie in how the
servers in the pool are looked up: via the RSA ClearTrust Dispatcher, or from a List
of ServerDescriptors. In either case, the server lookup source (Dispatcher or List)
will be re-read as necessary to refresh the contents of the pool.

Class ServerDescriptor
Describes where a server is running and how to connect to it. Instances of this class
are just “dumb data” objects encapsulating a host address, a port number, and a
connection type (SSL or straight TCP). This information is what is needed for
connecting to RSA ClearTrust Authorization Servers and Server Dispatchers.

Table 6.3 Class APIFactory Methods

Method Description

createAuthServerConnection Creates a single connection to an Authorization Server.

createFromServerDispatcher Creates a server pool from a ClearTrust Dispatcher.

createFromServerDispatchers Creates a server pool from available redundant ClearTrust Dispatchers.

createFromServerList Creates a server pool from a list of ServerDescriptor objects.

getClearTrustVersion Gets a string describing the current version of ClearTrust.

Table 6.4 Class ServerDescriptor Methods

Method Description

ServerDescriptor Constructor to build a descriptor for a server at the given address and port with SSL on or off.

getHost Gets this server’s host.

getPort Gets this server’s port.

isSSLused Returns a boolean indicating the connection mode of this server.
Runtime Java API: Runtime API Classes 171

RSA ClearTrust Developer’s Guide
Examples

Runtime API Example Without SSL
This Runtime API example, “RuntimeExample,” authenticates a user and checks
whether that user is authorized to read the specified URL. Specifically, this
application constructs a server pool that gives it access to one or more Authorization
Servers (based on an RSA ClearTrust Dispatcher), makes authentication and
authorization requests against that pool, and finally disconnects. This example works
only in a non-SSL installation of RSA ClearTrust; for the SSL version of this
example, see page 177.

Before You Run the Program
Before compiling and running this program, you must do the following:

1. Edit the dispatchServer variable to the name of the machine where your
Dispatcher is running.

2. Make sure you have a user, a Web server, and a URI saved in your
RSA ClearTrust Policy data store.

For instructions on compiling examples, see “Compiling Applications” on page 161.
172 Runtime Java API: Examples

RSA ClearTrust Developer’s Guide
Example

package sirrus.samples.runtime;

import java.io.*;
import java.util.*;
import java.security.KeyStore;
import java.util.HashMap;
import sirrus.runtime.*;

/**
* RuntimeExample.java
*
* @version 4.7
* @since October 19, 2001
*/

public class RuntimeExample
{

private RuntimeAPI runtimeAPI= null;

private void connect()
{

ServerDescriptor dispatcher = null;
String dispatchServer = "localhost";
int dispatchServerPort = 5608;
boolean useSSL = false;

dispatcher = new ServerDescriptor(dispatchServer,
dispatchServerPort,
useSSL);

try{
runtimeAPI = APIFactory.createFromServerDispatcher(dispatcher);

}
catch(RuntimeAPIException e){

System.out.println("Error connecting.");
e.printStackTrace();

}

}

private void disconnect()
{

if (runtimeAPI != null)
runtimeAPI.close();

}

Runtime Java API: Examples 173

RSA ClearTrust Developer’s Guide
RuntimeExample continues:

private void authenticateUser(String userID, String password)
{

String authcResult = null;
String returnCode = null;
Map result = null;
Map user = new HashMap();

user.put(UserConstants.SC_USER_ID, userID);
user.put(UserConstants.AUTHENTICATION_TYPE, AuthTypes.SC_BASIC);
user.put(UserConstants.CREDENTIALS, password);

System.out.println("Checking user. Please wait...");

try{
result = runtimeAPI.authenticate(user);

authcResult =(String)result.get(ResultConstants.AUTHENTICATION_RESULT);
System.out.println("authentication_result = " + authcResult);

returnCode = (String) result.get(ResultConstants.RETURN_CODE);
System.out.println("Authentication return_code = " + returnCode);

}catch(RuntimeAPIException e){
e.printStackTrace();

}

return;
}

private void authorizeUser(String userID, String wsname, String url)
{

String returnCode = null;
Map result = null;
Map user = new HashMap();
Map resource = new HashMap();

user.put(UserConstants.SC_USER_ID, userID);

resource.put(ResourceConstants.TYPE, ResourceConstants.WEB_RESOURCE);
resource.put(ResourceConstants.WEB_SERVER_NAME, wsname);
resource.put(ResourceConstants.URI, url);

System.out.println("Checking user access. Please wait...");
174 Runtime Java API: Examples

RSA ClearTrust Developer’s Guide
RuntimeExample continues:

try{
result = runtimeAPI.authorize(user, resource);

returnCode = (String) result.get(ResultConstants.RETURN_CODE);
System.out.println("Authorization return_code = " + returnCode);

}catch(RuntimeAPIException e){
e.printStackTrace();

}

return;
}

public static void main(String[] args)
{

RuntimeExample apiClient = new RuntimeExample();

// Initialize connection to ClearTrust
apiClient.connect();

// Get first user-entered string
System.out.println("User name?");
BufferedReader br1 =

new BufferedReader(new InputStreamReader(System.in));
String nameIn = new String("0");
try{

nameIn = br1.readLine();
}catch(Exception e){

e.printStackTrace();
}

// Get second user-entered string
System.out.println("Password?");
BufferedReader br2 =

new BufferedReader(new InputStreamReader(System.in));
String pswdIn = new String("0");
try{

pswdIn = br2.readLine();
}catch(Exception e){

e.printStackTrace();
}

Runtime Java API: Examples 175

RSA ClearTrust Developer’s Guide
RuntimeExample continues:

// Get third user-entered string
System.out.println("Web server name?");
BufferedReader br3 =

new BufferedReader(new InputStreamReader(System.in));
String wsnameIn = new String("0");
try{

wsnameIn = br3.readLine();
}catch(Exception e){

e.printStackTrace();
}

// Get fourth user-entered string
System.out.println("URL address?");
BufferedReader br4 =

new BufferedReader(new InputStreamReader(System.in));
String urlIn = new String("0");
try{

urlIn = br4.readLine();
}catch(Exception e){

e.printStackTrace();
}

// Try to authenticate the user
apiClient.authenticateUser(nameIn, pswdIn);

// Try to authorize the user
apiClient.authorizeUser(nameIn, wsnameIn, urlIn);

// Disconnect from ClearTrust
apiClient.disconnect();

}
}

176 Runtime Java API: Examples

RSA ClearTrust Developer’s Guide
Runtime API Example With SSL
This Runtime API example, “RuntimeSSLExample,” connects over SSL and attempts
to authenticate and authorize a user. Specifically, this application constructs a server
pool that gives it access to one or more Authorization Servers (based on an
RSA ClearTrust Dispatcher), makes authentication and authorization requests against
that pool, and finally disconnects.

This example works only in an SSL-enabled installation of RSA ClearTrust; for the
non-SSL version of this example, see page 172.

Before You Run the Program
Before this program can connect over authenticated SSL, you must

1. Make sure a client-side keystore file is available where the API client will run.
Details for setting up the keystore can be found in the RSA ClearTrust Installation
and Configuration Guide 4.7, in the section, “Configuring RSA ClearTrust to Use
Authenticated SSL (PKI).”

2. Edit the program to set the keystoreFile variable to the path name of the
client-side keystore file and add the keystorePassword for this keystore.

3. Edit the dispatchServer variable to the name of the machine where your
Dispatcher is running.

4. Make sure the rest of your RSA ClearTrust installation is running in SSL mode.
This requires that the cleartrust.net.ssl.* parameters be set in your
eserver.conf, dispatcher.conf, and aserver.conf files, and that each
RSA ClearTrust component have a keystore file. As with the client-side keystore
above, see the RSA ClearTrust Installation and Configuration Guide 4.7 for
details on setting up keystores.

5. Make sure you have a user, a Web server, and a URI saved in your
RSA ClearTrust Policy data store.

For instructions on compiling examples, see “Compiling Applications” on page 161.
Runtime Java API: Examples 177

RSA ClearTrust Developer’s Guide
Example

package sirrus.samples.runtime;

import java.io.*;
import java.util.*;
import java.security.KeyStore;
import java.util.HashMap;
import sirrus.runtime.*;
import sirrus.util.crypt.SecurityProviderLoader;

/**
* RuntimeSSLExample.java
*
* @version 4.7
* @since October, 2001
*/

public class RuntimeSSLExample
{

private static RuntimeAPI runtimeAPI= null;

private void connect()
{

ServerDescriptor dispatcher = null;
String dispatchServer = "localhost";
int dispatchServerPort = 5608;
boolean useSSL = true;
Map runtimeCredentials = new HashMap();
KeyStore clientKeyStore = null;
String keystoreFile ="c:\\temp\\kca.p12";
String keystorePassword = "abc123";
char[] myKeystorePhrase = keystorePassword.toCharArray();

// Load the keystore for this client application.
try

{
SecurityProviderLoader.loadCryptoProviders();
SecurityProviderLoader.loadCertificateProviders();

clientKeyStore = KeyStore.getInstance("PKCS12", "DSTC_PKCS12");
clientKeyStore.load(new FileInputStream(keystoreFile),

myKeystorePhrase);
}

catch (Exception e)
{

System.out.println("Exception in Keystore.");
e.printStackTrace();
return;

}

178 Runtime Java API: Examples

RSA ClearTrust Developer’s Guide
RuntimeSSLExample continues:

// Connect to the API Server.
runtimeCredentials.put(CredentialConstants.SC_SSL_KEYSTORE,

clientKeyStore);
runtimeCredentials.put(CredentialConstants.SC_SSL_PRIVATE_KEY_PASSPHRASE,

myKeystorePhrase);

dispatcher = new ServerDescriptor(dispatchServer,
dispatchServerPort,
useSSL);

try{
runtimeAPI =

APIFactory.createFromServerDispatcher(runtimeCredentials,
dispatcher);

}
catch(RuntimeAPIException e){

System.out.println("Error connecting.");
e.printStackTrace();

}

}

private void disconnect()
{

if (runtimeAPI != null)
runtimeAPI.close();

}

private void authenticateUser(String userID, String password)
{

String authResult = null;
String returnCode = null;
Map result = null;
Map user = new HashMap();

user.put(UserConstants.SC_USER_ID, userID);
user.put(UserConstants.AUTHENTICATION_TYPE, AuthTypes.SC_BASIC);
user.put(UserConstants.CREDENTIALS, password);

System.out.println("\nChecking user. Please wait...");

try{
result = runtimeAPI.authenticate(user);

authResult = (String)result.get(ResultConstants.AUTHENTICATION_RESULT);
System.out.println("authentication_result = " + authResult);

returnCode = (String) result.get(ResultConstants.RETURN_CODE);
System.out.println("return_code = " + returnCode);
Runtime Java API: Examples 179

RSA ClearTrust Developer’s Guide
RuntimeSSLExample continues:

}catch(RuntimeAPIException e){
e.printStackTrace();

}

return;
}

private void authorizeUser(String userID, String wsname, String url)
{

String returnCode = null;
Map result = null;
Map user = new HashMap();
Map resource = new HashMap();

user.put(UserConstants.SC_USER_ID, userID);

resource.put(ResourceConstants.TYPE, ResourceConstants.WEB_RESOURCE);
resource.put(ResourceConstants.WEB_SERVER_NAME, wsname);
resource.put(ResourceConstants.URI, url);

System.out.println("Checking user access. Please wait...");

try{
result = runtimeAPI.authorize(user, resource);

returnCode = (String) result.get(ResultConstants.RETURN_CODE);
System.out.println("Authorization return_code = " + returnCode);

}catch(RuntimeAPIException e){
e.printStackTrace();

}

return;
}

public static void main(String[] args)
{

RuntimeSSLExample apiClient = new RuntimeSSLExample();

// Initialize connection to ClearTrust API Server
apiClient.connect();

// Test server connection
Map testResult = new HashMap();
testResult = runtimeAPI.testServer(null);
System.out.println("\n" + testResult.toString() + "\n");
180 Runtime Java API: Examples

RSA ClearTrust Developer’s Guide
RuntimeSSLExample continues:

// Get first user-entered string
System.out.println("User name?");
BufferedReader br1 =

new BufferedReader(new InputStreamReader(System.in));
String nameIn = new String("0");
try{

nameIn = br1.readLine();
}catch(Exception e){

e.printStackTrace();
}

// Get second user-entered string
System.out.println("Password?");
BufferedReader br2 =

new BufferedReader(new InputStreamReader(System.in));
String pswdIn = new String("0");
try{

pswdIn = br2.readLine();
}catch(Exception e){

e.printStackTrace();
}

// Get third user-entered string
System.out.println("Web server name?");
BufferedReader br3 =

new BufferedReader(new InputStreamReader(System.in));
String wsnameIn = new String("0");
try{

wsnameIn = br3.readLine();
}catch(Exception e){

e.printStackTrace();
}

// Get fourth user-entered string
System.out.println("URL address?");
BufferedReader br4 =

new BufferedReader(new InputStreamReader(System.in));
String urlIn = new String("0");
try{

urlIn = br4.readLine();
}catch(Exception e){

e.printStackTrace();
}

Runtime Java API: Examples 181

RSA ClearTrust Developer’s Guide
RuntimeSSLExample continues:

// Try to authenticate the user
apiClient.authenticateUser(nameIn, pswdIn);

// Try to authorize the user
apiClient.authorizeUser(nameIn, wsnameIn, urlIn);

// Disconnect from API Server
apiClient.disconnect();

}
}

182 Runtime Java API: Examples

RSA ClearTrust Developer’s Guide
RSA SecurID Authentication Example
This Runtime API example authenticates a user using the RSA SecurID method of
authentication. For instructions on compiling examples, see “Compiling Applications”
on page 161.

package sirrus.samples.runtime;

import sirrus.runtime.*;
import sirrus.util.crypt.SecurityProviderLoader;
import java.util.*;
import java.math.*;
import java.io.*;
import java.security.*;
import java.security.cert.*;

/**
* SecurIdExample.java
*
* @version 4.7
* @since November 9, 2001
*/

public class SecurIdExample
{

static
{

SecurityProviderLoader.loadCryptoProviders();
SecurityProviderLoader.loadCertificateProviders();

}

String strKeyFile = "c:\\temp\\kca.p12";
char[] charStorePassPhrase = {'a', 'b', 'c', '1', '2', '3'};
char[] charKeyPassPhrase = {'a', 'b', 'c', '1', '2', '3'};

String authType = "sd";
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

public static void main(String args[])
{

SecurIdExample ts = new SecurIdExample();
int loop = 1;
boolean ssl = false;
RuntimeAPI api = null;
HashMap user = new HashMap();

try
{

if (args.length == 2)
{

loop = Integer.parseInt(args[0]);
ssl = Boolean.valueOf(args[1]).booleanValue();

}

Runtime Java API: Examples 183

RSA ClearTrust Developer’s Guide
SecurIdExample continues:

api = ts.createAPI(ssl);

for (int i = 0; i < loop; i++)
{

ts.readInformation(user);
ts.sendRequest(api, user);

}

ts.closeInput();
}

catch(Exception e)
{

e.printStackTrace();
}

if (api != null)
{

api.close();
}

}

void readInformation(Map user) throws Exception
{

System.out.println("Input your data in the " +
"order \" username passcode \" ");

String info = readLine();
StringTokenizer sto = new StringTokenizer(info);

while (sto.countTokens() != 2)
{

System.out.println(" You did not enter your data in the " +
"correct format, please re-type it. ");

info = readLine();
sto = new StringTokenizer(info);

}

String username = sto.nextToken();
String passcode = sto.nextToken();

user.clear();
putInformation(user, username, passcode);

}

RuntimeAPI createAPI(boolean ssl)
{

RuntimeAPI api = null;
184 Runtime Java API: Examples

RSA ClearTrust Developer’s Guide
SecurIdExample continues:

try
{

ServerDescriptor dispatchers[] =
{ new ServerDescriptor("localhost", 5608, ssl) };

String[] prefs = {"CLASS0", "CLASS1"};
Map credentials = new HashMap();
Map user = new HashMap();

if (ssl == true)
{

KeyStore ks = KeyStore.getInstance("PKCS12", "DSTC_PKCS12");
ks.load(new FileInputStream(strKeyFile),

charStorePassPhrase);
credentials.put(CredentialConstants.SC_TOKENS_ENABLED,

"true");
credentials.put(CredentialConstants.SC_SSL_KEYSTORE, ks);
credentials.put(

CredentialConstants.SC_USER_PROPERTIES_ENABLED,
"false");

credentials.put(
CredentialConstants.SC_SSL_PRIVATE_KEY_PASSPHRASE,
charKeyPassPhrase);

}

api = APIFactory.createFromServerDispatchers(credentials,
dispatchers,
120000,
120000,
true,
prefs);

}
catch(Exception e)

{
e.printStackTrace();

}

return api;
}

String readLine() throws Exception
{

String line = null;

line = br.readLine();

return line;
}

Runtime Java API: Examples 185

RSA ClearTrust Developer’s Guide
SecurIdExample continues:

void closeInput() throws Exception
{

br.close();
}

void sendRequest(RuntimeAPI api, Map user)
throws Exception

{
Map result = new HashMap();
String username = (String)user.get(UserConstants.SC_USER_ID);
result = api.authenticate(user);
System.out.println(" The SC_AUTH_STATE is : " +

result.get(ResultConstants.SC_AUTH_STATE));

//String token =(String) result.get(UserConstants.SC_TOKEN);
//Map ret = api.getTokenValues(token);
//System.out.println(ret);

if (result == null)
{

System.out.println(" No result was returned. " +
"Check your ACE Server set-up.");

return;
} // end of if (result == null)

String code = (String)result.get(ResultConstants.AUTHENTICATION_RESULT);
System.out.println(" The result is : " + result);

if(code.equals(ResultConstants.VALID_USER))
{

System.out.println("Authentication succeeded ");
}

else if (code.equals(ResultConstants.NEXT_CODE_REQUIRED))
{

System.out.println("Please enter your next code");
String nextcode = readLine();
System.out.println("The next code is: " + nextcode);

//Set the state for next api call
user.clear();
user.put(UserConstants.SC_AUTH_STATE,

result.get(ResultConstants.SC_AUTH_STATE));
putNextCode(user, username, nextcode);
186 Runtime Java API: Examples

RSA ClearTrust Developer’s Guide
SecurIdExample continues:

result = api.authenticate(user);
code = (String)result.get(ResultConstants.AUTHENTICATION_RESULT);
System.out.println(" The result is: " + result);

if (code.equals(ResultConstants.VALID_USER))
System.out.println("Authentication succeeded on next code ");

else
System.out.println("Authentication failed on next code : ");

}
else if (code.equals(ResultConstants.NEW_PIN_REQUIRED))

{
//Set the state for next api call
System.out.println("Please enter the new PIN : ");
String pin = readLine();
System.out.println("The new pin is: " + pin);

user.clear();
user.put(UserConstants.SC_AUTH_STATE,

result.get(ResultConstants.SC_AUTH_STATE));
putPin(user, username, pin);

result = api.authenticate(user);

System.out.println(" result is: " + result);

code = (String)result.get(ResultConstants.AUTHENTICATION_RESULT);
if (code.equals(ResultConstants.NEW_PIN_ACCEPTED))

{
System.out.println("The new pin was accepted, " +

"now enter your new pin+passcode.");
String pass = readLine();

//Set the state for next api call
user.clear();
user.put(UserConstants.SC_AUTH_STATE,

result.get(ResultConstants.SC_AUTH_STATE));
putInformation(user, username, pass);

result = api.authenticate(user);
code = (String)result.get(

ResultConstants.AUTHENTICATION_RESULT);
System.out.println("code is " + code);
System.out.println(" The result is " + result);

}

Runtime Java API: Examples 187

RSA ClearTrust Developer’s Guide
SecurIdExample continues:

else
{

System.out.println("Then new PIN was rejected");
}

}
else

{
System.out.println("Authentication failed; reason: "

+ result.get(
ResultConstants.AUTHENTICATION_RESULT));

}
}

void putNextCode(Map user, String username, String nextcode)
{

user.put(UserConstants.SC_USER_ID, username);
user.put(UserConstants.AUTHENTICATION_TYPE, AuthTypes.SC_SECURID);
user.put(UserConstants.SC_SECURID_NEXT_CODE, nextcode);

}

void putPin(Map user, String username, String pin)
{

user.put(UserConstants.SC_USER_ID, username);
user.put(UserConstants.AUTHENTICATION_TYPE, AuthTypes.SC_SECURID);
user.put(UserConstants.SC_SECURID_NEW_PIN, pin);

}

void putInformation(Map user, String username, String passcode)
{

user.put(UserConstants.AUTHENTICATION_TYPE,AuthTypes.SC_SECURID);
user.put(UserConstants.SC_USER_ID, username);
user.put(UserConstants.CREDENTIALS, passcode);
System.out.println(user);

}

static void usage()
{

System.out.println("The usage is " +
"java SecurIdExample loop_time ssl_true/false");

}

}

188 Runtime Java API: Examples

RSA ClearTrust Developer’s Guide
7 Administrative and Runtime DCOM API
The RSA ClearTrust® DCOM API allows ASP pages to use the administrative and
runtime features of the RSA ClearTrust API. The DCOM API is implemented by
accessing the RSA ClearTrust Java API via a bridge layer.

Requirements
Accessing RSA ClearTrust functions from DCOM involves these main components:

• your ASP page containing RSA ClearTrust API calls.

• the Linar J-Integra bridging software version 1.5 (jintegra.jar and
supporting files from jintegra_1.5.zip).

• the RSA ClearTrust API classes, stored as the ct_dcom.jar.

• the RSA ClearTrust API Server, which is part of the Entitlements Server.

A typical physical layout is shown in the following diagram. RSA Security
recommends installing the J-Integra software and the RSA ClearTrust API classes (the
jars) on the machine that will host your ASP pages or other COM programs. The
RSA ClearTrust API Server resides on your main RSA ClearTrust server machine
with the rest of the RSA ClearTrust Servers.

