Project Report Test Generation, Diagnosis and Partial Scan

Hemant Savla \& Selvamuthukumar Senthilvelan

[Group 5]

Part I: Detection/Diagnosis Test Generation

(a) Problem Statement:

To develop a complete and economical test set for fault detection in a given circuit using ATPG
Tool Set. Test the three virtual circuits using the generated test set and detect the faulty circuit.
Diagnose the faulty circuit and locate the fault using additional tests, if required.
(b) Result

1. Total number of test vectors $=115$
2. Fault Coverage $=1557 / 1566=99.425 \%$
3. List of undetectable / undetected faults

1284	211	1
1081	845	1
1081	253	1
255	324	1
1025	0	1
703	0	1
1821	840	1
122	1551	1
122	1551	1

4. The test result for three circuits
vc5-1 circuit tested good
vc5-2 circuit tested good
vc5-3 circuit tested faulty
5. The diagnosis result on faulty circuit

The circuit vc5-3 has a single stuck at fault at 1325/1197/1
6. Every $15^{\text {th }}$ test vector from the set of first 100 vectors

1 Test: 19/0 57/1 140/1 184/1 282/0 315/1 $323 / 1$ 348/1 353/0 400/0 Cont: 411/1 443/0 484/0 496/0 506/1 508/1 585/1 840/1 1011/0 1033/0 Cont: 1036/1 1115/1 1282/0 1303/1 1320/0 1354/1 1424/0 1485/0 1644/0 1660/1 Cont: 1834/1 1842/0 1863/0

Test: 19/1 $57 / 1$ 140/0 184/0 282/0 $315 / 1$ 323/1 $348 / 0 \quad 353 / 0$ 400/1
Cont: 411/0 443/0 484/1 496/0 506/1 508/0 585/0 840/1 1011/0 1033/0 Cont: 1036/1 1115/0 1282/0 1303/0 1320/1 1354/0 1424/0 1485/0 1644/1 1660/1 Cont: 1834/1 1842/1 1863/1

31 Test: $19 / 0$ 57/0 $140 / 1$ 184/1 $282 / 1$ 315/0 $323 / 1$ 348/0 $353 / 1400 / 1$
Cont: 411/0 443/1 484/1 496/1 506/1 508/0 585/1 840/1 1011/0 1033/0 Cont: 1036/0 1115/1 1282/0 1303/1 1320/0 1354/0 1424/0 1485/0 1644/0 1660/0 Cont: 1834/0 1842/1 1863/0

46 Test: 19/0 57/0 140/1 184/0 282/0 315/0 323/0 348/1 353/1 400/1 Cont: 411/1 443/0 484/0 496/0 506/1 508/0 585/0 840/1 1011/0 1033/0 Cont: 1036/1 1115/0 1282/0 1303/0 1320/0 1354/0 1424/0 1485/1 1644/1 1660/1 Cont: 1834/1 1842/1 1863/0

61 Test: 19/0 57/0 140/1 184/1 282/0 315/0 323/0 348/0 353/1 400/1
Cont: 411/1 443/0 484/1 496/1 506/1 508/1 585/0 840/1 1011/0 1033/0 Cont: 1036/1 1115/1 1282/1 1303/0 1320/1 1354/1 1424/1 1485/1 1644/1 1660/1 Cont: 1834/1 1842/0 1863/0

76 Test: 19/0 57/0 140/0 184/0 282/0 315/1 323/0 348/0 353/1 400/0
Cont: 411/0 443/1 484/1 496/0 506/1 508/1 585/1 840/0 1011/0 1033/0 Cont: 1036/0 1115/0 1282/1 1303/0 1320/0 1354/0 1424/1 1485/0 1644/1 1660/0 Cont: 1834/0 1842/1 1863/1

91 Test: 19/0 57/1 140/0 184/0 282/1 315/0 323/0 348/0 353/0 400/0 Cont: 411/0 443/1 484/0 496/0 506/1 508/0 585/0 840/0 1011/0 1033/1 Cont: 1036/1 1115/1 1282/0 1303/1 1320/1 1354/1 1424/0 1485/1 1644/1 1660/0 Cont: 1834/0 1842/1 1863/1

(c) Test Generation

1. Originally planned strategy:

As shown in the figure we originally planned to generate the fault list using Listfaults and then use randvec to generate some random test vector set. Use $p p s f p$ to determine fault coverage for this random vector set. Iteratively run randvec and ppsfp till stable fault coverage is got i.e., there is no significant increase in the fault coverage. Use podem which is a deterministic type of algorithm to find test for the undetectable faults and thus try to achieve 100% fault coverage. Use the array of test vector manipulation programs to make the test set economical and compact.

[Fig. 1] Flow chart of planned strategy

2. Actual strategy used:

While going through the TESTCAD manual the tool catpg (combinational circuit test pattern generator) was found to be an algorithm which does random testing as well as deterministic testing for vector generation. This tool was used to generate vectors instead of using randvec and podem tools. This vector set was compacted and used to get the complete test set. Better results were achieved by this strategy.

3. Details of the test generation process:

[Fig. 2] Flow chart of test generation process
1.Fault list generated using listfaults (-ad)
2.Initial test vectors generated using Catpg
3.Converted the output of Catpg to UW format using an Excel Macro
4.Compacted the test vector using Sortcover and Accumulate programs
5.Tested the Compacted test vectors to check fault coverage using ppsfp

4. Discussion:

Different test vector generation strategies were tried out and the best strategy that gave the highest fault coverage as well as compact test vector set was adopted. Catpg gave a minimal set of 120 test vectors. Other tools for compacting the test vector were used and the vector set size was reduced to 115 vectors. This vector set was economical as well as had a high fault coverage.

