
 1

Abstract—A Programmable Digital Filter modeling the

equation u(kT) = a0.e(kT) + a1.e((k-1)T) + a2.e((k-2)T) is
implemented at the transistor level with three 12x12-bit array
multipliers and two 24-bit combinational adders. Transmission
gate full adders were sized to achieve minimum area and
respectable performance. A 4 stage pipeline utilizing two
different clocks yields a high throughput design.

Index Terms—programmable digital filter, FIR, equal-
delay full adder, array multiplier.

I. INTRODUCTION
Programmable digital filter (PDF) is a hardware
implementation of a digital filter whose properties are

programmable by external control signals. Filtering is the
process by which the signal spectrum is convolved with the
frequency domain impulse response of the filter in order to
pass only the desired frequencies. There are two basic types of
digital filters, Finite Impulse Response (FIR) and Infinite
Impulse Response (IIR). IIR filters have one or more non-zero
feedback coefficients, whereas FIR filters have none. This
paper focuses on the design of a compact and high
performance 0.35µ FIR filter. The general form of the FIR
difference equation is:

This paper limits N to 2 in order to achieve a compact design.
The cost to accuracy resulting from this restriction is
insignificant for the inputs tested.

The ai, x(n-i), and y(n) are 12-bit fixed point numbers in the
range:

 0 to ∑
=

−
12

1
2

i

i

 The filter operates in 2 modes, configure and run. In
configure mode, the ai and x(n-i) are set to a starting condition.
When the filter switches to run mode, the current input x(n) is
combined with the starting condition to compute the new
output.
 The paper is organized as follows. Section 2 outlines the

design methodology of the arithmetic modules in the filter.
Section 3 presents an architectural description of the PDF,
followed by a summarization of the clocking scheme in section
4. Circuit operation and a list of optimization steps taken are
given in sections 5 and 6, respectively. Sections 7 analyzes the
critical path, while section 8 lists all the components used in
the design. Section 9 is a high level description of the chip
floorplan, while section 10 summarizes the delay and area of
the arithmetic modules. Section 11 illustrates the schematics
and layouts for some of the key components, while closing
remarks are given in section 12.

II. DESIGN METHODOLOGY

After surveying a variety of paper on multiplier
implementations, it became apparent that for a 12x12
multiplier, the low computation effort does not warrant a
higher hardware complexity. For instance, multiplying two
12-bit numbers using a Booth Encoded Wallace Tree
multiplier will not be significantly faster than using a
straightforward array multiplier. The speed advantage derived
from the more complex implementations is only significant in
larger multiplications, such as 32x32 or 64x64 bits. In fact,
after layout, a complicated design has a high probability of
being slower than the standard array multiplier. This is
because the routing capacitance resulting from irregular wiring
can dominate the total delay. [1] points out this critical point.
In addition a complicated multiplier will have a substantial
area overhead. Therefore, an array multiplier implementation
is chosen for its low area, and routing regularity. Since each
component in the array needs to connect only to an adjacent
component, the routing capacitance is minimized.
 For reasons explained later, the choice of 24-bit adder
implementation is not significant because it is not the
bottleneck in the pipeline. Therefore, a ripple-carry
static-logic adder is selected for area savings. Both the
multiplier and the adder are constrained to static-logic for
compatibility.

III. ARCHITECTURAL DESCRIPTION

The filter is comprised of three 12-bit multipliers, two 24-bit
adders, a control unit, and several latches and flipflops for

A Compact 4-Stage Pipelined 0.35µm
Programmable Digital Filter

Hemant Savla, Hsinwei Chou, Harsha Mokkarala, and Anand Lakshmanan

A

 2

pipelining purposes. The full adders used in the multipliers
and the adders are the same.

A. Transmission Gate Full Adder
Figure 1 shows a transmission gate full adder

implementation. This adder has 26 transistors, the same as the
combinational static adder, but has the advantage of having
equal SUM and CARRY delay times. In addition, the SUM
and CARRY are not inverted. Due to the equal arrival times
of SUM and CARRY, the transmission gate adder glitches less
often than a fully combinational adder, making it a favorable
circuit style for high performance arithmetic blocks.

 Figure 1. Transmission Gate Full Adder

B. 12x12 Square Array Multiplier
A straightforward array multiplier is designed using the

transmission gate full adder as the basic building block. A
square realization of the array multiplier is implemented for
compactness as well as layout regularity, which reduces the
routing capacitance. Figure 2 illustrates a sample 4x4 square
rearrangement of an array multiplier. Each full adder (FA) cell
is connected to an adjacent FA cell as shown in figure 3.