Before beginning the installation steps below, make sure you have the RSA ClearTrust
Servers installed on your RSA ClearTrust server machine.

Figure 7.1 Typical installation on two machines

ASP J-Integra
RSA ClearTrust RSA

Admin & Runtime
Java API Jars Servers

Machine 1 Machine 2

Pages ClearTrust
DCOM API: Requirements 189

RSA ClearTrust Developer’s Guide
Installing the DCOM API
Perform the following steps on the Web server machine where your ASP pages will
run.

1. Make sure the Java Runtime Environment (JRE) version 1.3 is installed on the
machine. The JRE software may be downloaded from

http://java.sun.com/j2se/1.3/jre/

2. Make sure the IIS Web server is installed on the Web server machine in order to
host your ASPs. (If you wish to protect this Web server, you may also install the
RSA ClearTrust Web server Agent on it, but this is not necessary in order to use
the DCOM API.)

3. Install the RSA ClearTrust API classes if you have not already done so as part of
an RSA ClearTrust Custom installation (see Chapter 2 of the RSA ClearTrust
Installation and Configuration Guide):

a. Insert the RSA ClearTrust CD, go to the ct_servers directory and run the
setup.exe program.

b. Make your selections and click Next or Yes to advance through the Welcome,
Region, License, Destination windows.

c. In the Setup Type window, select Custom.

d. In the next window, click the following check boxes to the ON position:
RSA ClearTrust Servers, Documentation, and RSA ClearTrust API (including
RSA ClearTrust C API, RSA ClearTrust DCOM API, and RSA ClearTrust
Java API).

e. Click through the remaining windows to complete the installation. If you have
questions, consult the Installation and Configuration Guide.

Once the installation is complete, your file system will contain a directory named
<CT_HOME>\api\dcom. (<CT_HOME> is the directory in which you installed
RSA ClearTrust.) The <CT_HOME>\api\dcom directory contains the
RSA ClearTrust Java API packages and the DCOM wrappers for the
RSA ClearTrust DCOM API, and it also contains the J-Integra bridging software.

4. Make sure the needed files were installed:
<CT_HOME>\api\admin-j\lib\ct_admin_api.jar
<CT_HOME>\api\runtime-j\lib\ct_runtime_api.jar
<CT_HOME>\api\dcom\ct_dcom.jar
<CT_HOME>\api\dcom\jintegra_1.5.zip
<CT_HOME>\api\dcom\runvm.bat
<CT_HOME>\api\dcom\test.asp

5. If you will be connecting your RSA ClearTrust API client programs to the
RSA ClearTrust Servers over authenticated SSL, you will need the following
additional jar files. You will find these in your <CT_HOME>\lib directory.
RSA SSL software:

• certj.jar
190 DCOM API: Installing the DCOM API

RSA ClearTrust Developer’s Guide
• jsafe.jar

• jsafeJCE.jar

• rsajsse.jar

• sslj.jar

JCSI Keystore software:

• jcsi_base.jar

• jcsi_provider.jar

Sun security infrastructure:

• jce1_2-do.jar

• jcert.jar

• jnet.jar

• jsse.jar

Make sure these jar file names are included in your CLASSPATH.

6. Install Linar J-Integra by extracting the <CT_HOME>/api/dcom/
jintegra_1.5.zip archive into the desired location on your file system. For
example, you may wish to install J-Integra in C:\jintegra\. In the rest of these
instructions, we will refer to this J-Integra directory as <JINTEGRA_HOME>.

7. Next, edit the runvm.bat script (<CT_HOME>\api\dcom\runvm.bat) to make sure
your CLASSPATH is set correctly. Using the CT_ROOT variable to represent the
RSA ClearTrust directory, your CLASSPATH should be as follows:

%CT_ROOT%\lib\cleartrust.jar;
%CT_ROOT%\api\admin-j\lib\ct_admin_api.jar;
%CT_ROOT%\api\runtime-j\lib\ct_runtime_api.jar;
%JINTEGRA_HOME%\lib\jintegra.jar; %DCOM_API_HOME%\ct_dcom.jar;
%CT_ROOT%\lib\certj.jar; %CT_ROOT%\lib\jcert.jar;
%CT_ROOT%\lib\jcsi_base.jar; %CT_ROOT%\lib\jcsi_provider.jar;
%CT_ROOT%\lib\jsafe.jar; %CT_ROOT%\lib\jsafeJCE.jar;
%CT_ROOT%\lib\jsse.jar; %CT_ROOT%\lib\rsajsse.jar;
%CT_ROOT%\lib\sslj.jar; %CT_ROOT%\lib\jce1_2-do.jar;
%CT_ROOT%\lib\jnet.jar

Important: If you copy and paste the above CLASSPATH segment, make sure you
remove the spaces from it.
DCOM API: Installing the DCOM API 191

RSA ClearTrust Developer’s Guide
8. Launch the J-Integra Registration GUI by running the regvm.exe program. The
following screen shot illustrates its use.

Make the following settings:

• In the JVM id field, enter “CTjavaAPI”. This is the name used to refer to the
RSA ClearTrust API via J-Integra.

• Select the DCOM - Pure Java radio button.

• In the Hostname field, enter the hostname of the machine where the
J-Integra-wrapped API is available. This should be the machine where your
ASP pages will run. (Usually, this is the machine on which you are now
installing.) If J-Integra and the RSA ClearTrust APIs are on the same
machine, you can simply use “localhost”.

• In the Port field, enter the port where the J-Integra-wrapped API is available,
RSA Security recommends using “3350”, which is the default port for
J-Integra.

Click Save JVM to save your settings, and click Close to close the window.

If the Registration GUI fails, check your CLASSPATH and try again.

You only need to perform registration once on the machine. If the machine is
rebooted, you do not need to register again.

9. Windows 2000 ASP users only: If you are using the RSA ClearTrust DCOM API
from Active Server Pages (ASP) and if you are running ASP under Windows
2000 and the ASP virtual directory is set to be Pooled (the default), then edit your
COM Authentication Level as shown in the steps that follow.
(Note: If you'd prefer not to change this setting for all pooled applications,
configure the virtual directory to be Isolated, and then change the specific entry
for that virtual directory that appears under COM+ Applications.)

a. Open the Control Panel (Start Settings Control Panel)

Figure 7.2 The J-Integra Registration GUI
192 DCOM API: Installing the DCOM API

RSA ClearTrust Developer’s Guide
b. Open the Administrative Tools window.

c. Open the Component Services window.

d. Open Computers My Computer COM+ Applications.

e. Right click on the IIS Out-Of-Process Pooled Applications icon. Select
Properties.

f. Click on the Security tab.

g. In the Authentication Level For Calls combo box, select Connect. (The
default is Packet, which J-Integra does not currently support.)

h. Click OK to complete your edit.

10. Run the DCOM bridge application using the runvm.bat script.
<CT_HOME>\api\dcom\runvm.bat

The DCOM Bridge must be running at all times.

Your installation is complete. You may now test it. For example, using ASP pages,
you can test the API with the following lines. Note that, for this example, we use the
hostname venus.cleartrust.com to refer to the RSA ClearTrust server machine.

For more a complete explanation of using and testing the DCOM API, continue with
the next section.

Set ServerProxy =
GetObject("CTjavaAPI:sirrus.api.client.APIServerProxy(string:venus.cleartrust.com,
int:5601)")
ServerProxy.connect "admin", "admin1234", "Default Administrative Group", "Default
Administrative Role"
DCOM API: Installing the DCOM API 193

RSA ClearTrust Developer’s Guide
Using the DCOM API
The RSA ClearTrust DCOM API is a wrapper around the RSA ClearTrust Java API
using Linar J-Integra as the bridge. The following diagram shows the relationship
between the DCOM API, Java API and J-Integra.

The RSA ClearTrust DCOM API can be used in the same way as the RSA ClearTrust
Java Administrative and Runtime APIs, with the exception of special syntax you will
need to instantiate classes whose constructors take arguments. You will need to use
the syntax described below when getting sirrus.api.client.APIServerProxy
objects for the Administrative API, and when getting sirrus.runtime.APIFactory
and other objects for the Runtime API.

Instantiating and Connecting
Creating and connecting the APIServerProxy Administrative API object provides a
simple example of how to connect. For a more complex example including setting up
an authenticated SSL connection, see “DCOM Runtime API example” on page 198.

The APIServerProxy constructor takes three arguments:

• The hostname of the machine where the RSA ClearTrust Entitlements Server is
running. For example, venus.cleartrust.com.

• The port number of the RSA ClearTrust Administrative API. This is usually 5601.

• A boolean setting indicating whether the Entitlements Server is set up to
communicate via SSL. In this example, we will set it to false.

Using a VB script, you would call the constructor as follows:

Specifically, the arguments to the VB call are

Figure 7.3 RSA ClearTrust’s DCOM API structure

ClearTrust ClearTrustAdmin & Runtime
Java API ServersASP Pages J-Integra

serverProxy =getObject("CTjavaAPI:sirrus.api.client.APIServerProxy(string:venus.\
cleartrust.com,int:5601,boolean:false)")
194 DCOM API: Using the DCOM API

RSA ClearTrust Developer’s Guide
• CTjavaAPI: This is the registered COM name for the RSA ClearTrust API, as seen
through J-Integra. (The installation section above describes how to set up and
register this.)

• sirrus.api.client.APIServerProxy: The name of the class being instantiated.

• (string:venus.cleartrust.com,int:5601,boolean:false): These are the
parameters for the constructor. When the class constructor takes parameters, they
are listed in the format, “(type:value,type:value,…,type:value)”. Currently
three types are supported: string, int, and Boolean. These are all the types required
by the RSA ClearTrust Admin and Runtime APIs. Note that the separator
between parameters is just a comma; no space is allowed after the separator.

Getting Objects
You can use the GetObject call to load most objects.

Making RSA ClearTrust API Calls
After getting the object, you use it as you would the RSA ClearTrust Java API. For
example:

APIFactory = GetObject("CTjavaAPI:sirrus.runtime.APIFactory")
UserConstants = GetObject("CTjavaAPI:sirrus.api.com.UserConstantsClass")
AuthTypes = GetObject("CTjavaAPI:sirrus.api.com.AuthTypesClass")
user = GetObject("CTjavaAPI:java.util.HashMap")

serverProxy.connect("admin", "admin1234", "Default Administrative Group",
"Default Administrative Role")

rtAPI = APIFactory.createFromServerDispatcher(dispatcher)
aResult = rtAPI.authenticate(user)
DCOM API: Using the DCOM API 195

RSA ClearTrust Developer’s Guide
Classes in the sirrus.api.com Package

SecurantDCOMFactory
sirrus.api.com.SecurantDCOMFactory
public final class SecurantDCOMFactory extends java.lang.Object

Description
Java objects run inside a Java Virtual Machine. In order to access them from ASP,
they have to be run in a way that is accessible to DCOM. This class creates
DCOM-accessible instances of sirrus.api.client.APIServerProxy and
sirrus.runtime.RuntimeAPI.

Methods

getAdminServerProxy returns a reference to an Administrative API Proxy
Interface. This method takes three arguments: This constructor takes three arguments:
host is the String hostname of the machine where the RSA ClearTrust Entitlements
Server is running; port is the int port number of the RSA ClearTrust Administrative
API; and ssl is the boolean setting indicating whether the Entitlements Server is set up
to communicate via SSL.

getRuntimeServerProxy returns a reference to a Runtime API Proxy Interface.

AuthTypesClass
sirrus.api.com.AuthTypesClass
public class AuthTypesClass extends java.lang.Object implements
sirrus.runtime.AuthTypes

Description
This class implements the AuthTypes. It allows the DCOM API to access constants in
the interface AuthTypes.

ResourceConstantsClass
sirrus.api.com.ResourceConstantsClass
public class ResourceConstantsClass extends java.lang.Object
implements sirrus.runtime.ResourceConstants

static sirrus.api.client.APIServerProxy getAdminServerProxy(
java.lang.String host, int port, boolean ssl)

static sirrus.runtime.RuntimeAPI getRuntimeServerProxy(
java.lang.String host, int port, boolean useSSL)
196 DCOM API: Classes in the sirrus.api.com Package

RSA ClearTrust Developer’s Guide
Description
This class implements the ResourceConstants. It allows the DCOM API to access
constants in the interface ResourceConstants.

ResultConstantsClass
sirrus.api.com.ResultConstantsClass
public class ResultConstantsClass extends java.lang.Object implements
sirrus.runtime.ResultConstants

Description
This class implements the ResultConstants. It allows the DCOM API to access
constants in the interface ResultConstants.

UserConstantsClass
sirrus.api.com.UserConstantsClass
public class UserConstantsClass extends java.lang.Object implements
sirrus.runtime.UserConstants

Description
This class implements the UserConstants. It allows the DCOM API to access
constants in the interface UserConstants.

UserPropertyTypesClass
sirrus.api.com.UserPropertyTypesClass
public class UserPropertyTypesClass extends java.lang.Object
implements sirrus.api.client.IUserPropertyTypes

Description
This class implements the IUserPropertyTypes. It allows the DCOM API to access
constants in the interface IUserPropertyTypes.
DCOM API: Classes in the sirrus.api.com Package 197

RSA ClearTrust Developer’s Guide
DCOM API Example Code
Runtime and Administrative examples are included below. In all of these examples,
the registered COM name for the RSA ClearTrust API (as seen through J-Integra) is
“CTjavaAPI”.

DCOM Runtime API example
The code segment that follows shows how to instantiate a Runtime API client, connect
it over authenticated SSL, and authenticate a user. If you wish to connect a
non-authenticated Runtime client, you may leave out the keystore-related calls.

In order to use this code as-is, you must define the following variables and set their
values as explained below. (Bear in mind that these variable names are just the ones
used in this example; they have no particular significance in the RSA ClearTrust
DCOM API.)

• ctServerName - the string hostname of the Dispatcher machine. For example,
"localhost".

• ctServerPort - the int port number of the Dispatcher’s listener port. Typically,
this is 5608.

• useSSL - a boolean indicating whether the connection should be SSL-secured. Set
it to true if you wish to use SSL.

• keyStoreType - the string keystore type name. For example, "PKCS12".

• keyStoreProvider - the string keystore provider name. For example,
"DSTC_PKCS12".

• keyStoreFileName - the string file name of the keystore file. For example,
"c:\temp\kca.p12".
198 DCOM API: DCOM API Example Code

RSA ClearTrust Developer’s Guide
DCOM Runtime Example:

set UserConstants = GetObject("CTjavaAPI:sirrus.api.com.UserConstantsClass")

set ResultConstants = GetObject("CTjavaAPI:sirrus.api.com.ResultConstantsClass")

set AuthTypes = GetObject("CTjavaAPI:sirrus.api.com.AuthTypesClass")

set TokenKeys = GetObject("CTjavaAPI:sirrus.api.com.TokenKeysClass")

set CredentialConstants
=GetObject("CTjavaAPI:sirrus.api.com.CredentialConstantsClass")

set apiFactory = GetObject("CTjavaAPI:sirrus.runtime.APIFactory")

set keyStoreFactory = GetObject("CTjavaAPI:sirrus.util.crypt.KeyStoreFactory")

set dispatcher = GetObject("CTjavaAPI:sirrus.runtime.ServerDescriptor(string:" &
ctServerName _ & ",int:" & ctServerPort & ",boolean:" & useSSL & ")")

set keyStore =
keyStoreFactory.getKeyStore(keyStoreType,keyStoreProvider,keyStoreFileName)

'create the credential for Autenticated SSL
set credentials = GetObject("CTjavaAPI:java.util.HashMap")

Call credentials.put(CredentialConstants.SC_SSL_KEYSTORE, keyStore)

Call credentials.put(CredentialConstants.SC_TOKENS_ENABLED, "true")

Call keyStoreFactory.putCharArrayInMap(credentials, _
CredentialConstants.SC_SSL_PRIVATE_KEY_PASSPHRASE,_ "abc123")

'get the RuntimeAPI object/connection
set rtAPI2 = apiFactory.createFromServerDispatcher(credentials, dispatcher)

set user = GetObject("CTjavaAPI:java.util.HashMap")

user.put UserConstants.SC_USER_ID, CSTR(Request.Form("userid1"))

user.put UserConstants.AUTHENTICATION_TYPE,CSTR(Request.Form("authtype1"))

user.put UserConstants.CREDENTIALS, CSTR(Request.Form("password1"))

set aresult = rtAPI2.authenticate(user)

Dim retcode retcode = aresult.get(ResultConstants.RETURN_CODE)

if retcode = ResultConstants.VALID_USER then Response.Write "Authentication
succeeded"
else Response.Write "Authentication failed; reason: " & _ aresult.get(
ResultConstants.AUTHENTICATION_RESULT) & ""
end if
DCOM API: DCOM API Example Code 199

RSA ClearTrust Developer’s Guide
ASP page, create user
This example shows how to create and save a user with the Administrative API. When
you use GetObject to instantiate the APIServerProxy, you must provide the hostname
of the RSA ClearTrust server machine. In this example, we use the hostname
venus.cleartrust.com to refer to the server machine.

<%@ Language=VBScript %>
<HTML>
<HEAD>
</HEAD>
<BODY>

<%
On Error Resume Next

' create our server proxy object
Set ServerProxy =

GetObject("CTjavaAPI:sirrus.api.client.APIServerProxy(string:venus.cleartrust.com,
int:5601)")

' attempt a connect to the api server
ServerProxy.connect "admin", "admin1234", "Default Administrative Group",

"Default Administrative Role"

If Err.Description <> "" Then
Response.write("Error = " & Err.Description & "
")
Err.Description = ""

End If

' Create a new User
startDate = Date()
endDate = Date() + Date()

Set newUser = ServerProxy.createUser("john" , true, startDate, endDate, _
"firstname", "lastname1", "john@somewhere.com", "password1",false

)

newUser.save()

if Err.Description <> "" Then
Response.write("Error = " & Err.Description & "
")

Else
Response.write("User Created
")

End if

' shut down now
ServerProxy.disconnect

%>
</form>
</BODY>
</HTML>
200 DCOM API: DCOM API Example Code

RSA ClearTrust Developer’s Guide
ASP page, get users list
This example shows how to retrieve a list of users with the Administrative API. As in
the preceding example, we use the hostname venus.cleartrust.com here to refer to the
server machine.

<%@ Language=VBScript %>
<HTML>
<HEAD>
</HEAD>
<BODY>

<%
On Error Resume Next

' create our server proxy object
Set ServerProxy =

GetObject("CTjavaAPI:sirrus.api.client.APIServerProxy(string:venus.cleartrust.com,
int:5601)")

' attempt a connect to the api server
ServerProxy.connect "admin", "admin1234", "Default Administrative Group",

"Default Administrative Role"
If Err.Description <> "" Then

Response.write("Error = " & Err.Description & "
")
Err.Description = ""

End If
%>

Users List:
<%

' try getting a collection of users
Set AllUsers = ServerProxy.getUsers
if Err.Description <> "" Then

Response.write("(Get Users List)Error = " & Err.Description &
"
")

Else
' display the users we got above
LastIndex = AllUsers.size -1
allUsersArray = AllUsers.getByRange(0, LastIndex)

Response.write "(Total " & LastIndex+1 & " Users)
"
& vbCrLf

For X = 0 To LastIndex
Response.write(allUsersArray(X).getName & ", ")
if X mod 10 = 9 then

Response.write "
" & vbCrLf
end if

Next
DCOM API: DCOM API Example Code 201

RSA ClearTrust Developer’s Guide
Example continues:

if Err.Description <> "" Then
Response.write("(Get Users List)Error = " &

Err.Description & "
")
Err.Description = ""

End if
End if

' shut down now
ServerProxy.disconnect

%>
</BODY>
</HTML>
202 DCOM API: DCOM API Example Code

RSA ClearTrust Developer’s Guide
8 Web Agent Extension API

Overview
The RSA ClearTrust® Web Server Agents provide the RSA ClearTrust Web Agent
Extension API (the “WAX API”), which allows developers to extend and customize
the functionality of any RSA ClearTrust Agent. For example, your extensions may
perform custom authentication or manipulate dynamic, user-specific content.

Unlike the RSA ClearTrust Administrative API, the WAX API does not enable you to
edit entries in the RSA ClearTrust database, rather it allows you to modify the
behavior of the RSA ClearTrust Agent during the authentication and authorization
processing. An extension you write using this API is called a Web Agent Extension
(or “WAX program” for short).

For example, you could extend the functionality of the RSA ClearTrust Web Server
Agent in the following ways.

• Create an extension directing the Web server to display, based on the
Authorization Server return code, a specific HTML file that corresponds to that
return code. (Usually, the return code is a denial of access for a specific reason, so
the html page might be one explaining why access was denied.)

• Create an extension providing custom logging.

• Create an extension providing custom authentication of users.

• Create an extension integrating the RSA ClearTrust Agent with proprietary Web
Server Agents or third-party Agents.

This chapter provides an overview of the WAX API, including processing flows and
logic loops, and shows how to build and integrate your own custom extension—the
WAX program that you write—into your Web server environment. It includes the
following sections:

• “Extending the Web Server Agent” on page 204

• “How an Agent Processes a URI Request” on page 205

• “Agent Phase Handlers” on page 207

• “Writing a WAX Program” on page 212

• “WAX Examples” on page 218

• “WAX API Reference” on page 227
Web Agent Extension API: Overview 203

RSA ClearTrust Developer’s Guide
Extending the Web Server Agent
RSA ClearTrust WAX programs are implemented using a call-back scheme. Much
like the call-back mechanisms in the iPlanet Web server and IIS Web server, a WAX
program must register itself to the RSA ClearTrust Agent and define the various
routines to call when processing a URL request. A call made using the WAX API is
available to the Agent to which it is registered and to the Web server.

Figure 8.1 illustrates the relationships among a WAX program, an RSA ClearTrust
Agent, and a Web server, via their respective APIs.

As shown in Figure 8.1, RSA ClearTrust Web Server Agents are implemented using
the APIs of the respective Web server vendors, and WAX programs also use these
server APIs.

Before discussing the specific implementation details, the following section provides
a brief overview of the default RSA ClearTrust Web Server Agent multi-phased
request handler process.