(d) Fault Diagnosis:

The strategy and details of the diagnostic process is as below,

[Fig.3] Fault Detection \& Diagnosis

1. Originally planned strategy:

The first step was to use the compact test vector set generated on the master circuit 'circuit5' and generate output using l sim. Then use the same vector set on the other three circuits to be tested and compare the results of each against the result of master circuit. Identify the bad circuit. Segregate the test vectors that identified the faulty circuit and use them to generate a list of faults each vector
can individually identify using $p p s f p$ and udf files. Intersect all the faults identified by each test vector and the common fault got from all the test vectors will be the actual fault in the circuit.

2. Actual strategy used:

The original planned strategy was followed step by step. The list of faults for each test vector was identified using the list all the faults in the circuit minus the list if undetected faults using subfaults script. The intersection of the 10 test vector gave 64 common faults. Hence new tests were required to be generated to improve the resolution of diagnosis. This was done using podem and the list of common faults. These newly generated test vectors were once again applied to the master circuit and faulty circuit. The output varied only for one test vector. Using the podem generated test vector file, the fault that caused the faulty output was traced and noted.

3. Details of the diagnosis process:

1. The outputs for the three circuits under test were compared to the master circuit and the third circuit was identified faulty.
2. The 10 vectors that identified the fault were used separately to generate list of faults each could locate. Intersection of this list provided a list of common faults.
3. New tests were generated using podem for these common faults and these test vector were used to generate output. The faulty circuit varied form the master circuit for only one test vector.
4. The fault corresponding to this test vector was identified and noted.

4. Discussion:

The compacted vector set of 115 vectors was good enough to detect the faulty circuit. The vector set did not have the required diagnostic resolution to find the exact fault in the circuit. Hence additional tests were generated using podem and used to successfully locate the fault. The intersection of faults for the selected vectors were done in a script file using the formula,

$$
\mathrm{C}=\text { Faults detected by vector } \mathrm{A}-\text { Faults detected by vector } \mathrm{B}
$$

Common Faults AB = Faults detected by vector A - C

Part II: Partial Scan

1. Problem Statement:

To select a minimal set of flip flops that can be scanned to improve the test coverage for the given sequential circuit. Develop a strategy to select the flip flops and validate results using fastest.

2. Results:

(a) Statistics for unmodified circuit (seq)
\# $\quad *$
\# FASTEST ver. 6.0
\# [ATPG] Wed Feb 24 16:48:34 CDT 1993
\# [FILE:fastest_seq.out]
\# $\quad *$
Total 108428 implications; 0 hrs 150 sec .
Faults: 1137; Detected: 97; Coverage: 0.085312
Total Vectors: 10
Memory used: [1085136/1085136/1085136] 1059K
\#
\# Time : Total 151 sec (Initialization 1 sec)
\# Total TPG $150 \mathrm{sec}(100 \%)$
\# Scoap $0 \sec (0 \%)$
\# Simulation $3 \sec (2 \%)$
\#
Untested Faults: 0

(b) Statistics for partially scanned circuit (with 4 Scan able flip-flop) [i] [Optimized for 100\% Fault Coverage]

[612 LATCH 761, 776 LATCH 623, 804 LATCH 397, 986 LATCH 620]

```
# *****************************
# FASTEST ver. 6.0
# [ATPG] Wed Feb 24 16:48:34 CDT 1993
# [FILE:fastest_seq4.out]
# ******************************
Total }2099\mathrm{ implications; 0 hrs 10 sec.
Faults: 1137; Detected: 1137; Coverage: 1.000000 ********100% Fault coverage
Total Vectors: }20
Memory used: [1093328/1093328/1093328] 1067K
#
# Time : Total 10 sec (Initialization 1 sec)
# Total TPG 10 sec(100%)
# Scoap 0 sec( 5%)
# Simulation 8 sec( 83%)
#
Untested Faults: 0
```

(b) Statistics for partially scanned circuit (with 3 scan able flip-flop)
[ii] [Optimized for minimum number of scan flip flops]
[776 LATCH 623, 804 LATCH 397, 986 LATCH 620]
\# $* *$
\# FASTEST ver. 6.0
\# [ATPG] Wed Feb 24 16:48:34 CDT 1993
\# [FILE:fastest_seq3.out]
\# $* *$
Total 10491 implications; 0 hrs 26 sec .
Faults: 1137; Detected: 1134; Coverage: 0.997361 *****99.73\% fault coverage
Total Vectors: 254
Memory used: [1093328/1093328/1093328] 1067K
\#
\# Time : Total 27 sec (Initialization 1 sec)
\# Total TPG $26 \sec (100 \%)$
\# Scoap $1 \sec (2 \%)$
\# Simulation $10 \sec (38 \%)$
\#
Untested Faults: 0
(c) Strategies for selecting scan flip flops:

1. Draw the S-graph for the circuit.
2. Trace each flip flop and identify flip flops that are cyclic in nature.
3. Selected the six flip flops that had cycles.
4. Converted them to scan flip flops and ran fastest.
5. Verified the fault coverage achieved.
6. Optimized the selection based on maximum fault coverage and based on minimum scan flip flops.

(d) Discussion and Comments:

Initial results showed that six flip flops gave 100% fault coverage. Effort was made to minimize the scan flip flops and yet achieve 100% fault coverage. Two of the six flip flops converted to scan flip flops could be successfully removed without loss in fault coverage. Further effort was made to get the minimum number of scan flip flops required to have fault coverage close to 100%. A minimum set of 3 flip flops were selected that could still give a fault coverage of 99.73%.

