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Abstract—A Programmable Digital Filter modeling the 

equation u(kT) = a0.e(kT) + a1.e((k-1)T) + a2.e((k-2)T) is 
implemented at the transistor level with three 12x12-bit array 
multipliers and two 24-bit combinational adders.  Transmission 
gate full adders were sized to achieve minimum area and 
respectable performance.  A 4 stage pipeline utilizing two 
different clocks yields a high throughput design.      
 

Index Terms—programmable digital filter, FIR, equal-
delay full adder, array multiplier. 

 

I. INTRODUCTION 
Programmable digital filter (PDF) is a hardware 
implementation of a digital filter whose properties are 

programmable by external control signals.  Filtering is the 
process by which the signal spectrum is convolved with the 
frequency domain impulse response of the filter in order to 
pass only the desired frequencies.  There are two basic types of 
digital filters, Finite Impulse Response (FIR) and Infinite 
Impulse Response (IIR).  IIR filters have one or more non-zero 
feedback coefficients, whereas FIR filters have none.  This 
paper focuses on the design of a compact and high 
performance 0.35µ FIR filter. The general form of the FIR 
difference equation is: 

                               
This paper limits N to 2 in order to achieve a compact design.  
The cost to accuracy resulting from this restriction is 
insignificant for the inputs tested.   

The ai, x(n-i), and y(n) are 12-bit fixed point numbers in the 
range: 
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 The filter operates in 2 modes, configure and run.  In 
configure mode, the ai and x(n-i) are set to a starting condition.  
When the filter switches to run mode, the current input x(n) is 
combined with the starting condition to compute the new 
output.    
 The paper is organized as follows.  Section 2 outlines the 
 

 

design methodology of the arithmetic modules in the filter.  
Section 3 presents an architectural description  of the PDF, 
followed by a summarization of the clocking scheme in section 
4.  Circuit operation and a list of optimization steps taken are 
given in sections 5 and 6, respectively.  Sections 7 analyzes the 
critical path, while section 8 lists all the components used in 
the design.  Section 9 is a high level description of the chip 
floorplan, while section 10 summarizes the delay and area of 
the arithmetic modules.  Section 11 illustrates the schematics 
and layouts for some of the key components, while closing 
remarks are given in section 12. 
 

II. DESIGN METHODOLOGY 
 

After surveying a variety of paper on multiplier  
implementations, it became apparent that for a 12x12 
multiplier, the low computation effort does not warrant a 
higher hardware complexity.  For instance, multiplying two 
12-bit numbers using a Booth Encoded Wallace Tree 
multiplier will not be significantly faster than using a 
straightforward array multiplier.  The speed advantage derived 
from the more complex implementations is only significant in 
larger multiplications, such as 32x32 or 64x64 bits.  In fact, 
after layout, a complicated design has a high probability of 
being slower than the standard array multiplier.  This is 
because the routing capacitance resulting from irregular wiring 
can dominate the total delay.  [1] points out this critical point.  
In addition a complicated multiplier will have a substantial 
area overhead.  Therefore, an array multiplier implementation 
is chosen for its low area, and routing regularity.  Since each 
component in the array needs to connect only to an adjacent 
component, the routing capacitance is minimized. 
 For reasons explained later, the choice of 24-bit adder 
implementation is not significant because it is not the 
bottleneck in the pipeline.  Therefore, a ripple-carry  
static-logic adder is selected for area savings.  Both the 
multiplier and the adder are constrained to static-logic for 
compatibility.            
 

III. ARCHITECTURAL DESCRIPTION 
 

The filter is comprised of three 12-bit multipliers, two 24-bit 
adders, a control unit, and several latches and flipflops for 
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pipelining purposes.  The full adders used in the multipliers 
and the adders are the same.   

 

A. Transmission Gate Full Adder 
Figure 1 shows a transmission gate full adder 

implementation.  This adder has 26 transistors, the same as the 
combinational static adder, but has the advantage of having 
equal SUM and CARRY delay times.  In addition, the SUM 
and CARRY are not inverted.  Due to the equal arrival times 
of SUM and CARRY, the transmission gate adder glitches less 
often than a fully combinational adder, making it a favorable 
circuit style for high performance arithmetic blocks.   

 
       Figure 1.  Transmission Gate Full Adder 

 
 
 

B.  12x12 Square Array Multiplier 
A straightforward array multiplier is designed using the 

transmission gate full adder as the basic building block.  A 
square realization of the array multiplier is implemented for 
compactness as well as layout regularity, which reduces the 
routing capacitance.  Figure 2 illustrates a sample 4x4 square 
rearrangement of an array multiplier.  Each full adder (FA) cell 
is connected to an adjacent FA cell as shown in figure 3.   
 