Note: In this chapter, the RSA ClearTrust Web Server Agent installation directory is
referred to as <CT_AGENT_ROOT>. Directories that contain other software are
abbreviated in a similar way, such as <IPLANET_SERVER_DIR> and
<APACHE_SERVER_DIR>.

Figure 8.1 RSA ClearTrust Web Agent Extension (WAX) API

ClearTrust Web Server
Agent

ClearTrust Web Agent
Extension (WAX)

Proprietary or Custom
Web Server

iPlanet Web Server

Microsoft Internet
Information Server (IIS)

Apache/Redhat
Stronghold Web Server

APAPI (Apache API),
ISAPI (MS Internet Information Server API),

or NSAPI (iPlanet Web Server API)

APAPI (Apache API),
ISAPI (MS Internet Information Server API),

or NSAPI (iPlanet Web Server API)

C
le

ar
Tr

us
t

W
A

X
A

PI

or

or

or
204 Web Agent Extension API: Extending the Web Server Agent

RSA ClearTrust Developer’s Guide
How an Agent Processes a URI Request
During a URI request, the Web server invokes the RSA ClearTrust Agent to perform
authentication and authorization. The RSA ClearTrust Agent processes the request by
executing a sequence of phases. During each phase, the RSA ClearTrust Agent first
invokes a phase handler to perform an associated action and then invokes a status
handler to handle the status from the phase handler. The WAX programs that you
write are phase handlers.

The status handler determines the next phase to execute or stops the execution, and
returns the status to the Web server. Information for each request is passed between
the phase handlers and status handler using a hash table. There is a single status
handler in the loop, but each phase has its own distinct phase handler (see Figure 8.2).

As the RSA ClearTrust Web Server Agent processes a phase, it first invokes any
custom phase handler that is registered. The custom phase handler performs its action
and returns a boolean value indicating whether or not it handled the phase.

• If it returns TRUE, the Agent moves on to the next phase (and no additional
handlers are invoked for this phase).

• If it returns FALSE, the Agent invokes the next registered handler for this phase,
or, if no other handlers are registered, the Agent invokes the default handler for
this phase.

You may add as many phase handlers as you need. Using multiple phase handlers is
called WAX chaining. In a given WAX chain, only the last phase handler returns
TRUE; all others return FALSE (regardless of the success or failure of their internal
actions), which instructs the Web Agent to invoke the next handler in the current
phase.

After the phase handlers have completed, the status handler is invoked to handle the
result from the phase handler. The Agent first calls any custom status handler that may
exist. Like the phase handler, the custom status handler returns a boolean value
indicating whether or not it handled the status.

• If the custom status handler returns TRUE, no other status handlers are invoked.
However, the default status handler is still invoked. When the default status
handler is invoked, only logging and messaging actions are performed; processing
for the URI request ceases.

• If the custom status handler returns FALSE, the next registered handler or default
handler, if none, is invoked.

Figure 8.2 shows how the processing logic transfers between default phase handlers
and custom phase handlers, and how the status handler receives the return codes that
determine the next execution phase.
Web Agent Extension API: How an Agent Processes a URI Request 205

RSA ClearTrust Developer’s Guide
Figure 8.2 RSA ClearTrust Agent Processing Loop

Finished?

Process custom
phase handler

Process default
status handler

RC=?

Stop
Process logging and

error messages

True

False

Yes

No

Custom
phase

handler
?

Start

No

Process custom
status handler

Yes

Custom
status

handler
?

RC=?

Process default
phase handler

False

True

No

Yes
206 Web Agent Extension API: How an Agent Processes a URI Request

RSA ClearTrust Developer’s Guide
Agent Phase Handlers
During the processing of a URI request, the RSA ClearTrust Web Server Agent
executes a sequence of phases to perform authentication, authorization, and single
sign-on, ultimately determining the accessibility of the URI. The phase handlers are
listed here in the order in which they run:

• Path Check Handler (CT_PATH_CHECK_HANDLER)

• Session Handler (CT_SESSION_HANDLER)

• Pre-Authentication Handler (CT_PREAUTHENTICATION_HANDLER)

• Authentication Handler(s) (CT_AUTHENTICATION_HANDLER)

• Authorization Handler

• Cookie Handler (CT_COOKIE_HANDLER)

In addition, there is a handler called the Status Handler (CT_STATUS_HANDLER) that is
driven after each phase.

Path Check Handler
The Path Check Handler determines whether the requested URI is protected. The
handler invokes the RSA ClearTrust Authorization Server to perform the path check.

• If the URI isn’t protected, the system returns the status code
CT_AUTH_URL_UNPROTECTED and the default status handler instructs the Web
server to serve the requested URI.

• If the URI is protected, the system returns the status code
CT_AUTH_URL_PROTECTED and the default status handler retrieves the list of
required and/or allowed authentication types from the Authorization Server. It
then inserts this list of authentication types into the request table under the key
CT_ALLOWABLE_AUTH_MODES, and calls the next handler.

Session Handler
The Session Handler determines whether or not the cookie (used for single-sign-on
support) has expired.

• If the cookie has expired, the system returns the status code CT_SESSION_EXPIRED
and the default status handler sends a WWW-Authenticate response (HTTP 401) to
the browser for re-authentication.

Note: For each protected resource, an administrator will set the allowed and/or
required authentication types in the Agent’s <CT_AGENT_ROOT>/conf/
webagent.conf file.
Web Agent Extension API: Agent Phase Handlers 207

RSA ClearTrust Developer’s Guide
• If the cookie has not expired, the system returns the status code
CT_SESSION_ACTIVE and the next handler is called.

Pre-Authentication Handler
The Pre-Authentication Handler gets the allowed and/or required authentication
type(s) required by the URI from the request table (CT_ALLOWABLE_AUTH_MODES) and
checks to see if the user has already authenticated with all or some of the
authentication types.

• If the user has already authenticated with the required authentication type or types,
the Pre-Authentication Handler sets a status code of
CT_CHECK_ACCESS_REQUIRED, causing the Authorization Handler to be invoked
next.

• If there are required authentication types for which the user has not authenticated,
the Pre-Authentication Handler asks the appropriate Authentication Handler(s) to
authenticate the user.

Authentication Handler
The Authentication Handler may be a standard RSA ClearTrust Authentication
Handler or a custom one that you have built. In the paragraphs that follow, we show
how the Authentication Handler performs RSA ClearTrust BASIC authentication.
This behavior provides a good model for building custom authentication handlers.

The Authentication Handler starts with the first, not-yet-satisfied authentication type
on the CT_ALLOWABLE_AUTH_MODES list. In order to authenticate the user via
form-based authentication, the Authentication Handler must get the user’s credential
(CT_USER/CT_PASSWORD or CT_DN) from the request table.

• If no user ID or DN is present in the request table, the Authentication Handler sets
a status code of CT_AUTH_BAD_USERNAME.

• If no password is present in the request table, the Authentication Handler sets a
status code of CT_AUTH_BAD_PASSWORD.

• If the user’s credential exists in the request table (user ID/password or DN), the
Authentication Handler attempts to authenticate the user with the appropriate
authentication type.

Based on what is returned from the authentication attempt, the Authentication Handler
sets the appropriate status code.

• If the authentication is successful, the Authentication Handler sets the
authenticated bit (CT_AUTHENTICATED) to signify that the user has authenticated
successfully with the current authentication type and therefore will not need to
authenticate against this mode in the future. A custom Authentication Handler
should set the CT_AUTH_CUSTOM bit of the CT_AUTHENTICATED bitfield to indicate
that the custom authentication was successful. Note that the authentication handler
should not set CT_AUTH_MODE; this indicates what authorization type was
requested and is set by the Pre-Authentication Handler.
208 Web Agent Extension API: Agent Phase Handlers

RSA ClearTrust Developer’s Guide
• If the authentication is not successful, the status code is handled as follows:

• If you are using non-forms-based authentication, the Web server is instructed
to return a WWW-Authenticate response (HTTP 401)

• When forms-based authentication is used, the browser is instead redirected to
the configured error message form. You may use the following return codes to
choose an appropriate error page to show to the user. (Note that your system
will be more secure if you provide users only vague error messages. For
example, if a person is trying to break in and sees a “bad password” message,
he will know that he has found a valid user name.)

CT_AUTH_BAD_USERNAME: The user is not defined in the RSA ClearTrust
database.

CT_AUTH_BAD_PASSWORD: The password specified does not match the user’s
password.

• The Web server is instructed to return a FORBIDDEN response (HTTP 403) or is
redirected to a custom error page for the following return codes:

CT_AUTH_EXPIRED_ACCOUNT: The account has expired.

CT_AUTH_INACTIVE_ACCOUNT: The account has not started yet.

CT_AUTH_PASSWORD_EXPIRED: The user’s password has expired; it must be
reset.

CT_AUTH_PASSWORD_EXPIRED_FORCED: The user’s password has expired via
administrative action; it must be reset.

CT_AUTH_PASSWORD_EXPIRED_NEW_USER: The user is logging in for the first
time; the password must be reset.

CT_AUTH_USER_LOCKED_OUT: An administrator has explicitly locked out the
user.

Authorization Handler
The Authorization Handler determines whether or not a user has access to the
requested URI.

The Authorization Handler invokes the Authorization Server to perform the
authorization checking and sets the status code with the returned value.

• If the Authorization Server returns a CT_AUTH_URL_ACCESS_DENIED, the Web
server is instructed to return a FORBIDDEN response (HTTP 403) or is redirected to
a custom error page.

• If the Authorization Server returns a CT_AUTH_URL_ACCESS_ALLOWED, the
Authorization Handler sets the status code to CT_CREATE_COOKIE to instruct the
Status Handler to invoke the Cookie Handler.
Web Agent Extension API: Agent Phase Handlers 209

RSA ClearTrust Developer’s Guide
Cookie Handler
The Cookie Handler creates a cookie to send back to the user with a successful request
for a protected URI and adds the following data from the request table:

• If the Cookie Handler successfully creates a cookie, it sets the status to
CT_AUTH_URL_ACCESS_ALLOWED and the default status handler directs the Web
server to serve up the requested URI.

• If there was an error creating the cookie, the Cookie Handler sets a status of
CT_COOKIE_ERROR and instructs the Web server to return a SERVER ERROR (HTTP
500) to the browser.

The RSA ClearTrust Agent provides users with a 2 Kb data buffer within the cookie
that can be used for personalization or custom development. You can use this data
buffer to provide additional functionality to an RSA ClearTrust cookie. For example,
you may want to create a WAX program to add an e-mail address or other user
attributes to a cookie. Another option is to utilize the cookie for user management
functions like encryption. Refer to the section titled “Request Data” for more
information on this data buffer. Figure 8.3 illustrates how the phase handlers process a
URI request.
210 Web Agent Extension API: Agent Phase Handlers

RSA ClearTrust Developer’s Guide
Figure 8.3 Phase Processing a URI Request

CT_AUTH_URL_ACCESS_DENIED

Start

CT_PATH_CHECK_HANDLER

CT_PREAUTHENTICATION_HANDLER

CT_SESSION_HANDLER

RC=?

RC=?

RC=?

CT_AUTH_URL_UNPROTECTED

CT_AUTH_URL_PROTECTED

Stop

CT_SESSION_EXPIRED

CT_SESSION_ACTIVE

CT_ACCESS_REQUIRED

CT_ACCESS_HANDLER

CT_COOKIE_HANDLER

RC=?

RC=?

CT_CREATE_COOKIE

CT_COOKIE_ERROR

CT_AUTH_URL_ACCESS_ALLOWED
Stop

Send a WWW
Authenticate

Send
Forbidden

Send Server
Error

Serve the
requested URI

BASIC Authentication Handler (for example)

RC=? Custom Authentication Handler (for example)

RC=?

RC=? Other Authentication Handlers,
if needed

Succeed

Fail

Succeed

Fail

Fail

Fail

Succeed

Succeed
Web Agent Extension API: Agent Phase Handlers 211

RSA ClearTrust Developer’s Guide
Writing a WAX Program
If you wish to modify the behavior of the RSA ClearTrust Web Server Agent (for
example, to add logging or to implement a custom authentication mechanism), you
can extend the functionality of the RSA ClearTrust Web Server Agent by using the
WAX API to write your own phase handler, which can then be called during URI
request processing. A custom phase handler is called a WAX program. This section
shows how to build a WAX and integrate it into the RSA ClearTrust Web Server
Agent processing loop.

Overview
Assuming the RSA ClearTrust Web Server Agent is installed and integrated with your
Web Server, adding a WAX program involves the following steps:

1. Write a WAX program using the WAX API. In the ct_wax_init() methods of
your WAX program, link each of your WAX methods with one or more of the
Agent’s standard phase handlers.

2. Compile it.

3. Register your WAX program with the Agent by adding its name to the
cleartrust.agent.wax parameter in the webagent.conf file.

4. If your WAX program provides user authentication, then you must edit the
cleartrust.agent.auth_resource_list in the webagent.conf file to specify
an authentication type of “CUSTOM” for those resources that require
authentication to be performed by your WAX method.

The sections that follow explain these steps in detail and provide the background
information you will need to build your WAX program.

WAX API Headers
The WAX API is a C API that is installed as part of the RSA ClearTrust Web Server
Agent installation. You will find the header files in the <CT_AGENT_ROOT>/<Web
server type>/include subdirectory, where “<Web server type>” is a directory
name that corresponds to your Web server vendor, such as “IIS Agent” or “iPlanet
Agent.” Note that the <CT_AGENT_ROOT> directory is often installed in a separate
location from the main <CT_HOME> Server installation directory.

The WAX API consists of the following include files:

• ct_auth_result.h

• ct_external.h

• ct_function_table.h

• ct_memory.h
212 Web Agent Extension API: Writing a WAX Program

RSA ClearTrust Developer’s Guide
• ct_request_data.h

• ct_table.h

WAX API Libraries
The WAX API works with the library file that is specific to the Web Server Agent that
you are extending. Depending on your type of Web server and operating system, you
will find your Agent libraries in one of the following locations:

• Microsoft IIS on Windows NT/2000
<CT_AGENT_ROOT>\IIS Agent\lib\ct_iis50_agent.lib

• iPlanet Web server on Windows NT/2000
<CT_AGENT_ROOT>\iPlanet Server Agent\lib\ct_iplanet_agent.lib

• iPlanet Web server on Solaris
<CT_AGENT_ROOT>/agent/iplanet/lib/libct_iplanet_agent.so

• Apache/Redhat Stronghold 3 Web server on Solaris
<CT_AGENT_ROOT>/agent/apache/lib/libct_apache_agent_apache_ssl.so

or
<CT_AGENT_ROOT>/agent/apache/lib/libct_apache_agent_mod_ssl.so

or
<CT_AGENT_ROOT>/agent/apache/lib/libct_apache_agent_non_ssl.so

For more information, see the “Compiling and Linking” sections later in this chapter.

Registering a WAX Program
Register your WAX program with the RSA ClearTrust installation by adding its full
path name (the name of the .dll or .so file) to the cleartrust.agent.wax parameter
in the Agent’s configuration file (<CT_AGENT_ROOT>/.../conf/webagent.conf).

Writing a WAX Method
Inside your WAX method, you may implement any functionality you like. Note that
your WAX program can read the Agent’s configuration parameters (as loaded from the
Agent’s webagent.conf file), which can include custom parameters you have added
to the webagent.conf file. For details, see “Loading Parameter Settings” on page 233.

A WAX method must return TRUE if the it handled its Web Agent phase (thus
skipping the default handler for that phase), or FALSE if it did not handle the phase
(thus allowing the default handler to run as soon as the WAX method returns). In other
words, if your WAX method augments the handler with which it is associated, then it
should return FALSE. If your WAX method replaces (i.e. overrides) the handler with
which it is associated, then it should return TRUE.
Web Agent Extension API: Writing a WAX Program 213

RSA ClearTrust Developer’s Guide
If your WAX method is an authentication method (registered with the
CT_AUTHENTICATION_HANDLER), it must set the CT_AUTH_CUSTOM bit of the
CT_AUTHENTICATED bitfield if the custom authentication is successful. See
“Authentication Handler” on page 208.

Registering a WAX Method
The method(s) of your WAX program must be associated with one or more of the
standard RSA ClearTrust phase handlers, so that the WAX methods will be invoked
when those standard phase handlers are called. The phase handlers and the status
handler are defined in a function table (a hash table consisting of handler keys and
their associated function pointers). The keys define the various phase handlers that
comprise the Web Server Agent.

To customize the action that results from a phase handler or to alter the flow of URI
request processing, you must register your WAX methods with phase handlers in this
function table. You do this using the ct_table_put function call. Typically,
registration of handlers is performed during initialization of the WAX program, inside
the WAX’s ct_wax_init method, as shown below. (In some cases, registration may
be done in a platform/Web server-specific method.) Note also that your
ct_wax_init() method should return 1 to indicate success.

When you call ct_table_put, the arguments are, in order:

• ct_func_table. This is the function table passed in by the Agent when it
called ct_wax_init().

• the handler key of the phase handler (see list below)

• the name of your WAX method to be associated with the phase handler

The list of handler keys and the function table structure are found in the
ct_function_table.h header file, which is contained in the Agent’s installation
directory. The handler keys are:

• CT_STATUS_HANDLER

• CT_SESSION_HANDLER

• CT_PATH_CHECK_HANDLER

• CT_PREAUTHENTICATION_HANDLER

• CT_AUTHENTICATION_HANDLER

• CT_ACCESS_HANDLER

• CT_COOKIE_HANDLER

See “Agent Phase Handlers” on page 207 for a description of each handler.

int ct_wax_init(ct_table_ptr ct_func_table, ct_table_ptr config)
{
ct_table_put(ct_func_table, CT_AUTHENTICATION_HANDLER, my_custom_auth);
return 1;

}

214 Web Agent Extension API: Writing a WAX Program

RSA ClearTrust Developer’s Guide
Keep in mind that your configuration can include multiple WAX methods. Multiple
WAX methods may be associated with a single phase handler, and more than one
phase handler may have WAX methods associated with it.

Invoking a WAX Authentication Method
If your WAX method performs authentication, it will only be called when a user
attempts to load a resource that is protected by the CUSTOM
(SC_AUTH_TYPE_CUSTOM) authentication type. In contrast, if your WAX method
is a non-authentication method (such as a logging method), it will be called every time
its associated phase handler(s) is/are called.

To use your WAX authentication method, edit the webagent.conf file to specify an
authentication type of “CUSTOM” for all resources that require authentication to be
performed by your WAX method. To do this, add the names of these resources or
directories of resources to the cleartrust.agent.auth_resource_list with their
authentication type set to CUSTOM. Alternatively, you may set your
cleartrust.agent.default_auth_mode to CUSTOM so that all resources will use
your custom WAX authentication unless specified otherwise. See the “Authentication
Parameters” section of Appendix A in the RSA ClearTrust Installation and
Configuration Guide.

Compiling and Linking a WAX Program
The following sections provide guidelines for compiling and linking with the WAX
API on the following platforms:

• Microsoft IIS

• iPlanet Web server on Windows NT

• iPlanet Web server on UNIX

• Apache Web server on UNIX

Warning: If you use the ct_print method in a WAX program, you must format the
statement correctly, otherwise it could cause your Web server to crash. In particular,
make sure you do not pass in more format specifiers (for example, "%s" conversion
flags) than there are parameters to fill them.

Note: Note that a WAX authentication method must be is registered with the
CT_AUTHENTICATION_HANDLER; custom authentication cannot be associated with
any other handler
Web Agent Extension API: Writing a WAX Program 215

RSA ClearTrust Developer’s Guide
Compiling and Linking for Microsoft IIS
This section tells you how to compile and link with the WAX API for Microsoft IIS.
You must use Microsoft Visual C++ 6.0 to compile WAX programs; the Agent itself is
now compiled with 6.0, so WAX programs can no longer be compiled with Visual
C++ 5.0.

Compiling

Compile Options: WIN32, _DEBUG, _WINDOWS, MSIIS, WINDOWS

Additional Include Directories: <CT_AGENT_ROOT>\IIS Agent\include

Linking

Additional Libraries: ct_iis50_agent.lib

Additional Library Path: <CT_AGENT_ROOT>\IIS Agent\lib

Compiling and Linking for iPlanet Web Server on Windows NT
This section tells you how to compile and link with the WAX API for iPlanet Web
server on Windows NT. You must use Microsoft Visual C++ 6.0 to compile WAX
programs; the Agent itself is now compiled with 6.0, so WAX programs can no longer
be compiled with Visual C++ 5.0.

Compiling

Compile options: WIN32, _DEBUG, _WINDOWS, NETSCAPE, WINDOWS, XP_WIN32

Additional include directories:
<CT_AGENT_ROOT>\iPlanet Server Agent\include

and

<IPLANET_SERVER_DIR>\include

Linking

Additional library: ct_iplanet_agent.lib

Additional library path: <CT_AGENT_ROOT>\iPlanet Server Agent\lib

Compiling and Linking for iPlanet Web Server on UNIX
This section tells you how to compile and link with the WAX API for iPlanet Web
server on UNIX.

Compiling

Compile options: -DNETSCAPE -DFILE_UNIX -DXP_UNIX

Additional include directories: <CT_AGENT_ROOT>/agent/iplanet/include

and <IPLANET_SERVER_DIR>/include
216 Web Agent Extension API: Writing a WAX Program

RSA ClearTrust Developer’s Guide
Linking

Additional libraries: libct_iplanet_agent.so

Additional library path: <CT_AGENT_ROOT>/agent/iplanet/lib

Recommended link option: -Bsymbolic

The -Bsymbolic option forces the WAX to resolve the symbols against the API rather
than the Agent. If you do not use it, you may encounter name conflicts with methods
in the Agent. If you are using gcc to compile, the syntax is different, as shown below.

Recommended link options, if you are using gcc: -Wl,Bsymbolic

Compiling and Linking for Apache/Redhat Web Server on UNIX
This section tells you how to compile and link with the WAX API for an Apache Web
server or Redhat Stronghold 3 Web server on UNIX.

