ENGINEERING CALCULUS II MTH 1212

Vectors \& planes in space

by

NUR HILMI MOHAMAD (0134217) http://www.geocities.com/hirumi_san

Vectors \& planes in space

- How to express vector, v
- using bracket, $v=\langle x, y, z>$
- using i-j-k notation $v=x i+y j+z k$
- How to find vector \& its magnitude
- Find the difference between 2 points
- $A(a, b, c)$ to $B(x, y, z)$
- $A B=(x-a) i+(y-b) j+(z-c) k=\langle x-a, y-b, z-c>$
- $|A B|=/(x-a) 2+(y-b) 2+(z-c) 2$
- Vector operation
- Addition \& subtraction
- Multiplication
- By scalar
- Dot \& cross
- Dot \& cross product
- $\quad a . b=|a||b| \cos \theta=a x^{*} b x+a y^{*} b y+a z^{*} b z$
- $\quad a \times b=[|a||b| \sin \theta] n=\left(a y^{*} b z-a z^{*} b y\right) i+$
- Component \& projection
$-\operatorname{comp}_{\mathrm{b}} \mathrm{a}=|\mathrm{a}| \cos \theta$
$-\quad \operatorname{proj}_{b} a=\operatorname{comp}_{b} a u_{b}$
- Plane equation
- $\quad P_{0}$ P.n $=0$
- $P 0(a, b, c) P(x, y, z) n=<A, B, C>$
- $\quad P O P=<x-a, y-b, z-c>$
- Symmetric equation \& parametric
$-\quad x(t), y(t), z(t) \quad t=x-a / A=x-b / B=x-c / C$

How to express vector

- using sharp bracket

$$
\mathbf{v}=\langle a, b, c\rangle
$$

- using i-j - k notation

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}
$$

How to evaluate vector

- When 2 points are given
- Find vector $A B$

$$
\mathbf{v}=\overrightarrow{A B}=(x-a) \mathbf{i}+(y-b) \mathbf{j}+(z-c) \mathbf{k}
$$

- Find its magnitude $\quad=\langle(x-a),(y-b),(z-c)\rangle$

$$
\|\mathbf{v}\|=\|\overrightarrow{A B}\|=\sqrt{(x-a)^{2}+(y-b)^{2}+(z-c)^{2}}
$$

A (a, b, c)

Unit vector

- Vector divided with its magnitude
- Showing the direction without scalar multiplication
- \|u\| is always 1

$$
\|\mathbf{u}\|=1
$$

Dot product

$\mathbf{v} \cdot \mathbf{w}=a h+b k+c m$
$\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$

Cross product

$\mathbf{v} \times \mathbf{w}=\left|\begin{array}{llc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a & b & c \\ h & k & m\end{array}\right|=(b m-c k) \mathbf{i}+(c h-a m) \mathbf{j}+(a k-b h) \mathbf{k}$

Component $\mathbf{v}(a, b, c)$

$\operatorname{comp}_{\mathbf{w}} \mathbf{v}=\|\mathbf{v}\| \cos \theta$

$\operatorname{comp}_{\mathbf{w}} \mathbf{v}=\|\mathbf{v}\| \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}$

$$
=\frac{\mathbf{V} \cdot \mathbf{W}}{\|\mathbf{w}\|}
$$

Projection
 $\mathbf{v}(a, b, c)$

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\left(\operatorname{comp}_{\mathbf{w}} \mathbf{v}\right)\left(\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)
$$

$$
\xrightarrow{\longrightarrow} \mathbf{w}(h, k, m)
$$

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}\right)\left(\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)
$$

$$
=\frac{\mathbf{V} \cdot \mathbf{W}}{\|\mathbf{W}\|^{2}} \mathbf{w}
$$

Plane equation

Normal vector of the plane, \mathbf{n}

$$
\mathbf{n}=\langle p, q, r\rangle
$$

Unknown point, P
$P_{0}(a, b, c)$

$$
P(x, y, z)
$$

Given (known) point, P_{0}

- Both points are within plane
- Both vectors are perpendicular

$$
\overrightarrow{P_{0} P} \cdot \mathbf{n}=0
$$

Plane equation

$$
\begin{aligned}
& \overrightarrow{P_{0} P} \cdot \mathbf{n}=0 \\
& \langle(x-a),(y-b),(z-c)\rangle \cdot\langle p, q, r\rangle=0 \\
& p(x-a)+q(y-b)+r(z-c)=0 \\
& p x-p a+q y-q b+r z-r c=0 \\
& p x+q y+r z-p a-q b-r c=0 \\
& p x+q y+r z=p a+q b-r c
\end{aligned}
$$