 Figure 2. Sample 4x4 Square Array Multiplier

 Figure 3. Full Adder Cell Interaction

C. 24-bit ripple-carry adder
The adder is composed of 24 transmission gate full adders

connected in a traditional ripple-carry fashion, as seen in
figure 4. In the pipeline, the bottleneck is the multiplier, not
the adder. Therefore, a ripple-carry implementation suffers no
loss in performance compared to a carry-look ahead adder, but
offers significant savings in area.

 Figure 4. Ripple-Carry Adder

D. Control Block
The control signals are A0LOAD, A1LOAD, A2LOAD,

U0LOAD, E0LOAD, and E-1LOAD. Each signal is generated
through a 4-input AND gate, with the inputs being the
corresponding Const[2:0] values and mode. In run mode, the
registers storing the A’s retain their values. E0LOAD and
E1LOAD are also low, but there is an external circuitry to
allow the E(kT) shift registers to remain on.

E. Latches and FlipFlops
Three 24-bit positive-edge flipflops form a shift register to

store the E(kT) values. Separately, 24-bit single-phase
positive level-sensitive latches save A0, A1, and A2 during
configure mode. The outputs from the multipliers and the
adders also utilize the same type of latch for storage in run
mode.

Single-clock latches were chosen over two-phase
implementations in order to utilize a two-phase clocking

 3

scheme. Other motivations include reduction of timing
complexity and readily available layouts.

IV. CLOCKING SCHEME
 φ1 and φ2 are non-overlapping clocks. φ2 is not the
complement of φ1. On the rising edge of φ1, three 12-bit shift
registers latch onto the previous value of E(kT). After φ1
transitions low, a short period of time will pass before φ2
transitions high. During the high cycle of φ2, three 24-bit
latches will store the output of the three multipliers
corresponding to A0E0, A1E-1, and A2E-2. On the next cycle,
when φ1 is high, two 24-bit registers will latch onto the result
of an adder and the output of the third multiplier, again.
Finally, during the high cycle of φ2, a 24-bit latch will store
the result of the second adder and output it on U[11:0].
 SH goes high a short time before φ1 rises. On the rising
edge of φ1, the inputs must be present on the E[11:0] in order
to be latched in. The time duration between the rising edge of
SH and the rising edge of φ1 is the setup time for the inputs
E[11:0]. The hold time for E[11:0] is the delay of a positive-
edge triggered flip-flop. The output U[11:0] is guaranteed to
be stable at one positive level-sensitive latch delay after the
rising edge of φ2.
 The multiplier delay is the bottleneck in the entire filter,
which is also the pipeline period.
 The clocking scheme and the 4-stage pipelined structure is
explained in figure 5.

 Figure 5. General PDF Clocking Scheme

V. CIRCUIT OPERATION
The PDF operates as follows. Starting in configure mode,

the inputs const[2:0] are varied to load a0, a1, a2, e0, and e-T

signals into the approriate registers. Unlike the ai latches, the
ei registers are connected to each other as a shift register unit.
Therefore, multiplexers are used to directly set the e0, and e-T
values during configure mode. Similarly, a user may
externally set the output uo through a multiplexer that links the
E[11:0] pins to the register storing U[11:0]. Once all these
initial conditions are set, run mode initiates.

In run mode, the ei shift registers are continuously on. For
every clock cycle, a new input e0 is shifted in, while the
previous two ei values slide to the next register. The e-2 value .
is erased permanently. Once all ei’s get latched, the multiplier
calculates the product ai*ei and stores it in another latch.
Then, 2 adders sequentially add all three products and output
the result on U[11:0].

Figure 6 shows a high level block diagram of the PDF
design.

 Figure 6. High Level PDF Block Diagram

 4

VI. OPTIMIZATIONS
The design was optimized with the following ideas strictly

adhered:

a. For a digital filter, the throughput of the design
outweighs the overall latency.

b. The bottleneck of the design is the array multiplier,
not the ripple-carry adder.

c. The area and regularity of layout must be carefully
monitored during optimization. Routing delay can
easily overshadow the performance gain from sizing
and architectural tuning. Irregular layout complicates
the area overhead and time-to-market completion
time.

A. Architectural Improvements
! 4-stage pipeline – the datapath is executed in 4 stages,

input, multiply, add1, and add2:
Input – previous E(kT) values shift and the

new input E(0) latches in.
Multiply – 3 multipliers execute in parallel,

computing AiEi, then the outputs are saved
in three latches.

Add1 – the first 2 multiplier products are
added and stored, and the third multiplier’s
result is relatched to a different register.

Add2 – the third multiplier’s result is added
to the sum of the other 2 products and stored
into the output pins, throwing away the
carry-out and the last 12 LSBs.

With the pipelining, the very first computation
consumes 2 clock cycles. Afterwards, the result is
available in every cycle.