Compiling

Compile options: -DAPACHE -DFILE_UNIX -DXP_UNIX

Additional include directories: <CT_AGENT_ROOT>/agent/apache/include

and <APACHE_SERVER_DIR>/src/include

and <APACHE_SERVER_DIR>/src/os/unix

Linking

Additional libraries:
<CT_AGENT_ROOT>/agent/apache/lib/libct_apache_agent_apache_ssl.so

or
<CT_AGENT_ROOT>/agent/apache/lib/libct_apache_agent_mod_ssl.so

or
<CT_AGENT_ROOT>/agent/apache/lib/libct_apache_agent_non_ssl.so

If your WAX application happens to use the RSA ClearTrust Runtime API, then you
must also include that library, <CT_HOME>/api/runtime-c/lib/ct_runtime_api.so

Recommended link option: -Bsymbolic

The -Bsymbolic option forces the WAX to resolve the symbols against the API rather
than the Agent. If you do not use it, you may encounter name conflicts with methods
in the Agent. If you are using gcc to compile, the syntax is different, as shown below.

Recommended link options, if you are using gcc: -Wl,Bsymbolic
Web Agent Extension API: Writing a WAX Program 217

RSA ClearTrust Developer’s Guide
WAX Examples
The following examples show how to write and register a WAX program:

• “Cookie Data Example”, below

• “Custom Authentication Example” on page 221

• “Custom Error Pages Example” on page 224

Cookie Data Example
The following example, wax.c, is a WAX example that shows how you can add data
to the RSA ClearTrust cookie. Below are the steps that a WAX goes through when it
registers itself and when it runs (when the Agent invokes it).

1. Upon start-up, the Agent checks the cleartrust.agent.wax parameter in its
webagent.conf file and loads all the WAX programs listed there. In this example,
you might set the parameter similar to the following:
cleartrust.agent.wax=D:\\wax_programs\\lib\\wax.so

2. The Agent calls the ct_wax_init method in your WAX program. By calling this
method, the Agent associates (in the function table, ct_func_table) the WAX’s
method(s) with the Agent’s phase handler(s). When those phase handlers run, they
will automatically call the associated methods in the WAX.
In this example, there is just one WAX method, my_cookie_phase_handler(),
and it is associated with the authentication handler (CT_COOKIE_HANDLER).

3. When a WAX method runs, it sets the status and returns TRUE if the it handled
this phase (thus skipping the default handler), or it returns FALSE if it did not
handle the phase. See “Writing a WAX Method” on page 213 for details.
In this example, the WAX merely augments the CT_COOKIE_HANDLER, so it
returns FALSE indicating that the cookie handler should still run.
218 Web Agent Extension API: WAX Examples

RSA ClearTrust Developer’s Guide
wax.c Example

/*
* wax.c
*
* This example, wax.c, is a Web Agent Extension (WAX) that
* shows how you can insert data into the RSA ClearTrust cookie.
*
* Last updated February 10, 2002.
*/

// The standard includes
#include <stdio.h>
#include <string.h>

// Only include windows.h on Windows
#ifdef _WINDOWS

#include <windows.h>
#endif

// ClearTrust includes
#include "ct_function_table.h"
#include "ct_request_data.h"
#include "ct_external.h"

// Internal macros
#define SUCCESS 1
#define FAILURE 0

#define EMAIL "spasam@rsasecurity.com"
#define EMAIL_LENGTH strlen(EMAIL)

// Prototypes declaration

/**
* This function is the initial interface between ClearTrust Agent
* and the Web Agent eXtension (WAX).
*/

CT_EXTERNAL int ct_wax_init (ct_table_ptr, ct_table_ptr);

/**
* The "Cookie phase handler". This function is invoked by ClearTrust
* Agent before the ClearTrust Cookie Phase is handled.
*/

CT_EXTERNAL int my_cookie_phase_handler (const ct_server_parms *,
ct_table_ptr);
Web Agent Extension API: WAX Examples 219

RSA ClearTrust Developer’s Guide
wax.c Example Continues

/**
* This function is the initial interface between ClearTrust Agent
* and the Web Agent eXtension (WAX). The function registers the custom
* phase handlers. In this case, we are registering a custom cookie
* phase handler.
*/

CT_EXTERNAL int ct_wax_init (ct_table_ptr ct_func_table,
ct_table_ptr configuration)

{
ct_print ("ct_wax_init is invoked ...\n");

ct_table_put (ct_func_table,
CT_COOKIE_HANDLER,
my_cookie_phase_handler);

return SUCCESS;
} // End of ct_wax_init

/**
* The "Cookie phase handler". This function is invoked by ClearTrust
* Agent before the ClearTrust Cookie Phase is handled.
*/

CT_EXTERNAL int my_cookie_phase_handler (const ct_server_parms * server_parms,
ct_table_ptr ct_request_table)

{
ct_print ("my_cookie_phase_handler is invoked ...\n");

ct_table_put (ct_request_table, CT_USER_DATA, (void *) EMAIL);
ct_table_put (ct_request_table, CT_USER_DATA_LEN, (void *) EMAIL_LENGTH);

return FAILURE;
} // End of my_cookie_phase_handler
220 Web Agent Extension API: WAX Examples

RSA ClearTrust Developer’s Guide
Custom Authentication Example
The following example, nt_auth.c, is a WAX example that shows how you can add a
custom authentication routine. This example replaces the RSA ClearTrust
authentication with native NT authentication. This example uses NT authentication
for purposes of demonstration. You would not actually build such a WAX program,
since NT authentication is a standard feature of the RSA ClearTrust system.

Example Overview
During Web server initialization, the nt_auth.c WAX registers its authentication
handler in the function table. When the authentication handler is driven, the
nt_auth.c WAX checks whether or not a user name and password have been set. If
they have been set, the WAX performs NT native authentication, sets the status, and
returns TRUE, which indicates that it has succeeded in handling the authentication
phase.

How the WAX Registers and Runs
Below are the steps that a WAX goes through when it registers itself and when it runs
(when the Agent invokes it).

1. Upon start-up, the Agent checks the cleartrust.agent.wax parameter in its
webagent.conf file and loads all the WAX programs listed there. In this example,
you might set the parameter similar to the following:
cleartrust.agent.wax=D:\\wax_programs\\lib\\nt_auth.so

2. The Agent calls the ct_wax_init method in your WAX program. By calling this
method, the Agent associates (in the function table, ct_func_table) the WAX’s
method(s) with the Agent’s phase handler(s). In this case, the method is associated
with the Authentication Handler.
When the Authentication Handler runs, it calls the associated WAX method if and
only if the requested resource (URI) is protected by the CUSTOM authentication
type. See “Invoking a WAX Authentication Method” on page 215.

In this example, there is just one WAX method, nt_authenticate, and it is
associated with the authentication handler (CT_AUTHENTICATION_HANDLER).

3. When a WAX method runs, it sets the status and returns TRUE if the it handled
this phase (thus skipping the default handler), or it returns FALSE if it did not
handle the phase. See “Writing a WAX Method” on page 213 for details.
In this example, the WAX will handle the authentication phase if a user name and
password are provided.

Tips for Compiling and Running
This sample works with IIS Web servers and iPlanet Web servers on NT only. To
compile for IIS, set the MSIIS compiler directive, for iPlanet Web server set the
NETSCAPE compiler directive. See “Compiling and Linking a WAX Program” on
page 215 for details.
Web Agent Extension API: WAX Examples 221

RSA ClearTrust Developer’s Guide
In order for this example to work, the user ID names of the registered users in the
RSA ClearTrust system must be identical to their NT user ID names.

NT authentication example:

/*
* nt_auth.c
*
* Last updated February 19, 2002.
*/

#include <stdio.h>

// Windows header files
#include <windows.h>
#include <winnt.h>

// ClearTrust header files
#include "ct_auth_result.h"
#include "ct_function_table.h"
#include "ct_request_data.h"
#include "ct_external.h"

// Prototype for the NT authentication
CT_EXTERNAL int nt_authenticate(const ct_server_parms *server_parms,

ct_table_ptr ct_req_table);

/**
* Initialization method for Web Agent Extension.
*/

CT_EXTERNAL int ct_wax_init(ct_table_ptr ct_func_table,
ct_table_ptr conf)

{
ct_table_put(ct_func_table,

CT_AUTHENTICATION_HANDLER,
nt_authenticate);

return 1;
}

/*
* Routine to perform NT authentication. It first calls the
* LogonUser API to perform NT authentication, then sets the
* appropriate ClearTrust status. This routine only returns TRUE
* if the user and password was set. If the user and password
* isn't set, it lets the default authentication execute which
* will end up prompting the user for the user and password.
* Once the user and password is set, the NT authentication WAX
* makes the NT API call authenticating the user and then
222 Web Agent Extension API: WAX Examples

RSA ClearTrust Developer’s Guide
NT authentication example continues:

* returns a TRUE directing ClearTrust not to perform default
* authentication.
*/

CT_EXTERNAL int nt_authenticate(const ct_server_parms *server_parms,
ct_table_ptr ct_req_table)

{
BOOL bHandled = FALSE; // If no user or pw, then don't handle
BOOL bIsAuthenticated = FALSE;
HANDLE hToken = 0;
LPTSTR lpszUser = ct_table_find(ct_req_table, CT_PLUGIN_USER);
LPTSTR lpszPassword = ct_table_find(ct_req_table,

CT_PASSWORD);

// If the username and password are supplied, we'll handle
// authentication.
if (lpszUser!= NULL && lpszPassword!= NULL)
{

// Perform NT authentication. We specify a NULL domain
// name so the User will be searched through out all the
// PDCs. Also, we call the NT method LogonUser() with
// LOGON32_LOGON_NETWORK logon type because we are just
// authenticating the user, not creating a process
// under the User's account.
bIsAuthenticated = LogonUser(lpszUser,

NULL,
lpszPassword,
LOGON32_LOGON_NETWORK,
LOGON32_PROVIDER_DEFAULT,
&hToken);

// If isAuthenicated isn't 0, then the user is authenticated
if (bIsAuthenticated)
{
ct_table_put(ct_req_table,

CT_AUTHENTICATED,
(void *) CT_AUTH_CUSTOM);

// Force access checking
SET_STATUS(ct_req_table, CT_CHECK_ACCESS_REQUIRED);

}

Web Agent Extension API: WAX Examples 223

RSA ClearTrust Developer’s Guide
NT authentication example continues:

Custom Error Pages Example
You can use the WAX API to return a custom page when a user is denied access to an
RSA ClearTrust-protected resource.

The following WAX program, redirect.c, shows how to replace the requested URI
with a new URI to display an error code that RSA ClearTrust returns.

During Web server initialization, the WAX programs registers its status handler in the
function table. When the status handler is driven, it checks the current status. If it is an
error, it replaces the requested URI with a corresponding custom error page and sets
the status to CT_AUTH_URL_ACCESS_ALLOWED (that is, access is allowed for the error
page only). This forces the RSA ClearTrust Agent to serve up the new URI.

This example demonstrates how you can extend the functionality of the
RSA ClearTrust Agent. This sample works with IIS, iPlanet Web server on NT, and
iPlanet Web server on UNIX. To compile for IIS, set the MSIIS compiler directive, for
iPlanet Web server set the NETSCAPE compiler directive.

else
{
DWORD dwError = GetLastError();
// Set the appropriate ClearTrust Error code
switch(dwError)
{
case ERROR_LOGON_FAILURE:

SET_STATUS(ct_req_table, CT_AUTH_BAD_USERNAME);
break;

default:
SET_STATUS(ct_req_table, CT_AUTH_UNKNOWN_ERROR);

break;
}

}
bHandled = TRUE; // This indicates that we have handled the

// authentication stage and the Agent can
// proceed directly to the status handler.

}
return bHandled;

}

224 Web Agent Extension API: WAX Examples

RSA ClearTrust Developer’s Guide
Custom error pages example:

/*
* redirect.c
*
* Last updated February 19, 2002.
*/

#include <stdio.h>

// Windows header files
#include <windows.h>
#include <winnt.h>

// ClearTrust header files
#include "ct_auth_result.h"
#include "ct_function_table.h"
#include "ct_request_data.h"
#include "ct_external.h"

// Prototype for status handler
CT_EXTERNAL int handle_status(const ct_server_parms *server_parms, ct_table_ptr
ct_req_table);

// Module Definitions for the customer error pages
#define BAD_USER_PAGE "/cleartrust/bad_user.html"
#define INVALID_ACCOUNT_PAGE "/cleartrust/invalid_account.html"
#define USER_FORBIDDEN_PAGE "/cleartrust/forbidden_user.html"

/**
* Initialization method for Web Agent Extension.
*/

CT_EXTERNAL int ct_wax_init(ct_table_ptr ct_func_table, ct_table_ptr conf)
{

ct_table_put(ct_func_table, CT_STATUS_HANDLER, handle_status);
return 1;

}

/**
* Status Handler. Checks for the error codes which we want to return a
* custom error page. If we are returning a custom error page, then
* set the return code to TRUE indicating that we handled the status.
Web Agent Extension API: WAX Examples 225

RSA ClearTrust Developer’s Guide
Custom error pages example continues:

* Also, set Status to CT_AUTH_URL_ACCESS_ALLOWED forcing the serving
* of the custom error page
*
*/

CT_EXTERNAL int handle_status(const ct_server_parms *server_parms,
ct_table_ptr ct_req_table)

{
BOOL bHandled = FALSE;

// Switch off the current status
switch(GET_STATUS(ct_req_table))
{

// If we have a bad user name, then we have an un-registered
// user. Serve up registration page.
case CT_AUTH_BAD_USERNAME:

// Since BAD_USERNAME is returned if no User Name has been
// supplied, we only want to redirect if one is supplied
if (ct_table_find(ct_req_table, CT_PLUGIN_USER)!= NULL)
{
ct_table_put(ct_req_table, CT_URI, BAD_USER_PAGE);
SET_STATUS(ct_req_table, CT_AUTH_URL_ACCESS_ALLOWED);
bHandled = TRUE;

}
break;

// If we have an expired or inactive account, then we need
// to re-register the user
case CT_AUTH_EXPIRED_ACCOUNT:
case CT_AUTH_INACTIVE_ACCOUNT:

ct_table_put(ct_req_table, CT_URI, INVALID_ACCOUNT_PAGE);
SET_STATUS(ct_req_table, CT_AUTH_URL_ACCESS_ALLOWED);
bHandled = TRUE;
break;

// If the user is denied, serve up a custom error page.
case CT_AUTH_URL_ACCESS_DENIED:

ct_table_put(ct_req_table, CT_URI, USER_FORBIDDEN_PAGE);
SET_STATUS(ct_req_table, CT_AUTH_URL_ACCESS_ALLOWED);
bHandled = TRUE;
break;

default:
break;

}
return bHandled;

}

226 Web Agent Extension API: WAX Examples

RSA ClearTrust Developer’s Guide
WAX API Reference

The ct_wax_init Initialization Method
WAX programs loaded via the cleartrust.agent.wax directive must implement the
ct_wax_init() method. This method is the WAX initialization entry point and is
called by the Web Agent upon loading the WAX program. The method is called once
for each registered WAX during startup of the Web server, and may be used to register
phase handlers and initialize global variables.

Signature
int ct_wax_init(ct_table_ptr func_table, ct_table_ptr config)

Parameters

• func_table is a pointer to the function table for registering handlers.

• config is a pointer to a table containing the Agent’s configuration parameters,
expressed as name/value pairs. These are the parameter settings loaded from
the Agent’s webagent.conf file. For details, see “Loading Parameter
Settings” on page 233.

Return value
Returns a non-zero value on success, 0 (zero) otherwise.

Usage

Define your ct_wax_init method to call ct_table_put to add rows associating each
WAX method with a phase handler. See “Registering a WAX Method” on page 214
for an example.

Warning: The ct_wax_init() method replaces ct_function_init() as the WAX
program initialization method. The ct_function_init() method is deprecated.
WAX programs should be modified to use ct_wax_init() instead of the old
method. Note that method’s signature has changed. This method, as opposed to the
deprecated ct_extension_init(), provides access to the table of configuration
parameters for the virtual host. WAX programs may now include additional
extension-specific configuration parameters in the RSA ClearTrust webagent.conf
file, and the normal scoping rules for configuration parameters will apply.

Note: Because the function table is explicitly provided, there is no need for WAX
programs to call ct_get_function_table(). ct_get_function_table() is now deprecated
as it provides indeterminate results in virtual server environments.
Web Agent Extension API: WAX API Reference 227

RSA ClearTrust Developer’s Guide
ct_extension_init
ct_extension_init is deprecated. Use ct_wax_init instead, as explained above.

Hash Table Functions
The RSA ClearTrust Agent uses hash tables for the function table (the list of phase
handlers and, optionally, their WAX associations), for the configuration parameters
(as loaded from webagent.conf) and for the request data. The hash table functions are
located in the ct_table.h header file. The following table lists the hash table
functions.

Memory Management
You should use the RSA ClearTrust ct_malloc() and ct_free() methods to allocate
or free memory on your RSA ClearTrust-protected Web servers, rather than using the
standard C methods. Consult the comments in ct_function_table.h and in
ct_memory.h for complete information.

Table 8.1 Hash Table Functions

Code Function

void ct_table_put(ct_table_ptr table,
const char* key, const void* value)

Adds or replaces a value specified by the key. Note: the
value is NOT copied, rather the pointer to the value is
stored.

void* ct_table_find(ct_table_ptr table,
const char* key)

Returns the value pointer for the key. If the key doesn’t
exist, a NULL is returned.

void ct_table_remove(ct_table_ptr table,
const char* key)

Removes the value pointer for the key.

void ct_table_replace(ct_table_ptr table,
const char* key, const void* value);

Replaces the current value in the table with the new
value.

Table 8.2 Memory Management Functions

Code Function

void* ct_req_alloc(

const ct_server_parms* server_parms,

size_t size);

Allocates memory which will be freed
automatically at the end of the request. Where
possible, RSA Security recommends that you use
ct_req_malloc() rather than ct_malloc().

char* ct_req_strdup(

const ct_server_parms* server_parms,

const char* str);

Copies a string using memory which will be freed
automatically at the end of the request.
228 Web Agent Extension API: WAX API Reference

RSA ClearTrust Developer’s Guide
Printing Status and Debug Information
You should use the RSA ClearTrust ct_print() method to print status and debug
information.

Request Data
Data associated with a URI request is stored in a hash table called ct_request_data.
This table is passed between phase handlers. The ct_request_data structure is
located in the ct_request_data.h header file.

This hash table contains certain values that are constants and certain values that are
dynamically allocated. If a WAX chooses to modify a dynamically allocated value, it
must manage the memory associated with that value. When replacing a dynamic
value, you must free the old memory. When adding a dynamic value, you must
allocate it using ct_malloc or ct_strdup. In Table 8.4, the “Dynamic?” column
indicates which values are dynamic.

The request data is passed to the phase handlers and is also directly available to
functions other than phase handlers through the code:

ct_get_request_data_table (void* request)

void* ct_malloc(size_t size); ClearTrust replacement for the standard C
malloc() call. Where possible, RSA Security
recommends that you use ct_req_malloc()
(see above) rather than ct_malloc(). If you use
ct_malloc(), you must call ct_free() to free
the memory before your WAX exits.

void* ct_realloc(void* buf, size_text_size); ClearTrust replacement for the standard C
realloc() call.

void ct_free(void* ptr); ClearTrust replacement for the standard C free()
call. Frees memory that was allocated using
ct_malloc(). Not needed if you use
ct_req_malloc().

char* ct_strdup(const char* str); ClearTrust replacement for the standard C
strdup() call.

Table 8.2 Memory Management Functions

Code Function

Warning: If you use the ct_print method in a WAX program, you must format the
statement correctly, otherwise it could cause your Web server crash. In particular,
make sure you do not pass in more format specifiers (for example, "%s" conversion
flags) than there are parameters to fill them.
Web Agent Extension API: WAX API Reference 229

RSA ClearTrust Developer’s Guide
The input parameter request is a pointer to the Web server dependent structure. The
value of each request is described in the following table:

Request data is retrieved from the request data table through the hash lookup using the
keys described here in Table 8.4:

Table 8.3 Values of Input Parameter Request

Request Pointer to

iPlanet Web server iPlanet Request structure, request*

IIS Filter Context structure, PHTTP_FILTER_CONTEXT

Note: For IIS, the ct_request_data is not available until the SF_NOTIFY_URL_MAP
phase.

Table 8.4 RSA ClearTrust Web Server Agent Request Data

Key Type Dyna-
mic? Value

CT_ALLOWABLE_AUTH_MODES char * Yes The allowable authentication types for the current
request. The Authentication handler determines what
types of authentication types are accepted for the current
URI request: BASIC, CERTIFICATE, CUSTOM, NT,
SECURID.

CT_AUTH_MODE char * No The Authorization mode. The Authorization handler
determines what type of authorization to perform using
this value. The values are:
UPW - Perform Authentication and Authorization. User ID
and password are supplied.
UDN - Perform Authentication and Authorization. Locate
user by Distinguished Name.
UID, UNT, CUSTOM, SECURID—Perform Authorization
only. Locate user by user ID.

CT_AUTHENTICATED unsigned
int

No A bit mask that specifies the types of authentication the
user is currently authenticated against:
CT_AUTH_BASIC (0x00000001)
CT_AUTH_CERTIFICATE (0x00000004)
CT_AUTH_CUSTOM (0x00010000)
CT_AUTH_NT (0x00000002)
CT_AUTH_SECURID (0x00000008)

CT_DN char * Yes The user’s Distinguished Name. When the
CT_AUTH_MODE is set to UDN, this value is used to
retrieve the Distinguished Name for authorization.

CT_ERR_MSG char * No The error message to return to the browser. When a
WWW-AUTHENTICATE (HTTP/401), FORBIDDEN
(HTTP/403), or SERVER ERROR (HTTP/500) is returned
to the browser, this message is included.
230 Web Agent Extension API: WAX API Reference

RSA ClearTrust Developer’s Guide
Status Handler
The RSA ClearTrust Agent has a single status handler that manages the processing
flow based on the status code returned from any phase handler. The status handler
does not know the identity of the phase handler that invokes it; it simply uses the
status code to determine the next action to take or the next phase handler to execute.