 Figure 2.  Sample 4x4 Square Array Multiplier 

                         

                 Figure 3.  Full Adder Cell Interaction 

             
 

C.  24-bit ripple-carry adder 
The adder is composed of 24 transmission gate full adders 

connected in a traditional ripple-carry fashion, as seen in 
figure 4.  In the pipeline, the bottleneck is the multiplier, not 
the adder.  Therefore, a ripple-carry implementation suffers no 
loss in performance compared to a carry-look ahead adder, but 
offers significant savings in area.   
 

              Figure 4.  Ripple-Carry Adder 

 
 

D. Control Block 
The control signals are A0LOAD, A1LOAD, A2LOAD, 

U0LOAD, E0LOAD, and E-1LOAD.  Each signal is generated 
through a 4-input AND gate, with the inputs being the 
corresponding Const[2:0] values and mode.  In run mode, the 
registers storing the A’s retain their values.  E0LOAD and  
E1LOAD are also low, but there is an external circuitry to 
allow the E(kT) shift registers to remain on.  
 

E. Latches and FlipFlops 
Three 24-bit positive-edge flipflops form a shift register to 

store the E(kT) values.  Separately, 24-bit single-phase 
positive level-sensitive latches save A0, A1, and A2 during 
configure mode.  The outputs from the multipliers and the 
adders also utilize the same type of latch for storage in run 
mode.     

Single-clock latches were chosen over two-phase 
implementations in order to utilize a two-phase clocking 
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scheme.  Other motivations include reduction of timing 
complexity and readily available layouts. 
 

IV. CLOCKING SCHEME 
 φ1 and φ2 are non-overlapping clocks.  φ2 is not the 
complement of φ1.  On the rising edge of φ1, three 12-bit shift 
registers latch onto the previous value of E(kT).  After φ1 
transitions low, a short period of time will pass before φ2 
transitions high.  During the high cycle of φ2, three 24-bit 
latches will store the output of the three multipliers 
corresponding to A0E0, A1E-1, and A2E-2.  On the next cycle, 
when φ1 is high, two 24-bit registers will latch onto the result 
of an adder and the output of the third multiplier, again.  
Finally, during the high cycle of φ2, a 24-bit latch will store 
the result of the second adder and output it on U[11:0]. 
 SH goes high a short time before φ1 rises.  On the rising 
edge of φ1, the inputs must be present on the E[11:0] in order 
to be latched in.  The time duration between the rising edge of 
SH and the rising edge of φ1 is the setup time for the inputs 
E[11:0].  The hold time for E[11:0] is the delay of a positive-
edge triggered flip-flop.  The output U[11:0] is guaranteed to 
be stable at one positive level-sensitive latch delay after the 
rising edge of φ2.   
 The multiplier delay is the bottleneck in the entire filter, 
which is also the pipeline period. 
    The clocking scheme and the 4-stage pipelined structure is 
explained in figure 5. 
 
  Figure 5.  General PDF Clocking Scheme 

 
 

V. CIRCUIT OPERATION 
The PDF operates as follows.  Starting in configure mode, 

the inputs const[2:0] are varied to load a0, a1, a2, e0, and e-T 

signals into the approriate registers.  Unlike the ai latches, the 
ei registers are connected to each other as a shift register unit.  
Therefore, multiplexers are used to directly set the e0, and e-T 
values during configure mode.  Similarly, a user may 
externally set the output uo through a multiplexer that links the 
E[11:0] pins to the register storing U[11:0].  Once all these 
initial conditions are set, run mode initiates.   

In run mode, the ei shift registers are continuously on.  For 
every clock cycle, a new input e0 is shifted in, while the 
previous two ei values slide to the next register.  The e-2 value . 
is erased permanently.  Once all ei’s get latched, the multiplier 
calculates the product ai*ei and stores it in another latch.  
Then, 2 adders sequentially add all three products and output 
the result on U[11:0].   

Figure 6 shows a high level block diagram of the PDF 
design. 

 
         Figure 6.  High Level PDF Block Diagram 
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VI. OPTIMIZATIONS 
The design was optimized with the following ideas strictly 

adhered: 
 

a. For a digital filter, the throughput of the design 
outweighs the overall latency.   

b. The bottleneck of the design is the array multiplier, 
not the ripple-carry adder. 

c. The area and regularity of layout must be carefully 
monitored during optimization.  Routing delay can 
easily overshadow the performance gain from sizing 
and architectural tuning.  Irregular layout complicates 
the area overhead and time-to-market completion 
time.   

 

A. Architectural Improvements  
! 4-stage pipeline – the datapath is executed in 4 stages, 

input, multiply, add1, and add2: 
# Input – previous E(kT) values shift and the 

new input E(0) latches in. 
# Multiply – 3 multipliers execute in parallel, 

computing AiEi, then the outputs are saved 
in three latches. 