Delay values for worst case multiplier and adder
computations are 5.67ns and 3.72ns respectively.
Therefore, a 3-stage pipeline with both adders
finishing before the multiplier is impossible.
With 4 stages, a high throughput is achieved at the
sacrifice of overall latency. Considering the
recursive nature of a digital filter, the benefit more
than outweighs the cost.

! Noice’s 2-phase clocking – Noice’s rules are
followed in order to prevent clock skew. A φ1 latch
outputs a stable φ2 signal, which is then passed to a
φ2 latch after arithmetic processing. The same is true
vice versa.

! Square array multiplier – since the area of the
multiplier is the major concern, the array multiplier
can be structured as a regular square. This minimizes
both the chip area as well as the routing delay.

B. Circuit Optimizations
! Glitch minimization – glitches impact the

performance because erroneous transitions incur a
correction time overhead. Reducing the glitching
probability will lead to performance boosts. Since

glitches in full adders originate from unequal arrival
time of SUM and CARRY, the full adder used in the
multiplier as well as the 24-bit adder was
implemented using transmission gate logic, which
inherently has equal SUM and CARRY delay. An
alternative 10-transistor SERF full adder [5] was
implemented and tried as the building block of the
multiplier and the adder. The result was very glitchy
and impacted the delay significantly. Therefore, a
conclusion drawn is that glitchless full adder
operation is crucial to optimizing the delay of the
entire PDF design.

! Transistor sizing – the transmission gate full adder
was sized to achieve a good delay and yet not exceed
30λ for area considerations. Other components in the
multiplier, such as the AND gates, were sized up to a
moderate width of 30λ to achieve an optimal tradeoff
between performance and area. Because the
multiplier is the bottleneck, the adder’s delay is not a
major concern in the pipelined system. Therefore,
transistors in the adders were scaled down to achieve
a low area.

! Latch selection – latches were chosen over
D flipflops as the storage unit for area savings. The ei
shift registers, however, require a D flipflop
implementation for proper operation because a latch
would lead to continous shifting from the 1st register
all the way down to the last shift register. Variants of
the level sensitive latch are employed, such as the 2-
phase latch and the traditional single phase latch. The
2-phase latch is only used in storing the Ai’s, since
these values remain stable during run time regardless
of φ1 and φ2. 2-phase latches are more area efficient
than single-phase ones, so some area reduction is
achieved.

C. Layout Enhancements
! Mul_blocks – since each partial product is an input

to a full adder, routing area can be reduced through
the formation of mul_blocks, a building cell for the
array multiplier. Instead of generating the partial
products elsewhere and routing them to their
destination full adders, the partial product generator,
a 2-input AND gate, can be combined with the full
adder to form a mul_block cell. This way, the AND
gate partial product output is directly routed to a
neighboring full adder, saving routing area and delay.
Figure 7 illustrates a mul_blocks.

 5

 Figure 7. Mul_Block

! Power supply rail placement – both VDD and GND
lines are placed on the top and bottom of each row of
mul_block so that they can be shared by all blocks
above and below it. This results in a significant
global routing area reduction.

! L-shaped registers – the output latches of the
multiplier are 24 bits wide, while the multiplier itself
is 12x12. In order to reduce the latch area, the
latches are laid out into a L-shape. This way, they
can bend and wrap around the multiplier to save area.

! Decomposed control block – The entire control
block, which generates all the load signals, is
decomposed into separate, small blocks that generate
the control signals individually. This allowed the
smaller control units to fit into gaps in the PDF
design, where the original, entire control block could
not fit. This efficient usage of space leads to a
reduction in total chip area as well as routing delay
minimization.

! Over-the-cell routing – control lines and the clock
signal are routed over the cells using metal4, which
reduces the total routing area.

! Compact floorplan – the floorplan for the entire
design was carefully done to achieve the most
compact area. More details can be found in section 9.

! Exact width allocation – in some locations, the exact
width of blocks to be placed is pre-calculated so that
there is no approximate allocation that leads to
potential waste of space. A formula used to compute
the required allocation is:

 A = N*W + (N-1)*D

Where A = the width to be allocated
 N = the number of lines to be routed
 W = minimum width of each line
 D = minimum spacing between lines

 Below is a summary list of all the optimizations discussed:

 Figure 8. Summary of Optimizations
Architecture
improvement

Circuit
improvement

Layout
improvement

4-Stage
Pipeline

Glitch
Minimization

Mul_blocks

Noice’s Rule Transistor
Sizing

Power
Supply Rail
Placement

Square Array
Multiplier

Latch
Selection

L-Shaped
Registers

 Decomposed
Control
Block

 Over-The-
Cell Routing

 Compact
Floorplan

 Exact Width
Allocation

VII. CRITICAL PATH
The critical path for the design is defined to be the worst

case delay of the multiplier. For an array multiplier, this
corresponds to an input pattern that propagates a carry through
as many bits as possible. Since a carry can only propagate
when there is an odd number of 1’s in a column of partial
products, the critical path was derived to be the delay of the
input pattern 100000000001 * 111111111111, shown in
figure 9.