CT_FORM_AUTH_MODE char * Yes The authentication mode of the form. This value specifies
which authentication mechanism to use to authenticate
the data in the form.

CT_IS_PATH_PROTECTED char * No Specifies whether or not the URL is protected (Yes/No).

CT_PASSWORD char * Yes The user’s password. When the CT_AUTH_MODE is set
to UPW, this value is used to retrieve the user’s password
for authentication.

CT_QUERY char * Yes Query-string portion of the requested URI.

CT_POST_DATA char * No Raw form data associated with a form-based logon
request.

CT_ORIG_URI char * No Original URI requested before the user was redirected to
a logon page.

CT_PREV_USER char * Yes The user ID or DN for the previous authentication.

CT_STATUS int No The status. This value is used by the status handler to
determine the Web server action and/or which handler to
execute.

CT_URI char * Yes The requested URI. IF this value is overridden, the Web
server will be instructed to serve the new URI.

CT_PLUGIN_USER char * Yes The user’s ID. When the CT_AUTH_MODE is set to
UPW, this value is used to retrieve the user ID for
authentication. For both UPW and UID, this value is used
for authorization.

CT_USER_DATA void * No A pointer to a buffer containing user-defined raw data
included with the RSA ClearTrust cookie. The length of
the buffer is specified in the CT_USER_DATA_LEN
status code.

CT_USER_DATA_LEN unsigned
short

No The length of the CT_USER_DATA buffer, in bytes. The
maximum length is 2048 bytes.

Table 8.4 RSA ClearTrust Web Server Agent Request Data

Key Type Dyna-
mic? Value

Note: You can configure the Web server to return a customized HTML page with the
HTTP return codes
Web Agent Extension API: WAX API Reference 231

RSA ClearTrust Developer’s Guide
The status code is set in ct_request_data. For details about ct_request_data, refer
to the section titled “Request Data” Table 8.5 lists the recognized status codes and
their resulting actions.

The status code determines the action and/or the next phase of execution. For
convenience, two macros — SET_STATUS and GET_STATUS — are supplied to set and
get the status respectively. Table shows the recognized values and meanings of the
different status codes. The status code values are found in the ct_function_table.h
header file.

Table 8.5 Recognized Status Codes and Resulting Actions

Status Code Resulting Actions

CT_SESSION_ACTIVE Execute authentication phase with active authentication.

CT_AUTH_URL_PROTECTED Execute session phase.

CT_CHECK_ACCESS_REQUIRED Execute Authorization phase.

CT_CREATE_COOKIE Execute the Cookie phase.

CT_AUTH_URL_ACCESS_ALLOWED
CT_AUTH_URL_UNPROTECTED

Return the requested URI to the browser.

CT_AUTH_BAD_USERNAME
CT_AUTH_BAD_PASSWORD

Return a WWW-Authenticate (HTTP 401) to the browser.
For form-based authentication, the session is invalidated, and
the user is redirected to a logon page.

CT_SESSION_EXPIRED Force new user authentication.

CT_AUTH_PASSWORD_EXPIRED_FORCED
CT_AUTH_PASSWORD_EXPIRED_NEW_USER

Force password change.

CT_AUTH_EXPIRED_ACCOUNT
CT_AUTH_INACTIVE_ACCOUNT
CT_AUTH_PASSWORD_EXPIRED
CT_AUTH_URL_ACCESS_DENIED
CT_AUTH_USER_LOCKED_OUT

Return a FORBIDDEN (HTTP 403) to the browser.
For form-based authentication, the user is redirected to the
appropriate error page.

CT_AUTH_UNKNOWN_ERROR
CT_AUTH_DATABASE_ERROR
CT_COOKIE_ERROR
CT_NO_AUTH_SERVERS
CT_SERVER_TIMED_OUT
CT_UNHANDLED_REQUEST

Return an error message (HTTP/500) to the browser.
For form-based authentication, the user is redirected to the
appropriate error page.
232 Web Agent Extension API: WAX API Reference

RSA ClearTrust Developer’s Guide
Loading Parameter Settings
When the Agent calls ct_wax_init() to initialize your WAX program, it passes a
pointer (the config parameter to ct_wax_init() as shown on page 227) to a table
containing the Agent’s configuration parameters, expressed as name/value pairs.
These are the parameter settings loaded from the Agent’s webagent.conf file.

Your WAX program can use the ct_table_find() method (see ct_table.h) to get
the value of any parameter by name. You can add custom parameters to the
webagent.conf and access them here. Each custom parameter you add may have any
name, provided it does not begin with “cleartrust.agent”, which is the reserved
RSA ClearTrust prefix.

If your Web server uses virtual hosts, you should note the scoping rules in “Scope of
WAX Parameters” in the section that follows.

Using WAX Programs with Virtual Host-Enabled Servers

General Issues
To apply a WAX program to a single virtual host, you must declare that WAX in the
<VirtualHost ...> block for that virtual host. This setting is done in the Agent’s
webagent.conf file. You may apply the same WAX program to many hosts by
declaring it in the <VirtualHost ...> blocks for all hosts that will use that WAX
program.

Scope of WAX Parameters
When a WAX is running within the context of a virtual host, it has access to the
webagent.conf parameters for that virtual host. These parameters include all the
settings from the applicable <VirtualHost ...> block plus, for each value not
defined in that block, the setting from the <Global> block. See “Loading Parameter
Settings” above for information on retrieving parameter values.

Warning: If you declare a WAX in any <VirtualHost ...> block, you may not
declare that WAX in the <Global> block of the webagent.conf.
Web Agent Extension API: WAX API Reference 233

RSA ClearTrust Developer’s Guide
234 Web Agent Extension API: WAX API Reference

RSA ClearTrust Developer’s Guide
9 Customizing Your Web Environment
This chapter provides information about various customizations and personalizations
that you can implement in your RSA ClearTrust®-protected Web servers. Many of
these are provided as samples to get you started developing and creating your own
customized and personalized forms and Web server applications.

Personalizing the Environment
When users attempt to access an RSA ClearTrust-protected resource, they’ll see either
the default browser-based Basic authentication prompt or one of the HTML forms
provided with the RSA ClearTrust installation. You can easily customize the existing
HTML pages to conform to your enterprise-wide Web design standards or create new
pages, as long as you include the necessary inputs for logon, such as user and
password.

Modifying the built-in forms is the simplest way to get started with customizing the
environment for your users. A more sophisticated approach is to use the
RSA ClearTrust APIs to create your own application that generates different home
pages based on the user account of the person who logs on.

Note: In this chapter, the RSA ClearTrust Web Server Agent installation directory is
referred to as <CT_AGENT_ROOT>. Directories that contain other software are
abbreviated in a similar way, such as <IPLANET_SERVER_DIR> and
<APACHE_SERVER_DIR>.

<INPUT TYPE="text" NAME="user">
<INPUT TYPE="password" NAME="password">

Warning: When implementing error pages, you should be careful to limit the
amount of information made available to a possible attacker.
In the event of a failure, whether it be during or after authentication, your error
messages or pages should reveal as little information as possible. Logon failures
should only be reported as failures; if you display an error page indicating an invalid
password was typed, that will tell attacker that he has found a valid user name.
Also, you should avoid displaying the “ClearTrust” name in error messages; the
knowledge that a site is secured with RSA ClearTrust can be vital to an attacker
should any vulnerabilities be discovered in the RSA ClearTrust product. Every step
should be taken to make RSA ClearTrust transparent to the end-user and potential
intruders.
Web Environment: Personalizing the Environment 235

RSA ClearTrust Developer’s Guide
Creating Personalized Content
Every virtual enterprise network has different needs. With the RSA ClearTrust system,
you can easily customize the RSA ClearTrust Java modules to create
dynamically-generated Web pages that contain content or provide a menu of
applications that a user is entitled to access, based on the user’s identity.

Once you’ve enabled the RSA ClearTrust Web Server Agent on a Web server, the user
name is passed as the REMOTE_USER,CT_REMOTE_USER or HTTP_REMOTE_USER variable
(after the user has authenticated), in the HTTP header. You can write a CGI
application or Servlet that retrieves this environment variable and displays a
user-specific menu of applications or a Web page that has been tailored to that
particular user (for example, with user preferences you have stored in the
RSA ClearTrust database). You use the RSA ClearTrust API to create this
personalization application. See the earlier chapters in this book more information
about developing applications using the RSA ClearTrust APIs.

RSA ClearTrust Environment Variables
The RSA ClearTrust Web Server Agent maintains custom RSA ClearTrust
environment variables that identify the type of authentication that was used and the
UID for the current user. That means that you (webmaster, application developer) can
retrieve this information, just as you do any other existing environment variables on
your Web server.

You can access three different environment variables in CGI scripts to identify the
authenticated user:

• REMOTE_USER (on a proxy server),

• HTTP_REMOTE_USER (on a proxy server), or

• CT_REMOTE_USER.

Also, you can retrieve CT_WEB_SVR_ID, which is the name of the Web server as
defined in the RSA ClearTrust Entitlements data store.

If you have written RSA ClearTrust Agent extensions using the standard
REMOTE_USER environment variable, in 4.5.x and later there is an RSA ClearTrust
CT_REMOTE_USER environment variable. RSA ClearTrust sets both the
REMOTE_USER and the CT_REMOTE_USER variables, however RSA Security
recommends using the CT_REMOTE_USER variable to avoid other applications from
overwriting the commonly used REMOTE_USER.

Note: UNMAPPED_REMOTE_USER is an IIS-specific environment variable
236 Web Environment: RSA ClearTrust Environment Variables

RSA ClearTrust Developer’s Guide
Details
The Web Server Agent maintains an environment variable named
CT_REMOTE_USER. After a successful authentication, this environment variable sets
the UID for the current user. The Agent will also set the standard REMOTE_USER
variable, however sometimes other applications will overwrite REMOTE_USER.

RSA Security recommends using CT_REMOTE_USER. This variable can be accessed
in the same way as the CT_AUTH_TYPE environment variable.

The Web Server Agent maintains an environment variable named CT_AUTH_TYPE.
The variable is defined according to the following bit mask values:

CGI Usage
To obtain the value of the CT_AUTH_TYPE or CT_REMOTE_USER in the CGI
environment, you must pass in HTTP_CT_AUTH_TYPE or HTTP_CT_REMOTE_USER
as the key. For example, in C, you would:

While in Perl, you would use:

The key is the same for Apache, Microsoft IIS, and Netscape Enterprise Server, on
both UNIX and Windows platforms.

Servlet Usage
Obtaining the CT_AUTH_TYPE or CT_REMOTE_USER in a Java Servlet depends on
the type of Web server that you’re using. Specifically, for Apache, you should use
ct_auth_type. For Microsoft IIS, you must parse the ALL_HTTP variable and retrieve
CT_AUTH_TYPE from HTTP_CT_AUTH_TYPE or CT_REMOTE_USER from
HTTP_CT_REMOTE_USER. For Netscape, you retrieve ct-auth-type or
ct_remote_user.

Table 9.1 CT_AUTH_TYPE bitmask values

CT_AUTH_TYPE Bitmask

CT_AUTH_BASIC 0x00000001

CT_AUTH_NT 0x00000002

CT_AUTH_CERTIFICATE 0x00000004

CT_AUTH_SECURID 0x00000008

CT_AUTH_CUSTOM 0x00001000

getenv(“HTTP_CT_AUTH_TYPE”)
getenv(“HTTP_CT_REMOTE_USER”)

$ENV{HTTP_CT_AUTH_TYPE}
$ENV{HTTP_CT_REMOTE_USER}
Web Environment: RSA ClearTrust Environment Variables 237

RSA ClearTrust Developer’s Guide
Example
Webmasters, developers, and others who are deploying the RSA ClearTrust Web
Server Agent can use this environment variable (just as they would any other
environment variable) in CGI scripts or servlets. Here is a Servlet example of the logic
one might use to determine the type of RSA ClearTrust authentication that was used,
based on the bit mask.

RSA ClearTrust Source Code Details
The header file, ct_request_data.h, contains the bitmask and variable information.
See the ct_request_data.h header file, in the <CT_AGENT_ROOT>/include directory
of the RSA ClearTrust installation, for details. Also see Chapter 8, “Web Agent
Extension API” for additional information about the RSA ClearTrust Web Server
Agent Extension (WAX) API and how it works.

private static int SECURID_AUTH_MASK = 0x00000008;
private static int CERT_AUTH_MASK = 0x00000004;
private static int NT_AUTH_MASK = 0x00000002;
private static int BASIC_AUTH_MASK = 0x00000001;

private static int SECURITY_LEVEL_1 = 1;
private static int SECURITY_LEVEL_2 = 2;
private static int SECURITY_LEVEL_3 = 3;

String customHeader = req.getHeader(“CT_AUTH_TYPE”);

// isAuthenticated is the value of CT_AUTH_TYPE set by
// ClearTrust Agent
private int getAuthLevel(int isAuthenticated)
{

if ((isAuthenticated & SECURID_AUTH_MASK) > 0)
{

return SECURITY_LEVEL_3;
}
else if ((isAuthenticated & CERT_AUTH_MASK) > 0)
{
return SECURITY_LEVEL_2;

}
else if ((isAuthenticated & BASIC_AUTH_MASK) > 0 ||

(isAuthenticated & NT_AUTH_MASK) > 0)
{
return SECURITY_LEVEL_1;

}
return -1; // invalid auth mode
238 Web Environment: RSA ClearTrust Environment Variables

RSA ClearTrust Developer’s Guide
Contents of the RSA ClearTrust Cookie
The RSA ClearTrust cookie contains the following pieces of information:

• cookie name, which is CTSESSION by default but may be changed. See the
following section entitled “Changing the Cookie Name”.

• user’s RSA ClearTrust user ID name

• length of the user ID

• length of the user’s password

• IP address of the server that issued this cookie, represented as 32 bit address

• IP Address of the client (browser) machine, represented as string

• date and time that this cookie was first issued

• most recent date and time this cookie was updated, also known as the “last touch
time”

• boolean indicating whether this cookie is now valid. True indicates it is valid.

• bitmask indicating all the authentication types that the user has satisfied in this
session

• for multi-phase RSA SecurID authentication only, a special flag that indicates
current RSA SecurID authentication phase

• for multi-phase RSA SecurID authentication only, information identifying which
Authorization Server is handling the current authentication

• size of the additional user-defined data buffer

• the user-defined data buffer itself

Changing the Cookie Name
By default, the RSA ClearTrust cookie name is CTSESSION. When you configure the
RSA ClearTrust system you may change this name.

Generally, you will only need to change the name if multiple RSA ClearTrust
installations are present on a network, or if the cookie name conflicts with another
application.

To change the cookie name, edit the <CT_AGENT_ROOT>/conf/webagent.conf file and
change the cleartrust.agent.cookie_name setting. You may use any combination
of letters and numerals without spaces. Hyphen and underscore characters are
permitted; other non-alphanumeric characters are not allowed. For example, you
might set it as follows:

cleartrust.agent.cookie_name=RSA_W_EUROPE
Web Environment: Contents of the RSA ClearTrust Cookie 239

RSA ClearTrust Developer’s Guide
Note that if SSO is enabled on your RSA ClearTrust installation, you cannot leave this
setting blank.

All Web servers that are participating in SSO must use the same cookie name.

Writing ASP and JSP Pages

RSA ClearTrust Parameter Names
The following ASP query string parameters may be used in ASP and JSP pages that
you write. RSA strongly recommends that you do not change these parameter names:

• CTAuthMode is the RSA ClearTrust authentication type, such as BASIC, NT,
SECURID, or CUSTOM.
For example, in a JSP you might retrieve the authentication type as follows:
String MyAuthMode = request.getParameter("CTAuthMode");

• CTLoginErrorMsg is the error message string to be displayed to the user.

Password Changer Example
This Administrative API example, PasswordChanger, is a Java Server Pages (JSP)
example that shows how to build a page that will let a user change his or her password.

A compiled version of this example is provided in your release as a Web application
archive (WAR) file deployable on an application server:

<CT_HOME>/api/admin-j/example/changepw.war

Using the Password Changer
You can configure RSA ClearTrust to launch the password changer automatically
when a user enters an expired password. See the section section explaining the
cleartrust.agent.login_error_password_expired parameter in Appendix A of
the RSA ClearTrust Installation and Configuration Guide.

Deploying the Example
This section describes how to deploy the Password Changer example WAR file,
changepw.war, on a JRun application server. Installation procedures for other
application servers will differ somewhat from the steps below.

1. Open the JRun Management Console and click the name of your application
server. By default, this is JRun Default Server.

2. Click WAR Deployment and enter appropriate values in the following fields.

• Servlet WAR File or Directory: Enter the full path to the changepw.war file,
which is usually <CT_HOME>/api/admin-j/example/changepw.war
240 Web Environment: Writing ASP and JSP Pages

RSA ClearTrust Developer’s Guide
• JRun Server Name: Select the name of your application server. By default,
this is JRun Default Server.

• Application Name: Enter a unique name for the application, without spaces
between characters, for example, changepw.

• Application Host: Select All Hosts.

• Application URL: Enter the URL to which the Entitlements Manager will be
mapped. This must begin with a forward slash, and should be an easily
remembered name like /changepw

• Application Deployment Directory: Enter the root directory where the
application will be stored and served in JRun. A typical installation
deployment directory is as follows, where <JRUN_HOME> is the path
location of your JRun installation directory:
<JRUN_HOME>/servers/default/changepw

3. Click Deploy.

4. Restart your JRun Application Server to complete the deployment.

Now that the WAR file is deployed, you can run it by pointing your browser to the
Application URL you specified above. For example, if you installed on your local
machine and your JRun Server port is 8100, then the URL might be:

http://localhost:8100/changepw

Customizing the Example
The source code is also provided in your installation, in the following files:

• <CT_HOME>/api/admin-j/example/PasswordChanger.java

• <CT_HOME>/api/admin-j/example/index.jsp

• <CT_HOME>/api/admin-j/example/success.jsp

To modify this sample application, follow these steps:

• Edit the source files.

• If you have changed PasswordChanger.java, then use compile.bat or
compile.sh to compile the new program. This will compile a new
PasswordChanger.class, but it will not update the changepw.war archive.

• Use an archive tool such as WinZip or “jar -u” to edit the changepw.war
archive, replacing the files that you edited (one or more of the following:
PasswordChanger.class, index.jsp, success.jsp) and adding any new
files.
Web Environment: Writing ASP and JSP Pages 241

RSA ClearTrust Developer’s Guide
Example Source
PasswordChanger.java:

package sirrus.samples.admin;

import java.io.IOException;

import sirrus.api.client.APIServerProxy;
import sirrus.api.client.APIException;
import sirrus.api.client.TransportException;
import sirrus.api.client.ObjectNotFoundException;
import sirrus.api.client.IllegalPasswordException;

/**
* ChangePassword bean that encapsulates the business logic that
* handles setting up an RSA ClearTrust API Server connection
* and doing the business logic mechanics of changing a user's
* password in the ClearTrust backend. This is the main meat of
* the web-based default change password mechanism.
*
* @since ClearTrust 4.5 SE P1
* @version 1.0
*/

public class PasswordChanger
{

/**
* The display string to show to the user after the
* operation completes. This is fetched with a separate
* method call after the changePassword method is
* called.
*/

private String displayString;

/**
* The user name that we are currently operating on.
*/

private String userName;

/**
* The old user password that the user is changing their
* password FROM.
*/

private String oldPassword;
242 Web Environment: Writing ASP and JSP Pages

RSA ClearTrust Developer’s Guide
PasswordChanger example continues:

/**
* The new password the user is changing their password
* TO.
*/

private String newPassword;

/**
* The confirmation of the new password. This is used to
* verify the user's password before it is set.
*/

private String confirmNewPassword;

/**
* The hostname of the RSA ClearTrust API Server to
* connect to.
*/

private String apiServerHost;

/**
* The port that the RSA ClearTrust API Server is running
* on.
*/

private int apiServerPort;

/**
* Is the RSA ClearTrust API Server using ssl?
*/

private boolean sslEnabled;

/**
* The business method to change the password. This does
* input validation, and then if everything is ok, it
* attempts to change the password on the server back-end. If
* the method returns false, the reason can be retrieved
* through the getDisplayString method.
*
* @return true if the password is changed, false otherwise
* @see #getDisplayString
*/

public boolean changePassword()
{

Web Environment: Writing ASP and JSP Pages 243

RSA ClearTrust Developer’s Guide
PasswordChanger example continues:

if ((apiServerHost == null) || (apiServerPort == 0))
{

displayString = "Configuration Error: API server " +
"unspecified.";

return false;
}

if ((userName == null) || (oldPassword == null) ||
(newPassword == null) ||
(confirmNewPassword == null))

{
displayString = "Please enter username and " +

"password";
return false;

}

if (!(newPassword.equals(confirmNewPassword)))
{

displayString = "Passwords do not match";
return false;

}

// Connect to the backend.
APIServerProxy serverProxy = null;
try
{

serverProxy = new APIServerProxy(apiServerHost,
apiServerPort,
sslEnabled);

// This is the way you connect in anon mode
// for a password change.
serverProxy.connect(null,null,null,null);

serverProxy.resetPassword(userName,
oldPassword,
newPassword);

displayString = "Password successfully changed";
return true;

}

244 Web Environment: Writing ASP and JSP Pages

RSA ClearTrust Developer’s Guide
PasswordChanger example continues:

catch (TransportException te)
{

displayString = "Error connecting to server: " +
te.getMessage();

return false;
}

catch (ObjectNotFoundException onf)
{

displayString = "Login incorrect";
return false;

}

catch (IllegalPasswordException ipe)
{

displayString = "New password not allowed by " +
"password policy";

return false;
}

catch (IOException io)
{

displayString = "Error connecting to server: " +
io.getMessage();

return false;
}

catch (APIException api)
{

displayString = "Error in server: " +
api.getMessage();

return false;
}

}

Web Environment: Writing ASP and JSP Pages 245

RSA ClearTrust Developer’s Guide
PasswordChanger example continues:

/**
* Get the display string to show to the user after the
* operation is completed.
*
* @return the user display string
*/

public String getDisplayString()
{

return displayString;
}

/**
* The public bean method for setting the RSA ClearTrust
* API Server host.
*
* @param host The hostname of the RSA ClearTrust API
* Server to use
*/

public void setServerHost(String host)
{

apiServerHost = host;
}

/**
* Set the RSA ClearTrust API Server port. This is the port
* used to connect to the RSA ClearTrust API Server to
* change the user's password.
*
* @param port The TCP port of the RSA ClearTrust API
* Server
*/

public void setServerPort(int port)
{

apiServerPort = port;
}

246 Web Environment: Writing ASP and JSP Pages

RSA ClearTrust Developer’s Guide
PasswordChanger example continues:

/**
* Is the server using ssl? This must match the other global
* settings of the system.
*
* @param ssl True if the system is in ssl mode, false
* otherwise
*/

public void setSslEnabled(boolean ssl)
{

sslEnabled = ssl;
}

/**
* Set the name of the user whose password is to be changed.
*
* @param user The name of the user
*/

public void setUserName(String user)
{

userName = user;
}

/**
* Get the username of the user whose password is being
* changed.
*
* @return the username whose password is being changed,
* or "" if unset
*/

public String getUserName()
{

if (userName != null)
return userName;

else
return "";

}

Web Environment: Writing ASP and JSP Pages 247

RSA ClearTrust Developer’s Guide
PasswordChanger example continues:

/**
* Set the old password of the user. This is used as the
* credential to allow the user to change their password.
*
* @param pw The old (current) user password
*/

public void setOldPassword(String pw)
{

oldPassword = pw;
}

/**
* Set the new password of the user. This will be the
* new password of the user if the operation completes.
*
* @param pw The new value of the password
*/

public void setNewPassword(String pw)
{

newPassword = pw;
}

/**
* Set the confirmation of the new password. This is used to
* verify that the user entered the correct username and
* password.
*
* @param pw The confirmation of the new password
*/

public void setConfirmPassword(String pw)
{

confirmNewPassword = pw;
}

}

248 Web Environment: Writing ASP and JSP Pages

RSA ClearTrust Developer’s Guide
In addition to the PasswordChanger class, two JSPs are required for this example. The
first is index.jsp, shown here:

<%@page contentType="text/html"%>

<%--

This is an example jsp that allows the user to change their own password.
This page is intended to be used as a starting point for creating a page
that is customized and suited for a particular ClearTrust deployment.