# Add1 – the first 2 multiplier products are 
added and stored, and the third multiplier’s 
result is relatched to a different register. 

# Add2 – the third multiplier’s result is added 
to the sum of the other 2 products and stored 
into the output pins, throwing away the 
carry-out and the last 12 LSBs. 

With the pipelining, the very first computation  
consumes 2 clock cycles.  Afterwards, the result is 
available in every cycle. 

Delay values for worst case multiplier and adder 
computations are 5.67ns and 3.72ns respectively.  
Therefore, a 3-stage pipeline with both adders 
finishing before the multiplier is impossible.   
With 4 stages, a high throughput is achieved at the 
sacrifice of overall latency.  Considering the 
recursive nature of a digital filter, the benefit more 
than outweighs the cost.    

! Noice’s 2-phase clocking – Noice’s rules are 
followed in order to prevent clock skew.  A φ1 latch 
outputs a stable φ2 signal, which is then passed to a  
φ2 latch after arithmetic processing.  The same is true 
vice versa.       

! Square array multiplier – since the area of the 
multiplier is the major concern, the array multiplier 
can be structured as a regular square.  This minimizes 
both the chip area as well as the routing delay. 

 

B. Circuit Optimizations 
! Glitch minimization – glitches impact the 

performance because erroneous transitions incur a 
correction time overhead.  Reducing the glitching 
probability will lead to performance boosts.  Since 

glitches in full adders originate from unequal arrival 
time of SUM and CARRY,  the full adder used in the 
multiplier as well as the 24-bit adder was 
implemented using transmission gate logic, which 
inherently has equal SUM and CARRY delay.  An 
alternative 10-transistor SERF full adder [5] was 
implemented and tried as the building block of the 
multiplier and the adder.  The result was very glitchy 
and impacted the delay significantly.  Therefore, a 
conclusion drawn is that glitchless full adder 
operation is crucial to optimizing the delay of the 
entire PDF design. 

! Transistor sizing – the transmission gate full adder 
was sized to achieve a good delay and yet not exceed 
30λ for area considerations.  Other components in the 
multiplier, such as the AND gates, were sized up to a 
moderate width of 30λ to achieve an optimal tradeoff 
between performance and area.  Because the 
multiplier is the bottleneck, the adder’s delay is not a 
major concern in the pipelined system.  Therefore,  
transistors in the adders were scaled down to achieve 
a low area.   

! Latch selection – latches were chosen over                
D flipflops as the storage unit for area savings.  The ei 
shift registers, however, require a D flipflop 
implementation for proper operation because a latch 
would lead to continous shifting from the 1st register 
all the way down to the last shift register.  Variants of 
the level sensitive latch are employed, such as the 2-
phase latch and the traditional single phase latch.  The 
2-phase latch is only used in storing the Ai’s, since 
these values remain stable during run time regardless 
of φ1 and φ2.  2-phase latches are more area efficient 
than single-phase ones, so some area reduction is 
achieved.       

 

C. Layout Enhancements 
! Mul_blocks –  since each partial product is an input 

to a full adder, routing area can be reduced through 
the formation of mul_blocks, a building cell for the 
array multiplier.  Instead of generating the partial 
products elsewhere and routing them to their 
destination full adders, the partial product generator, 
a 2-input AND gate, can be combined with the full 
adder to form a mul_block cell.  This way, the AND 
gate partial product output is directly routed to a 
neighboring full adder, saving routing area and delay.  
Figure 7 illustrates a mul_blocks. 
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                  Figure 7. Mul_Block 

 
 
 

! Power supply rail placement – both VDD and GND 
lines are placed on the top and bottom of each row of 
mul_block so that they can be shared by all blocks 
above and below it.  This results in a significant 
global routing area reduction.  

! L-shaped registers – the output latches of the 
multiplier are 24 bits wide, while the multiplier itself 
is 12x12.  In order to reduce the latch area, the 
latches are laid out into a L-shape.  This way, they 
can bend and wrap around the multiplier to save area. 

! Decomposed control block – The entire control 
block, which generates all the load signals, is 
decomposed into separate, small blocks that generate 
the control signals individually.  This allowed the 
smaller control units to fit into gaps in the PDF 
design, where the original, entire control block could 
not fit.  This efficient usage of space leads to a 
reduction in total chip area as well as routing delay 
minimization. 

! Over-the-cell routing – control lines and the clock 
signal are routed over the cells using metal4, which 
reduces the total routing area.       

! Compact floorplan – the floorplan for the entire 
design was carefully done to achieve the most 
compact area.  More details can be found in section 9.   