 Figure 9. Array Multiplier Critical Path

For the 24-bit ripple adder,

the input pattern 1111111111
input set, a carry will be rippl
way out of the 23rd bit.

 1
 10
 100
 1000
10000

 100000
 1000000
 10000000
 100000000
 10000000000
100000000001
100000000001
00000000001
0000000001
000000001
00000001
0000001
000001
00001
0001
001
1
 the critical path corresponds to
11 + 000000000001. For this
ed starting from the 0th bit all the

 6

VIII. COMPONENT TABLE
Figure 10 lists all the components in the design.

Figure 10. PDF Components

 Number of
Instances in the
PDF Design

Usage

12x12 Array
Multiplier

3 Ai * Ei

24-bit Ripple
Transmission Gate
Full Adder

2 (A0 * E0) +
(A1 * E-T) +
(A2 * E-2T)

24-bit Positive Edge
FlipFlops

3 Shift
Registers
storing the
Ei’s

24-bit latches 3(configure) +
6(run) = 9

Saves A0, A1,
and A2 in
configure
mode. In run
mode, they
store the
adder and
multiplier
outputs,
(Ai * Ei) and
(Ai * Ei) +
(Aj * Ei)

Multiplexer 3 Enables u0, e0,
and e-T to be
externally set
during
configure
mode

Control block 1 Outputs
control signals
for the
appropriate
latches

Transmission Gate
Full Adder

3 * (number of
instances in the
array multiplier) +
2 * (24)

Building
block of the
multiplier as
well as the
ripple-adder

IX. CHIP FLOOR PLAN
Through efficient floorplanning and routing, the final PDF

area is only slightly bigger than the combined area of the 3
multipliers. The overall chip floorplan is shown in figure 11.

Figure 11. PDF Floorplan

X. AREA, DELAY, AND MAXIMUM CLOCK SPEED

 Worst Case

Delay(ns)
Area (um2)

Array Multiplier 5.67 1011x1412
Ripple-Adder 3.72 1975x102
PDF Does Not Apply,

output is latched
4821x2214

 T = 5.67 ns (multiplier delay, pipeline)
 Maximum Clock Frequency = 176.37 MHertz

XI. KEY COMPONENT SCHEMATICS AND LAYOUTS

The following figures show some key PDF components
with appropriate sizing. The full adder and the AND gate
comprise the multiplier and the ripple-adder entirely.

 Figure 12. Transmission Gate Full Adder

 7

 Figure 13. AND gate in mul_block

 Figure 14. PDF Layout

 Figure 15. 12x12 Array Multiplier Layout

Figure 16. Transmission Gate Full Adder

XII. CONCLUSION

A digital filter is designed to operate continously in
run mode, sampling an input and computing an output for
every clock cycle. The recurrent nature of the filter mandates
a high throughput, even if it impacts the overall latency.
Through a 4-stage pipeline, the design given in this paper is
able to satisfy the throughput demand with a low latency. The
chip area is significantly compact due to the regularity of the
square array multiplier and efficient bending of transistors
during the layout process. A full programmable digital filter
with high throughput, compact area, and decent latency is
achieved in this design.

REFERENCES
[1] http://www.andraka.com/multipli.htm
[2] Weste, Eshraghian, “Principles of CMOS VLSI Design”. Equal delay

transmission gate full adder: pp. 524-526. Square array multiplier: pp.
547-548.

[3] Shailesh Shah, “Design and Comparison of 32-bit Multipliers for
Various Performance Measures”, Meng. Project Report, Concordia
University, January 2000.

[4] C.S. Wallace, “A Suggestion for a Fast Multiplier”, IEEE Trans.
Elecron. Comp., vol. EC-13, pp. 14-17, Feb. 1964.

[5] Bui, Wang, and Jiang, “Design and Analysis of Low Power
10-Transistor Full Adders Using Novel XOR-XNOR Gates.

http://www.andraka.com/multipli.htm

	INTRODUCTION
	Design Methodology
	Architectural Description
	Transmission Gate Full Adder
	B. 12x12 Square Array Multiplier
	C. 24-bit ripple-carry adder
	Control Block
	Latches and FlipFlops

	Clocking scheme
	Circuit operation
	Optimizations
	Architectural Improvements
	Circuit Optimizations
	Layout Enhancements

	Critical path
	COMPONENT TABLE
	CHIP FLOOR PLAN
	Area, delay, and maximum clock speed
	Key Component schematics and layouts
	Conclusion