--%>

<jsp:useBean id="passwordChanger" class="sirrus.samples.admin.PasswordChanger"
scope="session"/>

<%--

Set all of the input parameters in the password changer. This is done before
the serverHost, serverPort and sslEnabled values are explicitly set so that
these parameters -cannot- be set via the query string.

--%>

<jsp:setProperty name="passwordChanger" property="*"/>

<%--

These three parameters must be set in the servlet context init to the
hostname and port of the user's administrative api server. For example:

<context-param>
<param-name>passwordChanger.serverHost</param-name>
<param-value>localhost</param-value>

</context-param>
<context-param>

<param-name>passwordChanger.serverPort</param-name>
<param-value>5601</param-value>

</context-param>
<context-param>

<param-name>passwordChanger.sslEnabled</param-name>
<param-value>false</param-value>

</context-param>

The default values (show above) will be used if the parameters are not
provided.

--%>
Web Environment: Writing ASP and JSP Pages 249

RSA ClearTrust Developer’s Guide
index.jsp (part of PasswordChanger example) continues:

<%

// get the init parameters from the implicit 'application' variable
// (which is pageContext.getServletContext())
// NOTE: the 'sslEnabled' parameter is a string
String serverHost = application.getInitParameter("passwordChanger.serverHost");
String serverPort = application.getInitParameter("passwordChanger.serverPort");
String sslEnabled = application.getInitParameter("passwordChanger.sslEnabled");

// getInitParameter() will return null if the parameter was not specified.
// if null then use default values
if(serverHost == null)

serverHost = "localhost";
if(serverPort == null)

serverPort = "5601";
if(sslEnabled == null)

sslEnabled = "false";

// set the corresponding properties in the passwordChanger bean
passwordChanger.setServerHost(serverHost);
passwordChanger.setServerPort(Integer.valueOf(serverPort).intValue()); //

convert from string to int
passwordChanger.setSslEnabled(Boolean.valueOf(sslEnabled).booleanValue()); //

convert from string to boolean

%>

<%
// if the password change was successful then display the success page
// if not, then display the form. The first time through this form will
// return false since the username, password, etc are null and the form
// will be displayed.
if (passwordChanger.changePassword())
{
%>

<jsp:forward page="success.jsp"/>

<%
}
else
{
%>
250 Web Environment: Writing ASP and JSP Pages

RSA ClearTrust Developer’s Guide
index.jsp (part of PasswordChanger example) continues:

<html>
<head>

<title>
Change ClearTrust Password

</title>
</head>
<body>

<h1><jsp:getProperty name="passwordChanger"
property="displayString"/></h1>

<form method="POST" action="<%=request.getRequestURI()%>">
<table>
<tr>

<td>Name</td>
<td><input type="text" name="userName"

value="<jsp:getProperty name="passwordChanger" property="userName"/>"></td>
</tr>
<tr>

<td>Current Password</td>
<td><input type="password" name="oldPassword"></td>

</tr>
<tr>

<td>New Password</td>
<td><input type="password" name="newPassword"></td>

</tr>
<tr>

<td>Confirm New Password</td>
<td><input type="password" name="confirmPassword"></td>

</tr>
<tr>

<td colspan="2"><input type="submit" value="Change
Password"></td>

</tr>
</table>
</form>

</body>
</html>

<% } %>
Web Environment: Writing ASP and JSP Pages 251

RSA ClearTrust Developer’s Guide
Finally, the PasswordChanger example requires one other jsp file: success.jsp,
shown here:

<%@page contentType="text/html"%>
<%--

This is the page shown when the user successfully completes a password
change

--%>

<jsp:useBean id="passwordChanger" class="sirrus.samples.admin.PasswordChanger"
scope="session"/>

<html>
<head>

<title>Password Successfully Changed</title>
</head>
<body>

<h1><jsp:getProperty name="passwordChanger"
property="displayString"/></h1>

</body>
</html>
252 Web Environment: Writing ASP and JSP Pages

RSA ClearTrust Developer’s Guide
HTTP Header Parameters
The parameters listed here can be set in the Web Agent’s webagent.conf file to
specify what information is available as HTTP request headers.

For the 4.7 release, CTUSER replaces the old CT_REMOTE_USER variable:

cleartrust.agent.user_header_list=CTUSER

The following parameters can be set to “yes” or “no” to export ClearTrust values to
the HTTP header:

cleartrust.agent.export_session_init_time=yes
cleartrust.agent.export_session_expiration_time=yes
cleartrust.agent.export_last_touch_time=yes
cleartrust.agent.export_cookie_user_buffer=yes

See the RSA ClearTrust Installation and Configuration Guide or the comments in the
webagent.conf file for an explanation of each parameter.
Web Environment: HTTP Header Parameters 253

RSA ClearTrust Developer’s Guide
254 Web Environment: HTTP Header Parameters

RSA ClearTrust Developer’s Guide
Index

A
add_admin: 25
add_admin_user: 25
add_app: 25
add_group: 25
add_realm: 25
add_server: 25
add_user: 25
add_user_prop_def: 25
addAdministrativeUser: 82
addUser: 82
Admin API

Java
connection types: 72

admin_id: 25
Administrative API

C: 11
connection types: 17

Java: 67
administrative group

in Java API: 20
object in Java API: 78
search for in Java API: 107

administrative role
object in C API: 25
object in Java API: 82

administrative user
example code, C: 60
object in C API: 24
object in Java API: 80

administrator permissions: 25
Agent

augment vs. override handler: 213
edit cookie: 218
example code: 222
extending functionality: 204
extensions, compiling: 216
handler flow diagram: 211
HTTP header parameters: 253
libraries: 213
process flow diagram: 206

agent.auth_resource_list: 158
agent.cookie_name: 239
agent.login_error_password_expired: 240
allocation

utilities: 54, 56
APACHE_SERVER_DIR: 204
API

installing on Solaris: 9
installing on Windows: 7
WAX: 203

API Server
vs. Entitlements Server: 1

APIFactory: 171
APIFactory methods: 171
APIServerProxy: 69

connect method example: 73
defined: 69
disconnect method example: 74
Java code example: 73

application
object in C API: 42
object in Java API: 96
search for in Java API: 107

application function
object in C API: 44
object in Java API: 97

application server: 240
application URL

object in C API: 44, 99
array

of ClearTrust C objects: 18
of ClearTrust Java objects: 102

ASP
example: 197
get user example: 201
Runtime API example: 198
writing ASP pages: 240

auth_resource_list: 158, 207
authenticate: 168

certificate authentication: 158
example code: 172
example code with SSL on: 177

authenticated connection
Admin C API: 17
Admin Java API: 72
Runtime C API: 136
Runtime Java API: 162

authenticated SSL
running C Runtime API with: 136

authentication: 221
auth type for a given resource: 158
custom: 215, 221
custom auth in C Admin API vs. WAX: 148
error pages example: 225
NT auth example code: 218, 221
Index 255

RSA ClearTrust Developer’s Guide
SecurId example code, C: 153
SecurId example code, Java: 183
tokens: 140, 159
tokens in C Runtime API: 133
type: 158
types: 132, 158, 169

authentication handler: 208
authentication type

setting for URI: 207
authorization handler: 209
Authorization Server

checking with C API: 151
clear all caches: 70
clear cache: 168

authorize: 168
AuthTypes interface: 169
AuthTypesClass for DCOM: 196

B
basic authentication

C Runtime API: 145
basic entitlement

C API: 36
in Java API: 94

book conventions: ix
boolean criterion: 105
Bsymbolic: 217

C
C API

JNI wrapper: 13
memory management: 54, 56
Runtime: 131

cache
cache management example code: 112
clearing all: 70
clearing one: 168

callback
for keystore passphrase: 140
for private key passphrase: 140

CD
finding APIs on CD: 7

certificate
CT_ROOT: 165
keystore name: 140

certificate authentication
C Runtime API: 146
not supported in Runtime API: 158

certj.jar: 13
for DCOM API: 190

for Java API: 68, 161
change password

example code: 240
changepw.war: 240
checkAccess: 69
checkAddGroupToRealm: 103
checkAddUserToGroup: 103
checkChangePassword: 103
checkCreateAdministrativeGroup: 103
checkCreateAdministrativeRole: 103
checkCreateApplication: 103
checkCreateApplicationFunction: 103
checkCreateExplicitEntitlemnt: 103
checkCreateGroup: 103
checkCreatePasswordPolicy: 103
checkCreateRealm: 103
checkCreateServerTree: 103
checkCreateSmartRule: 103
checkCreateUser: 103
checkCreateUserPropertyDefinition: 103
checkCreateWebServer: 103
checkDeleteAdministrativeGroup: 103
checkDeleteAdministrativeRole: 103
checkDeleteApplication: 103
checkDeleteApplicationFunction: 103
checkDeleteExplicitEntitlement: 103
checkDeleteGroup: 103
checkDeletePasswordPolicy: 103
checkDeleteRealm: 103
checkDeleteServerTree: 103
checkDeleteSmartRule: 103
checkDeleteUser: 103
checkDeleteUserPropertyDefinition: 104
checkDeleteWebServer: 104
checkFunction: 69
checkModifyAdministrativeGroup: 104
checkModifyAdministrativeRole: 104
checkModifyApplication: 104
checkModifyApplicationFunction: 104
checkModifyExplicitEntitlemnt: 104
checkModifyGroup: 104
checkModifyPasswordPolicy: 104
checkModifyRealm: 104
checkModifyServerTree: 104
checkModifySmartRule: 104
checkModifyUser: 104
checkModifyUserPropertyDefinition: 104
checkModifyWebServer: 104
checkPassword: 69
checkRemoveGroupFromRealm: 104
checkRemoveUserFromGroup: 104
256 Index

RSA ClearTrust Developer’s Guide
checkResourceStatus: 168
checkViewPasswordPolicy: 104
CLASSPATH

for DCOM API: 191
clearServerCaches: 168
cleartrust.agent.auth_resource_list: 158, 207
cleartrust.agent.cookie_name: 239
cleartrust.agent.export_cookie_user_buffer: 253
cleartrust.agent.export_last_touch_time: 253
cleartrust.agent.export_session_expiration_time: 253
cleartrust.agent.export_session_init_time: 253
cleartrust.agent.login_error_password_expired: 240
cleartrust.agent.pix directive: 227
cleartrust.agent.user_header_list: 253
cleartrust.agent.wax: 212, 213
cleartrust.agent.wax directive: 227
cleartrust.aserver.ldapauth.ldapattr_map_scuid: 147
cleartrust.dispatcher.list_port.force_anonymous: 136
clearUserPropertyCriterion: 109
client key: 141
close: 168
code

error in C API: 54
collection

C API and: 18
sparse data: 102

com
package: 196

COM applications
using with RSA ClearTrust: 189

compile
Agent: 216

compiling and linking
for Microsoft IIS: 216
for Netscape/NT: 216
for Netscape/UNIX: 216, 217

configuration
custom parameters for WAX: 233

connect: 69
Admin C API connection types: 17
Admin Java API code example: 73
Admin Java API connection types: 72
Runtime C API connection types: 136
Runtime Java API connection types: 162

connection pool
C Runtime functions: 138
defined: 135
keys in C API: 140

constants
C API: 54

contact information: xi

conventions: ix
cookie

contents: 239
editing: 218
name: 239
name, changing: 239
WAX example: 218

cookie handler: 210
createAdministrativeGroup: 69
createAdministrator: 78
createApplication: 69
createApplicationFunction: 96
createApplicationURL: 96
createAppURL: 69
createAuthServerConnection: 159, 160, 171
createAuthServerConnection(): 171
createExplicitEntitlement: 69
createFromServerDispatcher: 171
createFromServerDispatchers: 171
createFromServerList: 171
createGroup: 69
createPasswordPolicy: 69
createRealm: 69
createServerTree: 100
createSmartRule

IApplication method: 96
IApplicationFunction method: 98
IApplicationURL method: 99

createToken: 168
createUser: 69
createUserPropertyDefinition: 69
createWebApplication: 70
createWebAppURL: 70
createWebServer: 70
CredentialConstants: 170
criteria

Java API classes: 105
ct_add_group_to_realm: 35
ct_add_server_to_pool_ext: 139
ct_add_server_to_pool_ext_v2: 139
ct_add_user_to_admin_role: 26
ct_add_user_to_group: 29
CT_Admin object: 25
ct_admin_api.jar

DCOM and: 190
ct_admin_api.lib and dll: 13
CT_AdminUser: 24

vs. CT_User: 24
CT_AGENT_ROOT: 204
ct_alloc_array_obj: 54
ct_alloc_criterion: 54
Index 257

RSA ClearTrust Developer’s Guide
ct_alloc_obj: 54
ct_alloc_search: 49, 54
ct_alloc_string: 54
ct_alloc_userprop_criterion: 54
ct_alloc_userprop_criterion_array: 54
CT_ALLOWED_AUTH_MODES: 230
CT_Application: 42
CT_ApplicationFunction: 44
CT_ApplicationURL: 44
CT_AUTH_ADMIN_LOCKOUT_STR: 145, 146
CT_AUTH_BAD_PASSWORD: 208, 232
CT_AUTH_BAD_USERNAME: 208, 232
CT_AUTH_CUSTOM: 208, 214
CT_AUTH_DATABASE_ERROR: 232
CT_AUTH_EXPIRED_ACCOUNT: 209, 232
CT_AUTH_EXPIRED_ACCOUNT_STR: 145, 146
CT_AUTH_EXPIRED_PASSWORD_FORCED_ST

R: 145
CT_AUTH_EXPIRED_PASSWORD_NEW_USER_

STR: 145
CT_AUTH_EXPIRED_PASSWORD_STR: 145, 146
CT_AUTH_INACTIVE_ACCOUNT: 209, 232
CT_AUTH_INACTIVE_ACCOUNT_STR: 145, 146
CT_AUTH_INVALID_PASSWORD_STR: 145
CT_AUTH_MODE: 208, 230
CT_AUTH_NEW_PIN_ACCEPTED_STR: 147
CT_AUTH_NEW_PIN_REJECTED_STR: 147
CT_AUTH_NEW_PIN_REQUIRED_STR: 146, 147
CT_AUTH_NEXT_CODE_REQUIRED_STR: 147
CT_AUTH_NT_AUTH_FAILED_STR: 146
CT_AUTH_PASSWORD_EXPIRED: 209, 232
CT_AUTH_PASSWORD_EXPIRED_FORCED:

209, 232
CT_AUTH_PASSWORD_EXPIRED_NEW_USER:

209, 232
ct_auth_result structure: 134
ct_auth_result.h: 13, 134
ct_auth_result_tostring: 134
CT_AUTH_SECURID_AUTH_FAILED_STR: 147
CT_AUTH_SERVER_STATE: 147
CT_AUTH_TYPE: 237
ct_auth_types.h: 134
CT_AUTH_UNKNOWN_ERROR: 232
CT_AUTH_UNKNOWN_USER_STR: 145
CT_AUTH_URL_ACCESS_ALLOWED: 209, 232
CT_AUTH_URL_ACCESS_DENIED: 209, 232
CT_AUTH_URL_PROTECTED: 232
CT_AUTH_URL_UNPROTECTED: 232
CT_AUTH_USER_LOCKED_OUT: 209, 232
CT_AUTH_VALID_USER_STR: 145, 146
ct_authenticate: 150

ct_authenticate_pool: 150
CT_AUTHENTICATED: 208, 230
ct_authorize: 149
ct_authorize_pool: 149
ct_bool.h: 12
ct_boolean.h: 13, 134
ct_callback.h: 134
CT_CALLBACK_KEYSTORE_PASSPHRASE: 140
CT_CALLBACK_PRIVATE_KEY_PASSPHRASE:

140
ct_change.html, replacement for: 240
ct_check_access (deprecated): 19
CT_CHECK_ACCESS_REQUIRED: 232
ct_check_add_group_to_realm: 52
ct_check_add_user_to_group: 52
ct_check_change_password: 52
ct_check_create_admin_group: 52
ct_check_create_admin_role: 52
ct_check_create_admin_role_in_admin_group: 52
ct_check_create_application: 52
ct_check_create_explicit_entitlement: 52
ct_check_create_group: 52
ct_check_create_password: 52
ct_check_create_property_definition: 52
ct_check_create_realm: 52
ct_check_create_server_tree: 52
ct_check_create_smart_rule: 52
ct_check_create_user: 52
ct_check_create_web_server: 52
ct_check_creeate_application_function: 52
ct_check_delete_administrative_group: 52
ct_check_delete_administrative_role: 52
ct_check_delete_application: 52
ct_check_delete_application_function: 52
ct_check_delete_explicit_entitlement: 52
ct_check_delete_group: 52
ct_check_delete_password_policy: 52
ct_check_delete_realm: 52
ct_check_delete_server_tree: 52
ct_check_delete_smart_rule: 53
ct_check_delete_user: 53
ct_check_delete_user_property_definition: 53
ct_check_delete_web_server: 53
ct_check_function (deprecated): 19
ct_check_modify_administrative_group: 53
ct_check_modify_administrative_role: 53
ct_check_modify_application: 53
ct_check_modify_application_function: 53
ct_check_modify_explicit_entitlement: 53
ct_check_modify_group: 53
ct_check_modify_password_policy: 53
258 Index

RSA ClearTrust Developer’s Guide
ct_check_modify_realm: 53
ct_check_modify_server_tree: 53
ct_check_modify_smart_rule: 53
ct_check_modify_user: 53
ct_check_modify_user_property_definition: 53
ct_check_modify_web_server: 53
ct_check_password (deprecated): 19
ct_check_resource_status: 150
ct_check_resource_status_pool: 150
ct_check_set_default_password_policy: 53
CT_CLASSPATH_KEY: 15
ct_clear_server_caches: 150
ct_clear_server_caches_pool: 150
ct_clear_three_maps: 152
ct_commands.h: 12
ct_connect: 17, 18
ct_connect_admin: 18
CT_COOKIE_ERROR: 210, 232
ct_create_admin_group: 21
ct_create_admin_role: 26
ct_create_app_func: 44
ct_create_app_function_map: 152
ct_create_app_url: 45
ct_create_application: 43
ct_create_blank_pool: 138, 139
ct_create_blank_pool_ext: 138
CT_CREATE_COOKIE: 232
ct_create_entitlement_for_group: 29, 37
ct_create_entitlement_for_realm: 35, 37
ct_create_entitlement_for_user: 32, 37
ct_create_entitlement_for_user_and_appfunc: 37
ct_create_entitlement_for_user_and_application: 37
ct_create_group: 29
ct_create_map: 151
ct_create_password_policy: 27
ct_create_pool_with_dispatcher: 138
ct_create_pool_with_dispatchers_ext: 133, 138
ct_create_pool_with_dispatchers_ext_v2: 138
ct_create_realm: 35
ct_create_server_tree: 47
ct_create_token: 150
ct_create_token_pool: 150
ct_create_user_and_properties: 32
ct_create_user_basic_map: 152
ct_create_user_dn_basic_map: 152
ct_create_user_dn_ldap_map: 152
ct_create_user_dn_map: 152
ct_create_user_ldap_map: 152
ct_create_user_map: 152
ct_create_user_nt_map: 152
ct_create_user_property_definition: 34

ct_create_user_securid_map: 152
ct_create_user_securid_new_pin_map: 152
ct_create_user_securid_next_code_map: 152
ct_create_web_resource_map: 152
ct_create_web_server: 46
ct_dcom.jar: 190
ct_delete_admin_group: 21
ct_delete_admin_role: 26
ct_delete_app_func: 44
ct_delete_application: 43
ct_delete_appurl: 45
ct_delete_exp_entitlement: 37
ct_delete_group: 29
ct_delete_password_policy: 27
ct_delete_realm: 35
ct_delete_server_tree: 47
ct_delete_user: 32
ct_delete_userpropdef: 34
ct_delete_webserver: 46
ct_destroy_pool: 139
ct_destroy_three_maps: 152
ct_destroy_two_maps: 152
ct_disconnect: 19
CT_DN: 230
CT_EntityHdr: 28
CT_ERR_MSG: 230
ct_error structure: 134
ct_error.h: 13, 134
ct_error_tostring: 134
CT_ExplicitEntitlement: 36
ct_extension_init: 227
ct_flush_cache (deprecated): 19
ct_force_password_expiration: 19
CT_FORM_AUTH_MODE: 231
ct_free: 57, 229
ct_free_adminroleid: 54
ct_free_adminroleid_array: 19
ct_free_array_obj: 54, 56
ct_free_criterion: 54
ct_free_obj: 54, 56
ct_free_seaarch: 49
ct_free_search: 49, 54
ct_free_string: 54
ct_free_userprop_criterion_array: 54
ct_function_table.h: 214
ct_get_admin_group_by_index: 21
ct_get_admin_user_in_admin_role_by_index: 26
ct_get_admingroup_by_index_in_search: 49
ct_get_admingroup_by_name: 21
ct_get_admingroup_by_name_in_search: 49
ct_get_admingroups_by_index: 21
Index 259