! Exact width allocation – in some locations, the exact 
width of blocks to be placed is pre-calculated so that 
there is no approximate allocation that leads to 
potential waste of space.  A formula used to compute 
the required allocation is:  

                  
                     A = N*W + (N-1)*D   
 
Where A = the width to be allocated 
            N = the number of lines to be routed 
   W = minimum width of each line 
   D = minimum spacing between lines 
 
 
 

 Below is a summary list of all the optimizations discussed: 
 
         Figure 8.  Summary of Optimizations 
Architecture 
improvement 

Circuit 
improvement 

Layout 
improvement 

4-Stage 
Pipeline 

Glitch 
Minimization 

Mul_blocks 

Noice’s Rule Transistor 
Sizing 

Power 
Supply Rail 
Placement 

Square Array 
Multiplier 

Latch 
Selection 

L-Shaped 
Registers 

  Decomposed 
Control 
Block 

  Over-The-
Cell Routing 

  Compact 
Floorplan 

  Exact Width 
Allocation 

  
 

VII. CRITICAL PATH 
The critical path for the design is defined to be the worst 

case delay of the multiplier.  For an array multiplier, this 
corresponds to an input pattern that propagates a carry through 
as many bits as possible.  Since a carry can only propagate 
when there is an odd number of 1’s in a column of partial 
products,  the critical path was derived to be the delay of the 
input pattern 100000000001 * 111111111111, shown in  
figure 9. 
 
    Figure 9.  Array Multiplier Critical Path                       
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
For the 24-bit ripple adder,

the input pattern 1111111111
input set, a carry will be rippl
way out of the 23rd bit. 
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 the critical path corresponds to 
11 + 000000000001.  For this 
ed starting from the 0th bit all the 
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VIII. COMPONENT TABLE 
Figure 10 lists all the components in the design. 

 
Figure 10.  PDF Components 

 Number of 
Instances in the 
PDF Design 

Usage 

12x12 Array 
Multiplier 

3 Ai * Ei 

24-bit Ripple 
Transmission Gate 
Full Adder 

2 (A0 * E0) +  
(A1 * E-T) + 
(A2 * E-2T) 

24-bit Positive Edge 
FlipFlops 

3 Shift 
Registers 
storing the 
Ei’s 

24-bit latches 3(configure) + 
6(run) = 9 

Saves A0, A1,  
and A2 in 
configure 
mode.  In run 
mode, they 
store the 
adder and 
multiplier 
outputs,   
(Ai * Ei) and   
(Ai * Ei) +  
(Aj * Ei)   

Multiplexer 3 Enables u0, e0, 
and e-T to be 
externally set 
during 
configure 
mode  

Control block 1 Outputs 
control signals 
for the 
appropriate 
latches 

Transmission Gate 
Full Adder 

3 * (number of 
instances in the 
array multiplier) + 
2 * (24) 

Building 
block of the 
multiplier as 
well as the 
ripple-adder 

 

IX. CHIP FLOOR PLAN 
Through efficient floorplanning and routing, the final PDF 

area is only slightly bigger than the combined area of the 3 
multipliers.  The overall chip floorplan is shown in figure 11. 

 
 
 
 
 
 
 

Figure 11.  PDF Floorplan   

 
 

X. AREA, DELAY, AND MAXIMUM CLOCK SPEED 
 
 Worst Case 

Delay(ns) 
Area (um2) 

Array Multiplier 5.67 1011x1412 
Ripple-Adder 3.72 1975x102 
PDF Does Not Apply, 

output is latched 
4821x2214 

 
    T = 5.67 ns (multiplier delay, pipeline) 
    Maximum Clock Frequency = 176.37 MHertz 
 

XI. KEY COMPONENT SCHEMATICS AND LAYOUTS 
 

The following figures show some key PDF components  
with appropriate sizing.  The full adder and the AND gate 
comprise the multiplier and the ripple-adder entirely. 
 
      Figure 12.  Transmission Gate Full Adder 
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                   Figure 13.  AND gate in mul_block 

 
 
 
                      Figure 14.  PDF Layout 

 
 
 
    Figure 15.  12x12 Array Multiplier Layout 

 

Figure 16.  Transmission Gate Full Adder 

           
 

XII. CONCLUSION 
 

A digital filter is designed to operate continously in  
run mode, sampling an input and computing an output for 
every clock cycle.  The recurrent nature of the filter mandates 
a high throughput, even if it impacts the overall latency.  
Through a 4-stage pipeline, the design given in this paper is 
able to satisfy the throughput demand with a low latency.  The 
chip area is significantly compact due to the regularity of the 
square array multiplier and efficient bending of transistors 
during the layout process.  A full programmable digital filter 
with high throughput, compact area, and decent latency is 
achieved in this design.   
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