RSA ClearTrust Developer’s Guide
ct_get_admingroups_by_name: 21
ct_get_admingroups_by_names_in_search: 49
ct_get_admingroups_by_range: 21
ct_get_admingroups_by_range_in_search: 49
ct_get_adminrole_for_admingroup_by_index: 21
ct_get_adminrole_for_admingroup_by_name: 21, 26
ct_get_adminroleids_for_user: 19
ct_get_adminroles_for_admingroup_by_names: 21,

26
ct_get_adminroles_for_admingroup_by_range: 21, 26
ct_get_app_by_index: 43
ct_get_app_by_index_in_search: 49
ct_get_app_by_name: 43
ct_get_app_by_name_in_search: 49
ct_get_app_for_appfunc: 44
ct_get_appfunc_for_application_by_index: 43
ct_get_appfunc_for_application_by_name: 43
ct_get_appfunc_for_en titlement: 37
ct_get_appfuncs_for_application_by_names: 43
ct_get_appfuncs_for_application_by_range: 43
ct_get_application_for_admingroup_by_index: 21
ct_get_application_for_admingroup_by_name: 21
ct_get_application_owner: 43
ct_get_applications_for_admingroup_by_names: 21
ct_get_applications_for_admingroup_by_range: 21
ct_get_apps_by_names: 43
ct_get_apps_by_names_in_search: 50
ct_get_apps_by_range: 43
ct_get_apps_by_range_in_search: 50
ct_get_appurl_for_application_by_index: 43
ct_get_appurl_for_webserver_by_index: 46
ct_get_appurls_for_application_by_range: 43
ct_get_appurls_for_webserver_by_range: 46
ct_get_context_admin_role: 26
ct_get_default_password_policy: 27
ct_get_entitlement: 38
ct_get_entitlement_for_group: 29
ct_get_entitlement_for_realm: 35
ct_get_entitlement_for_user: 32
ct_get_entitlement_for_user.: 38
ct_get_entitlement_for_user_and_appfunc: 38
ct_get_entitlement_for_user_and_application: 38
ct_get_entitlement_for_user_and_appurl: 38
ct_get_exp_entitlement_for_application_by_index:

43
ct_get_exp_entitlement_for_application_by_range:

43
ct_get_exp_entitlement_for_group_by_index: 29
ct_get_exp_entitlement_for_realm_by_index: 35
ct_get_exp_entitlement_for_user_by_index: 32
ct_get_exp_entitlements_for_group_by_range: 29

ct_get_exp_entitlements_for_realm_by_range: 35
ct_get_exp_entitlements_for_user_by_range: 32
ct_get_function_table: 227
ct_get_group_by_index: 29
ct_get_group_by_index_in_search: 50
ct_get_group_by_name: 29
ct_get_group_by_name_in_search: 50
ct_get_group_by_names_in_search: 50
ct_get_group_for_admingroup_by_index: 21
ct_get_group_for_admingroup_by_name: 22
ct_get_group_for_entitlement: 39
ct_get_group_for_realm_by_index: 35
ct_get_group_for_realm_by_name: 35
ct_get_group_for_user_by_index: 32
ct_get_group_for_user_by_name: 32
ct_get_group_owner: 29
ct_get_groups_by_names: 29
ct_get_groups_by_range: 29
ct_get_groups_by_range_in_search: 50
ct_get_groups_for_admingroup_by_names: 22
ct_get_groups_for_admingroup_by_range: 22
ct_get_groups_for_realm_by_names: 35
ct_get_groups_for_realm_by_range: 35
ct_get_groups_for_user_by_names: 32
ct_get_groups_for_user_by_range: 32
ct_get_num_of_admingroups: 22
ct_get_num_of_admingroups_in_search: 50
ct_get_num_of_adminroles_for_admingroup: 22
ct_get_num_of_appfuncs_for_application: 43
ct_get_num_of_applications: 43
ct_get_num_of_applications_for_admingroup: 22
ct_get_num_of_apps__in_search: 50
ct_get_num_of_appurls_for_application: 43
ct_get_num_of_appurls_for_webserver: 46
ct_get_num_of_exp_entitlements_for_application: 43
ct_get_num_of_exp_entitlements_for_group: 30
ct_get_num_of_exp_entitlements_for_realm: 35
ct_get_num_of_exp_entitlements_for_user: 32
ct_get_num_of_groups: 30
ct_get_num_of_groups_for_admingroup: 22
ct_get_num_of_groups_for_realm: 35
ct_get_num_of_groups_for_user: 32
ct_get_num_of_groups_in_search: 50
ct_get_num_of_password_policies: 27
ct_get_num_of_realms: 35
ct_get_num_of_realms_for_admingroup: 22
ct_get_num_of_realms_for_group: 30
ct_get_num_of_realms_in_search: 50
ct_get_num_of_userpropdefs: 34
ct_get_num_of_userpropdefs_for_admingroup: 22
ct_get_num_of_userpropdefs_in_search: 50
260 Index

RSA ClearTrust Developer’s Guide
ct_get_num_of_userprops_for_user: 32
ct_get_num_of_users: 32
ct_get_num_of_users_for_admingroup: 22
ct_get_num_of_users_for_group: 30
ct_get_num_of_users_in_group_in_search: 50
ct_get_num_of_users_in_search: 50
ct_get_num_of_webservers: 46
ct_get_num_of_webservers_for_admingroup: 22
ct_get_num_of_webservers_in_search: 50
ct_get_num_servertree_for_webserver: 47
ct_get_num_users_in_admin_role: 26
ct_get_password_expiration: 19
ct_get_password_policies_by_names: 27
ct_get_password_policies_by_range: 27
ct_get_password_policy_by_index: 27
ct_get_password_policy_by_name: 27
ct_get_realm_by_index: 35
ct_get_realm_by_index_in_search: 50
ct_get_realm_by_name: 35
ct_get_realm_for_admingroup_by_index: 22
ct_get_realm_for_admingroup_by_name: 22
ct_get_realm_for_entitlement: 39
ct_get_realm_for_group_by_index: 30
ct_get_realm_for_group_by_name: 30
ct_get_realm_owner: 36
ct_get_realms_by_names: 36
ct_get_realms_by_names_in_search: 50
ct_get_realms_by_range: 36
ct_get_realms_by_range_in_search: 50
ct_get_realms_for_admingroup_by_names: 22
ct_get_realms_for_admingroup_by_range: 22
ct_get_realms_for_group_by_names: 30
ct_get_realms_for_group_by_range: 30
ct_get_realy_by_name_in_search: 50
ct_get_servertree_for_webserver_by_index: 47
ct_get_servertree_for_webserver_by_range: 47
ct_get_servertree_owner: 47
ct_get_token_value: 150
ct_get_token_value_pool: 150
ct_get_token_values: 151
ct_get_token_values_pool: 151
ct_get_user_and_properties: 32
ct_get_user_and_properties_by_dn: 32
ct_get_user_by_index: 32
ct_get_user_by_index_in_search: 50
ct_get_user_by_name: 32
ct_get_user_by_name_in_search: 50
ct_get_user_for_admingroup_by_index: 22
ct_get_user_for_admingroup_by_name: 22
ct_get_user_for_entitlement: 39
ct_get_user_for_group_by_index: 30

ct_get_user_for_group_by_name: 30
ct_get_user_in_admin_role_by_index: 26
ct_get_user_in_admin_role_by_name: 26
ct_get_user_in_group_by_index_in_search: 51
ct_get_user_in_group_by_name_in_search: 51
ct_get_user_owner: 32
ct_get_user_properties: 150
ct_get_user_properties_pool: 150
ct_get_user_property: 150
ct_get_user_property_pool: 150
ct_get_userprop_for_user_by_index: 32
ct_get_userprop_for_user_by_name: 32
ct_get_userpropdef_by_index: 34
ct_get_userpropdef_by_index_in_search: 51
ct_get_userpropdef_by_name: 34
ct_get_userpropdef_by_name_in_search: 51
ct_get_userpropdef_for_admingroup_by_index: 22
ct_get_userpropdef_for_admingroup_by_name: 22
ct_get_userpropdef_owner: 34
ct_get_userpropdefs_by_names: 34
ct_get_userpropdefs_by_names_in_search: 51
ct_get_userpropdefs_by_range: 34
ct_get_userpropdefs_by_range_in_search: 51
ct_get_userpropdefs_for_admingroup_by_names: 22
ct_get_userpropdefs_for_admingroup_by_range: 23
ct_get_userprops_for_user_by_names: 32
ct_get_userprops_for_user_by_range: 32
ct_get_users_by_names: 32
ct_get_users_by_names_in_search: 51
ct_get_users_by_range: 32
ct_get_users_by_range_in_search: 51
ct_get_users_for_admingroup_by_names: 23
ct_get_users_for_admingroup_by_range: 23
ct_get_users_for_group_by_range: 30
ct_get_users_for_grouup_by_names: 30
ct_get_users_in_admin_role_by_names: 26
ct_get_users_in_admin_role_by_range: 26
ct_get_users_in_group_by_names_in_search: 51
ct_get_users_in_group_by_range_in_search: 51
ct_get_version: 151
ct_get_webserver_by_index: 46
ct_get_webserver_by_index_in_search: 51
ct_get_webserver_by_name: 46
ct_get_webserver_by_name_in_search: 51
ct_get_webserver_for_admingroup_by_index: 23
ct_get_webserver_for_admingroup_by_name: 23
ct_get_webserver_for_appurl: 45
ct_get_webserver_owner: 46
ct_get_webservers_by_names: 46
ct_get_webservers_by_names_in_search: 51
ct_get_webservers_by_range: 46
Index 261

RSA ClearTrust Developer’s Guide
ct_get_webservers_by_range_in_search: 51
ct_get_webservers_for_admingroup_by_name: 23
ct_get_webservers_for_admingroup_by_range: 23
ct_grab_server_reference: 139
ct_hash.h: 13, 135
ct_init_pool_table: 139
ct_initialize_api: 15, 18
CT_IS_PATH_PROTECTED: 231
ct_lock.h: 13, 135
ct_lock_impl.h: 13, 135
ct_login: 19
ct_lookup_pool: 139
ct_malloc: 229
ct_map.h: 12, 135, 151
ct_map_clear: 151
ct_map_destroy: 151
ct_map_find: 151
ct_map_get_default_auth_result: 150
ct_map_insert: 151
ct_map_remove: 151
ct_map_utils.h: 13, 135, 151
CT_NO_AUTH_SERVERS: 232
ct_objects.h: 13
CT_ORIG_URI: 231
CT_PASSWORD: 231
CT_PasswordPolicy: 27
ct_permissions: 52
ct_permissions.h: 12
CT_PLUGIN_USER: 231
ct_pool_manager.h: 135
CT_POST_DATA: 231
CT_PREV_USER: 231
ct_print

in WAX: 229
ct_print_pool: 139
CT_QUERY: 231
ct_rc_constants: 54
ct_rc_constants.h: 12
ct_realloc: 229
CT_Realm

deprecated C functions: 35
deprecation of: 29

ct_refresh_pool: 139
ct_relations.h: 13
ct_release_server_reference: 139
CT_REMOTE_USER: 236, 253
ct_remove_group_from_realm: 36
ct_remove_server_from_pool: 139
ct_remove_user_from_admin_role: 26
ct_remove_user_from_group: 30
ct_req_alloc: 228

ct_req_strdup: 228
ct_request_data: 229, 232
ct_reset_password: 19
ct_resource_constants.h: 135
ct_result_constants.h: 135
ct_return_code_keys.h: 135
ct_revert_password: 19
CT_ROOT

keystore search and: 165
Runtime Java API and: 165

CT_RUNAPI_AUTHENTICATION_TYPE: 142
CT_RUNAPI_CREDENTIALS_KEY: 143, 145
CT_RUNAPI_NT_DOMAIN_KEY: 145
CT_RUNAPI_SECURID_NEW_PIN_KEY: 143,

146
CT_RUNAPI_SECURID_NEXT_CODE_KEY: 144,

147
CT_RUNAPI_SERVER_STATE: 144
CT_RUNAPI_TOKEN_KEY: 142
CT_RUNAPI_USER_CERT_KEY: 141, 146
CT_RUNAPI_USER_DN_KEY: 141
CT_RUNAPI_USER_ID_KEY: 141, 145
ct_runtime_api.h: 134, 149
ct_runtime_api.jar

DCOM and: 190
ct_save_admin_group: 23
ct_save_admin_role: 26
ct_save_appfunc: 44
ct_save_application: 43
ct_save_appurl: 45
ct_save_exp_entitlement: 39
ct_save_group: 30
ct_save_password_policy: 27
ct_save_realm: 36
ct_save_server_tree: 47
ct_save_user: 32
ct_save_user_and_properties: 33
ct_save_userpropdef: 34
ct_save_webserver: 46
ct_search: 47
ct_search.h: 12
CT_SERVER_TIMED_OUT: 232
CT_SESSION_ACTIVE: 232
CT_SESSION_EXPIRED: 232
ct_set_application_owner: 43
ct_set_group_owner: 30
ct_set_password: 19
ct_set_password_expiration: 19
ct_set_realm_owner: 36
ct_set_servertree_owner: 47
ct_set_token_value: 150
262 Index

RSA ClearTrust Developer’s Guide
ct_set_token_value_pool: 150
ct_set_token_values: 151
ct_set_token_values_pool: 151
ct_set_user_owner: 33
ct_set_userpropdef_owner: 34
ct_set_webserver_for_appurl: 45
ct_set_webserver_owner: 46
ct_shutdown_pool: 139
CT_SmartRule: 40
CT_SSL_CALLBACK: 140
CT_SSL_KEYSTORE: 140
CT_STATUS: 231
ct_strdup: 229
ct_structs.h: 12
ct_table_find: 228
ct_table_find (WAX method): 233
ct_table_put: 214, 228
ct_table_remove: 228
ct_table_replace: 228
ct_test_server: 151
ct_test_server_pool: 151
ct_token_keys.h: 135
CT_TOKENS_ENABLED: 133, 140
ct_transfer_ownership: 23
CT_UNHANDLED_REQUEST: 232
CT_URI: 231
CT_USER: 231
CT_User: 31

vs. CT_AdminUser: 24
ct_user_constants.h: 135
CT_USER_DATA: 231
CT_USER_DATA_LEN: 231
CT_USER_PROPERTIES_ENABLED: 133, 140
CT_UserProperty: 33
CT_UserPropertyDefinition: 33
ct_utilities: 56, 57
ct_utilities.h: 13, 54
ct_validate_token: 151
ct_validate_token_pool: 151
ct_validate_user: 19
ct_wax_init: 227

parameters to: 233
CT_WEB_SVR_ID: 236
CT_WebServer: 45
ct_windows.h: 135
CTjavaAPI: 198
CTLoginErrorMsg: 240
CTSESSION cookie name: 239
CTUSER: 253
CUSTOM

authentication type for WAX: 215

custom
custom parameters for WAX: 233

custom authentication: 215, 221
C Admin API vs. WAX: 148
C Runtime API: 148

custom error pages: 224
customauth package: 167

D
data

arrays in C API: 18
arrays in Java API: 102
finding with C API: 18
finding with Java API: 102
loading with C API: 18
loading with Java API: 102

dataset: 18, 102
date criterion: 105
DCOM

ct_dcom.jar: 190
jintegra_1.3.8.zip: 190
port number: 192
runvm.bat: 190
test.asp: 190

DCOM API
structure: 194

DCOM applications
using with RSA ClearTrust: 189

DCOM bridge: 189
DCOMFactory: 196
debug information

WAX: 229
defaultPrivate: 20
del_admin: 26
del_admin_user: 25
del_app: 25
del_group: 25
del_realm: 25
del_server: 25
del_user: 25
del_user_prop_def: 25
delete: 79, 85
dictionary_file: 27
disconnect: 70

Java code example: 74
Dispatcher

checking with C API: 151
dispatcher.list_port.force_anonymous: 136
distinguished name: 31
dll
Index 263

RSA ClearTrust Developer’s Guide
Administrative C API: 13
dn: 31
document conventions: ix

E
echo

WAX logging: 229
emailaddr: 31
enddate: 31
entitlement

C API: 36
creating in C API: 29
get by index in C API: 18
get by range in C API: 18
in Java API: 94
loading with C API: 18
loading with Java API: 102

entitlements datastore
searching: 47

Entitlements Server
vs. API Server: 1

entity header in C API: 28
environment variables

CT: 236
error

custom error page with WAX: 224
error codes in C API: 54
Java Admin API error messages: 73

example code
C

Admin API: 60
Admin API source files: 11
administrative user: 60
authenticate with SecurId: 153
ct_free_array_obj(): 56
ct_free_obj(): 56
dynamic allocation: 59
location, Admin examples: 12
location, Runtime examples: 134
memory management: 56
Runtime API: 131
Runtime API source files: 131
SecurId: 153
static allocation: 58
struct attribute memory: 57

DCOM
authenticate from ASP: 198
from Active Server Pages: 200
getting an APIServerProxy: 194
getting objects: 195

user list from ASP: 201
Java

Admin API: 110
Admin API connect: 75
Admin API source files: 67
Application and App Function: 120
authenticate: 172
authenticate with SecurId: 183
authenticate with SSL on: 177
create and edit users: 110
edit user property: 113
flushCache: 112
password changer: 240
Runtime API: 157, 172
Runtime API source files: 157
Runtime API with SSL: 177
SecurId: 183
SmartRule: 123
SparseData: 121
user search: 127

WAX
authentication: 222
custom error page: 225
reporting authentication errors: 225

excluded_chars: 27
expired password, handling: 240
explicit entitlement

C API: 36
creating in C API: 29
in Java API: 94

export_cookie_user_buffer: 253
export_last_touch_time: 253
export_session_expiration_time: 253
export_session_init_time: 253
exportable: 133, 159

properties in C API: 34
exportable property

enable retrieval of: 140, 159
enable retrieval of in C API: 133

F
find data

C API: 18
Java API: 102

firstname: 31
float criterion: 106
flushCache: 70
fonts in this book: ix
force_anonymous: 136
forceExpiry: 20
264 Index

RSA ClearTrust Developer’s Guide
forcePasswordExpiration: 70
functions

memory management: 228

G
get_apps_for_user method removed: 21
get_default_password_policy: 27
GET_STATUS: 232
getAccountEndCriterion: 109
getAccountStartCriterion: 109
getAdminGroups: 70
getAdministrativeGroup: 70
getAdministrativeRole: 70
getAdministrativeUserByUniqueIdentifier: 70
getAdministrativeUsers: 70
getAdministrators: 78
getAdminRoleIdsForUser: 70
getAllUserPropertyCriteria: 109
getApplication: 98, 99
getApplicationFunction: 95
getApplicationFunctions: 96
getApplications: 70, 78
getApplicationURLs: 96
getAppsForUser method removed: 70
getBooleanValue: 105
getByIndex: 102
getByName: 102
getByNames: 102
getByRange: 102
getCategory: 95
getClearTrustVersion: 171
getCreateAdministrativeRole: 82
getCreateApplication: 82
getCreateGroup: 82
getCreateRealm: 82
getCreateServer: 82
getCreateUser: 82
getCreateUserPropertyDefinition: 82
getCreationDate: 89, 93
getDateValue: 105
getDefaultPasswordPolicy: 70
getDeleteAdministrativeRole: 82
getDeleteApplication: 83
getDeleteGroup: 83
getDeleteRealm: 83
getDeleteServer: 83
getDeleteUser: 83
getDeleteUserPropertyDefinition: 83
getDescription: 79, 85
getDictionaryFile: 85

getDN: 89
getDNCriterion: 109
getEmailAddress: 89
getEmailAddressCriterion: 109
getEndDate: 89
getEntity: 95
getExclusionCharacters: 85
getExplicitEntitlement: 70
getExplicitEntitlements: 98
getFirstName: 89
getFirstNameCriterion: 109
getFloatValue: 106
getForceNonLetter: 85
getGroups: 70, 78
getHistorySize: 85
getHost: 171
getHostname: 100
getIntegerValue: 106
getLastName: 89
getLastNameCriterion: 109
getManufacturer: 100
getModifyAdministrativeRole: 83
getModifyApplication: 83
getModifyGroup: 83
getModifyRealm: 83
getModifyServer: 83
getModifyUser: 83
getModifyUserPropertyDefinition: 83
getName: 79, 85
getObjectType: 105, 106
getOperator: 105
getOwnerCriterion: 109
getPasswordLifetime: 85
getPasswordMaximumLength: 85
getPasswordMinimumLength: 85
getPasswordPolicies: 70
getPasswordPolicy: 78
getPermissionChecker: 70
getPort: 100, 171
getPrimaryKey: 79, 85
getPWExpirationDate: 70
getRealms: 70, 78
getResetPassword: 83
getServerTrees: 100
getSmartRuleCriteria: 95
getSmartRules: 98
getSocket: 70
getStartDate: 89
getSuperHelpDeskCriterion: 109
getSuperUserCriterion: 109
getTokenValue: 168
Index 265

RSA ClearTrust Developer’s Guide
getTokenValues: 168
getURI: 99, 101
getUser: 70, 91
getUserAndProperties: 70
getUserAndPropertiesByDN: 71
getUserByUniqueIdentifier: 71
getUserIDCriterion: 109
getUserLockoutCriterion: 109
getUserProperties: 89, 168
getUserProperty: 89, 168
getUserPropertyDefinition: 95
getUserPropertyDefinitions: 71, 79
getUsers: 71, 79, 83
getValue: 91
getValueType: 91
getVersion: 96
getWebApplications: 71
getWebApplicationURLs: 100
getWebServer: 99
getWebServers: 71, 79
Global block: 233
group

administrative group in Java API: 78
get by index in C API: 18
get by range in C API: 18
loading with C API: 18
loading with Java API: 102
object in C API: 29
object in Java API: 87
search for in Java API: 107
See also administrative group: 20

H
handler

augment vs. override handler: 213
authentication: 208
authorization: 209
cookie: 210
path check: 207
phase: 205, 207
preauthentication: 208
session: 207
status: 205, 231

handler keys: 214
hash table functions: 228
header

Administrative API: 134
C Administrative API: 12
HTTP header parameters: 253

helpDeskAccessible: 34

history: 27
HTTP header parameters: 253

I
IAdministrativeGroup: 78
IAdministrativeGroupSearch: 107
IAdministrativePermissionChecker: 103
IAdministrativeUser: 80

vs. IUser: 80
IAdministrator: 82
IAPIObject

from SparseData: 102
IApplication: 96
IApplicationFunction: 97

example code: 120
IApplicationSearch: 107
IGroupSearch: 107
index

get by index in C API: 18
index.jsp: 241
init_ct_runtime_api_with_ssl: 149
input parameter request values: 230
install

APIs on Solaris: 9
APIs on Windows: 7
C Administrative API: 12, 134

integer criterion: 106
interfaces

AuthTypes: 169
CredentialConstants: 170
ResourceConstants: 170
ResultConstants: 170
RuntimeAPI: 167
TokenKeys: 169
UserConstants: 169

IPLANET_SERVER_DIR: 204
IRealm

deprecated functions: 93
deprecation of: 87

is_locked: 31
isAccessible: 95
isAdminLockedout: 89
isDefaultPrivate: 79
IServerTree: 101
isExportable: 91
isForcedPasswordExpiry: 79
isHelpDeskAccessible: 92
ISmartRule: 95
ISparseData: 102, 121

equivalent in C API: 18
266 Index

RSA ClearTrust Developer’s Guide
isPolicyAllowBeforeDeny: 98
isPWExpirationDateOverridden: 71
isReadOnly: 92
isSet: 91
ISSO cookie

contents: 239
isSSLused: 171
isSuperHelpDesk: 89
isSuperUser: 89
IUser

vs. IAdministrativeUser: 80
IUserPropDefSearch: 108
IUserSearch: 109
IWebServer: 99
IWebServerSearch: 108

J
jars

for DCOM: 191
Java API

Admin: 67
Runtime: 157

jce1_2-do.jar: 13
for DCOM API: 191
for Java API: 68, 161

jcert.jar: 13
for DCOM API: 191
for Java API: 68, 161

JCSI Keystore software
for DCOM API: 191
for Java API: 68, 161

jcsi_base.jar: 13
for DCOM API: 191
for Java API: 68, 161

jcsi_provider.jar: 13
for DCOM API: 191
for Java API: 68, 161

J-Integra DCOM bridge: 189, 191
jintegra_1.3.8.zip: 190
jintegra138.zip: 191
jnet.jar: 13

for DCOM API: 191
for Java API: 68, 161

JNI wrapper: 13
JRun: 240
jsafe.jar: 13

for DCOM API: 191
for Java API: 68, 161

jsafeJCE.jar: 13
for DCOM API: 191

for Java API: 68, 161
JSP

writing JSP pages: 240
jsse.jar: 13

for DCOM API: 191
for Java API: 68, 161

K
key

client keys: 141
private key passphrase: 140

keystore
CT_ROOT: 165
JCSI software for DCOM: 191
JCSI software for Java API: 68, 161
name: 140
passphrase callback: 140

L
lastname: 31
LDAP authentication

C Runtime API: 147
ldapattr_map_scuid: 147
lib directory

for DCOM API: 190
libct_admin_api.a and .so: 13
library

C Admin API: 13
C API libraries: 12, 134

lifetime: 27
Linar DCOM bridge: 189, 191
link

Agent: 216
linking

for Microsoft IIS: 216
for Netscape/NT: 216
for Netscape/UNIX: 216, 217

list_port.force_anonymous: 136
load data

C API: 18
Java API: 102

log
WAX information: 229

login: 71
login_error_password_expired: 240
lookupUserPropertyCriterion: 109

M
malloc: 229
Index 267

RSA ClearTrust Developer’s Guide
Map Functions: 151
max_length: 27
memory

allocation for WAX: 228
memory management

C API utilities: 54, 56
for WAXes: 228

memory management functions: 228
Microsoft Visual C++: 216
min_length: 27
mod_admin: 25
mod_admin_user: 25
mod_app: 25
mod_group: 25
mod_realm: 25
mod_server: 25
mod_user: 25
mod_user_prop_def: 25
multithreading: 167
my_cookie_phase_handler: 218

N
namespace conflicts: 217
non_letter: 27
NT authentication

C Runtime API: 145
NT domain

in authentication: 145
nt_auth.c: 221, 222
numerical error code

C API: 54
numOfUserPropertyCriteria: 109

O
object

collections in C API: 18
collections in Java API: 102
get by index in C API: 18
get by range in C API: 18
loading in C API: 18
loading in Java API: 102
utilities in C API: 54

OpenSSL: 149
opt directory: 9
overriding phase processing: 231

P
package

customauth: 167

sirrus.api.com: 196
sirrus.runtime: 167
sirrus.runtime.customauth: 167

parameter
custom parameters for WAX: 233
HTTP header parameters: 253
WAX parameter scope: 233

passphrase
keystore: 140
private key: 140

password: 31
example code for changing: 240

password policy: 20
object in C API: 27
object in Java API: 85

PasswordChanger.java: 241
path check handler: 207
permission

checking administrator permissions in C API: 52
in Java API: 103

personalization: 235
phase handler: 205, 207

augment vs. override handler: 213
phase processing

overriding: 231
pix directive: 227
PIX, See WAX
PKCS12 keystore: 140
pkgadd: 9
Plug-in, See WAX
pool

checking with C API: 151
port number

DCOM API: 192
preauthentication handler: 208
print

WAX status information: 229
private key

keystore name: 140
passphrase callback: 140

processing URI requests: 205
propArray: 31
property

user: 133, 140, 159
user property code example: 113

putUserPropertyCriterion: 109

R
range

get by range in C API: 18
268 Index

RSA ClearTrust Developer’s Guide
RC_ADMINISTRATOR_NOT_FOUND: 55
rc_constants: 54
RC_INVALID_PASSWORD: 55
readObject: 105, 106
realm

deprecated methods in C API: 35
deprecated methods in Java API: 93
deprecation in C API: 29
deprecation in Java API: 87

redirect.c: 224, 225
REMOTE_USER: 236
removeUser: 83
request data: 229
resetAdministrativeUserPassword: 71
resetPassword: 71
resolving names: 217
ResourceConstants: 170
ResourceConstantsClass: 196
ResultConstants: 170
ResultConstantsClass: 197
return value

error number in C API: 54
RETURN_CODE: 170
revertAdministrativeUserPasswordExpirationDate:

71
revertPasswordExpirationDate: 71
role

admin role in Java API: 82
object in C API: 25

root directory
opt or other: 9

RSA SecurId
example code, C: 153
example code, Java: 183

RSA SSL
jars for DCOM API: 190
jars for Java API: 68, 161

RSActapi-4.7-solaris-sparc.pkg: 9
rsajsse.jar: 13

for DCOM API: 191
for Java API: 68, 161

Runtime API
C: 131

connection types: 136
classes: 171
DCOM example: 198
Java: 157

connection types: 162
Runtime Functions: 149

Authorization and Authentication: 149
SSO Tokens: 150

User Properties: 150, 151
RuntimeAPI interface: 167

methods of: 168
RuntimeExample.java: 172
RuntimeSSLExample.java: 177
runvm.bat: 190, 191

S
samples directory

C Admin: 12, 134
save: 79, 85
SC_AUTH_TYPE_BASIC: 145
SC_AUTH_TYPE_CERT: 146
SC_AUTH_TYPE_CUSTOM: 148, 215
SC_AUTH_TYPE_LDAP: 147
SC_AUTH_TYPE_NT: 145
SC_AUTH_TYPE_SECURID: 146
SC_AUTH_TYPE_USER_CHECK: 143
SC_TOKENS_ENABLED: 159
SC_USER_PROPERTIES_ENABLED: 160
scope

of WAX parameters: 233
search

C API search tools: 49
entitlements datastore: 47

searchAdministrativeGroupObjects: 71
searchAdministrativeUserObjects: 71
searchGroupObjects: 71
searchRealmObjects: 71
searchUserObjects: 71
searchUserPropDefObjects: 71
searchWebServerObjects: 71
SecurantDCOMFactory: 196
SecurId

example code , C: 153
example code, Java: 183

SecurID authentication
C Runtime API: 146

server
API Server: 1
Entitlements Server: 1

server tree
object in C API: 46
object in Java API: 101

ServerDescriptor: 171
ServerDescriptor methods: 171
service, getting: xi
session data

insert into cookie: 218
session handler: 207
Index 269

RSA ClearTrust Developer’s Guide
session token: 133, 159
set_default_password_policy: 27
set_password: 26
SET_STATUS: 232
setAccessible: 95
setAccountEndCriterion: 109
setAccountStartCriterion: 109
setAdminLockedout: 89
setBooleanValue: 105
setCategory: 95
setCreateAdministrativeRole: 83
setCreateApplication: 83
setCreateGroup: 83
setCreateRealm: 84
setCreateServer: 84
setCreateUser: 84
setCreateUserPropertyDefinition: 84
setDateValue: 105
setDefaultPasswordPolicy: 71
setDeleteAdministrativeRole: 84
setDeleteApplication: 84
setDeleteGroup: 84
setDeleteRealm: 84
setDeleteServer: 84
setDeleteUser: 84
setDeleteUserPropertyDefinition: 84
setDescription: 79, 85
setDetaultPrivate: 79
setDictionaryFile: 85
setDN: 89
setDNCriterion: 109
setEmailAddress: 89
setEmailAddressCriterion: 109
setEndDate: 89
setExclusionCharacters: 85
setExportable: 91
setFirstName: 89
setFirstNameCriterion: 109
setFloatValue: 106
setForcedPasswordExpiry: 79
setForceNonLetter: 85
setHelpDeskAccessible: 92
setHistorySize: 85
setHostname: 100
setIntegerValue: 106
setLastName: 89
setLastNameCriterion: 109
setLengthParams: 85
setManufacturer: 100
setModifyAdministrativeRole: 84
setModifyApplication: 84

setModifyGroup: 84
setModifyRealm: 84
setModifyServer: 84
setModifyUser: 84
setModifyUserPropertyDefinition: 84
setName: 79, 85
setOperator: 105
setOwnerCriterion: 109
setPassword: 71, 89
setPasswordLifetime: 85
setPasswordPolicy: 79
setPolicyAllowBeforeDeny: 98
setPort: 100
setPWExpiratioinDate: 71
setReadOnly: 92
setResetPassword: 85
setSmartRuleCriteria: 95
setStartDate: 89
setSuperHelpDesk: 89
setSuperHelpDeskCriterion: 109
setSuperUser: 89
setSuperUserCriterion: 109
setTimeout: 71
setTokenValue: 168
setTokenValues: 168
Setup.exe: 7
setURI: 99, 101
setUserIDCriterion: 109
setUserLockoutCriterion: 109
setUserProperty: 90
setValue: 91
setValueType: 91
setVersion: 96
setWebServer: 99
SF_NOTIFY_URL_MAP: 230
single sign-on token: 133, 159
sirrus.api.client.UserNotAuthorizedException: 73
sirrus.api.com: 196
sirrus.runtime.customauth: 148
SmartRule

example code: 123
loading with C API: 18
loading with Java API: 102
object in C API: 40
object in Java API: 95
user property and: 33

SmartRuleExample.java: 123
Solaris

installation of APIs: 9
sparse data: 102
SSL
270 Index

RSA ClearTrust Developer’s Guide
Admin C API connection types: 17
Admin Java API connection types: 72
jars for DCOM API: 190
jars for Java API: 68, 161
key passphrase: 140
keystore passphrase: 140
libraries: 13
running C Runtime API with: 136
Runtime C API connection types: 136
Runtime Java API connection types: 162
software for DCOM API: 190
software for Java API: 68, 161

SSL callback: 140
SSL keystore: 140
sslj.jar: 13

for DCOM API: 191
for Java API: 68, 161

SSO
cookie contents: 239
cookie name requirements: 240

SSO Token: 133, 159
keys in: 169

startdate: 31
status codes: 232
status handler: 205, 231
string copy

for WAX: 228
string dup: 229
structs: 57
success.jsp: 241
Sun

SSL jars for DCOM API: 191
SSL jars for Java API: 68, 161

superHelpDesk: 31
superuser: 31
support

contact information: xi

T
test

test Authorization Server with C API: 151
test.asp: 190
testServer: 168
token: 133, 159

authenticated SSL: 159
contents: 239
enabling: 140, 159
enabling in C Runtime API: 133
SSO: 159
SSO token in C Runtime API: 133

TokenKeys: 169
trace

WAX logging: 229
transfer_admingroup: 27
transferOwnership: 79
typefaces in this book: ix

U
unix

installation of APIs: 9
URI: 99

authentication type for: 207
object in C API: 44, 99

URI requests
processing: 205

URL
object in Java API: 99

use_ssl
in C API: 17

user
administrative user in C API: 24
administrative user in Java API: 80
cookie contents: 239
example code for ASP and DCOM: 201
example Java code to create users: 110
example user search in Java: 127
get by index in C API: 18
get by range in C API: 18
group of users in Java API: 87
groups in C API: 29
loading with C API: 18
loading with Java API: 102
mapping to external user name: 31
object in C API: 31
object in Java API: 89
search for in Java API: 109
searching for with Java API: 127
token: 133
user property in C API: 133

user property
denying access to: 159
denying access to in C API: 133
enabling retrieval: 133, 140, 159
example Java code to edit user property: 113
exportable: 159
exportable in C API: 133
hiding from API users: 34
in C API: 33
object in Java API: 91

user property definition
Index 271

RSA ClearTrust Developer’s Guide
in C API: 33
object in Java API: 91
search for in Java API: 108

user_header_list: 253
UserConstants: 169
UserConstants interface: 169
UserConstantsClass: 197
UserNotAuthorizedException: 73
UserPropertyTypesClass: 197
utility

C Admin utilities: 54
Java Admin utilities: 102

V
validateUser: 71
vbu: 20
virtual business unit

in Java API: 20
virtual host

WAX and: 233
Visual C++: 216

W
WAX: 203

allocating memory: 228
API: 203
augment vs. override handler: 213
chaining: 205
compiling: 216
custom authentication: 215
custom parameters: 233
error page example: 225

example: 222
handler flow diagram: 211
initializing Runtime API: 149
loading and initializing: 227
process flow diagram: 206
registering a WAX method: 214
registering a WAX program: 212, 213
string duplication: 228
virtual host and: 233
wax directive: 227
wax.c: 218

WAX API: 203
location: 212

Web Agent
edit cookie: 218

Web Agent Extension API, See WAX
Web Server

object in C API: 45
object in Java API: 99
search for in Java API: 108

Web Server Agent
libraries: 213

webagent.conf
auth_resource_list: 207
custom WAX parameters: 233
HTTP header parameters: 253
parameter scope: 233
WAX scoping: 233

websrvr_id: 44
WinZip: 241
wrapper, JNI: 13
writeObject: 105, 106
272 Index

	RSA ClearTrust
	Contents
	Preface
	About This Guide
	Related Documentation

	Document Conventions
	Typographical Conventions
	Comment Icons

	Getting Support and Service

	Overview of the RSA�ClearTrust APIs
	The RSA�ClearTrust APIs
	The Administrative API
	The Runtime API
	The WAX API
	Coding Recommendations
	Multithreaded Programming
	Using the RSA�ClearTrust API Efficiently

	Installing the RSA�ClearTrust APIs
	Installing APIs on Windows
	Installing APIs on Solaris

	Administrative C API
	This Chapter
	Installing and Compiling
	Location
	Sample Code
	Header Files
	API Libraries
	Building for UNIX
	Building for Windows 2000 and NT

	Initialization and Login Operations
	Initialization
	Login
	Connecting With and Without SSL

	The Functions of ct_commands.h
	Functions For Loading Objects
	Administrative Functions
	Password Setting Functions
	Deprecated Runtime-Type Functions

	Administrative Objects
	Administrative Group (VBU)
	Administrative User
	Administrative Role
	Password Policy

	Participants
	CT_EntityHdr Struct
	Groups
	Users
	User Properties
	User Property Definitions
	Deprecated Structure: Realms

	Policy Objects
	Basic Entitlements
	SmartRules

	Resources
	Applications
	Application Functions
	Application URLs
	Web Servers
	Server Trees

	Searching
	Permissions
	Object Utilities
	Error Codes
	Memory Management in the C API
	Memory Management when Getting API Objects
	Memory Management when Modifying an API Object
	Memory Management when Creating API Objects

	Sample Code
	AdminUser.c

	Administrative Java API
	This Chapter
	Installing and Compiling
	Compiling Applications

	APIServerProxy
	APIServerProxy Method Reference
	Connecting an APIServerProxy Client
	Disconnecting an APIServerProxy Client
	Connection Example

	Administration Objects
	Administrative Group
	Administrative User
	Administrative Role
	Password Policy

	Participants
	Groups
	Users
	User Properties
	User Property Definitions
	Deprecated Interface: IRealm

	Policy Objects
	Basic Entitlements (Explicit Entitlements)
	SmartRules

	Resources
	Applications
	Application Functions
	Application URLs
	Web Servers
	Server Trees

	Utility Classes
	ISparseData

	Permissions
	Criteria
	Boolean Criterion
	Date Criterion
	Float Criterion
	Integer Criterion

	Searching
	Administrative Group Search
	Application Search
	Group Search
	Deprecated: Realm Search
	User Property Definition Search
	Web Server Search
	User Search

	Examples
	User Example
	User Property Example
	Application Function Example
	SmartRule Example
	User Search Example

	Runtime C API
	This Chapter
	C Runtime API Overview
	Authentication
	Authorization
	SSO Token Manipulation
	User Property Retrieval

	Installing and Compiling
	Location
	Header Files

	Connecting a Runtime C API Client
	SSL and Non-SSL Connection Options
	Access to Tokens and User Properties
	Connection Pool Functions and Keys

	Runtime C API Reference
	Client Keys
	Authentication Types
	Runtime Functions
	Maps

	Examples
	RSA�SecurID Authentication Example

	Runtime Java API
	This Chapter
	Overview
	What the Runtime API Does
	Runtime API Relies on Authorization Servers
	Runtime API Calls Are Threadsafe
	Runtime API vs. Administrative API

	Installing and Compiling
	Compiling Applications

	Client Connection Options
	Access to Tokens and User Properties
	Connecting Over Authenticated SSL
	Connecting Over Anonymous SSL
	Connecting Without SSL

	Packages
	Interfaces
	Interface RuntimeAPI
	Interface UserConstants
	Interface TokenKeys
	Interface AuthTypes
	Interface ResourceConstants
	Interface ResultConstants
	Interface CredentialConstants

	Runtime API Classes
	Class APIFactory
	Class ServerDescriptor

	Examples
	Runtime API Example Without SSL
	Runtime API Example With SSL
	RSA�SecurID Authentication Example

	Administrative and Runtime DCOM API
	Requirements
	Installing the DCOM API
	Using the DCOM API
	Instantiating and Connecting
	Getting Objects
	Making RSA�ClearTrust API Calls

	Classes in the sirrus.api.com Package
	SecurantDCOMFactory
	AuthTypesClass
	ResourceConstantsClass
	ResultConstantsClass
	UserConstantsClass
	UserPropertyTypesClass

	DCOM API Example Code
	DCOM Runtime API example
	ASP page, create user
	ASP page, get users list

	Web Agent Extension API
	Overview
	Extending the Web Server Agent
	How an Agent Processes a URI Request
	Agent Phase Handlers
	Path Check Handler
	Session Handler
	Pre-Authentication Handler
	Authentication Handler
	Authorization Handler
	Cookie Handler

	Writing a WAX Program
	Overview
	WAX API Headers
	WAX API Libraries
	Registering a WAX Program
	Writing a WAX Method
	Registering a WAX Method
	Invoking a WAX Authentication Method
	Compiling and Linking a WAX Program

	WAX Examples
	Cookie Data Example
	Custom Authentication Example
	Custom Error Pages Example

	WAX API Reference
	The ct_wax_init Initialization Method
	ct_extension_init
	Hash Table Functions
	Memory Management
	Printing Status and Debug Information
	Request Data
	Status Handler
	Loading Parameter Settings
	Using WAX Programs with Virtual Host-Enabled Servers

	Customizing Your Web Environment
	Personalizing the Environment
	Creating Personalized Content

	RSA�ClearTrust Environment Variables
	Details

	Contents of the RSA�ClearTrust Cookie
	Changing the Cookie Name

	Writing ASP and JSP Pages
	RSA�ClearTrust Parameter Names
	Password Changer Example

	HTTP Header Parameters

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

