на стойки Nobel Chemistry Prize in проставки Priora 2108 ВАЗ ВАЗ 2170 опора a href="http://regiontehsnab.ru/"> подстанция Трансформаторная in Prize КТП Nobel Chemistry ad> Nobel Prize in Chemistry 1939 - Presentation Speech

The Nobel Prize in Chemistry 1939

The following account of Butenandt's work has been made.

As recently as twelve years ago, very little was known about the nature of the sex hormones. As regards the oestrogenic, or follicle, hormone it was established that extracts from certain organs, e.g. the ovaries and placenta, bring about the characteristic oestrus phenomena in castrated female rats. Only a few observations were available concerning the stability and solubility of their active principles. Further development in the chemistry of the oestrogenic hormones could not take place until the purely biological discoveries by Allen and Doisy in 1923 and by Aschheim and Zondek in 1927 had been made.

Butenandt made the first big step forward in clarifying the chemistry of the follicle hormone in 1929 in Göttingen, simultaneously with Doisy in the United States. Both workers succeeded in isolating from the urine of pregnant women a substance in crystalline form having oestrogenic effects. Butenandt named this substance folliculine, a designation which was later changed to oestrone. He established that its empirical formula was C18H22O2, and that it was an oxyketone.

Shortly after the discovery of oestrone, Marrian in London (1930) isolated from the urine of pregnant women a new hormone which he called oestriol. Butenandt confirmed Marrian's discovery and explained the relationship between the new substance and oestrone. The relation between sterols and oestrogenic substances which had been assumed on crystallographical grounds became probable from the chemical point of view only after Butenandt and Marrian had shown, independently of one another, that only three benzoide double bonds enter into the ring system of these substances.

In 1932, Butenandt was able, from observations made in spectral analysis, and especially on the basis of the then established correct formula of cholesterol to draw up the formulae of the chemical structure of oestrone and oestriol. But there remained the important task of proving the chemical structure of the ring system as assumed by Butenandt. By breaking down the oestriol molecule stage by stage Butenandt proved that both œstrogenic hormones contained a phenanthrene core. At the same time he was able to obtain the same dimethyl phenanthrene from etiobilianic acid, a transformation product of cholic acid. He had thus confirmed the close relationship existing between the follicle hormones on the one hand and the bile acids and sterols on the other.

The second important ovarian hormone, the corpus luteum hormone, was by various workers obtained in crystalline form from corpus luteum in 1931 and 1932. In 1934, Butenandt and Westphal succeeded in producing this hormone, which was given the name progesterone, in a chemically pure form. They also demonstrated its close relationship with sites in Nobel Prize beast Chemistry male pregnanediol, Nobel Chemistry in freek panty Prize a Chemistry Prize Nobel in rape mudshark stories physiologically Chemistry rough Prize in stories Nobel sex inactive dihydric alcohol which in male beast Prize Chemistry sites Nobel Butenandt and Marrian had found independently of one another in the urine of pregnant women. In the autumn of 1934, Butenandt succeeded in converting pregnanediol into progresterone. The synthesis of this important pregnancy hormone from cholesterol was carried out by Butenandt in a simple way in 1939.

The merit of the chemical exploration of the testicular, or androgenic, hormones falls to Butenandt and Ruzicka in common. Butenandt was the first to tackle this problem, and it was only possible to work on it after biological research had found a quantitative test for the determination of these substances - the so-called capon comb test.

Butenandt started with male urine, or alternatively its chloroform extract - approximately 0.8 per thousand dissolved in chloroform. In the process of purification it proved that the male hormone behaved in many respects like oestrone; when he realized this, it made Butenandt's work considerably easier.

When the purification had been successfully accomplished, there presented for the first time a crystalline substance with the physiological properties of a male sex hormone.

Butenandt gave this substance the name androsterone and defined its composition as C19H30O2. It differs from oestrone only in the additional content of 1 methyl group and 5 hydrogen atoms. Butenandt drew up the full constitutional formula in 1934 on the basis of the formula of cholesterol.

Androsterone had been synthesized from epi-cholestanol by Ruzicka, but it soon proved to be not identical with the genuine male hormone from the testicles. For this reason it made a great stir when in 1935 Laqueur and his collaborators isolated from testicular extract a highly active hormonetestosterone.

The close relationship of testosterone to androsterone made it comparatively easy to clarify its chemical composition, and still in the same year 1935 Ruzicka and Butenandt were able, in the same way but independently of each other, to obtain testosterone from trans-dehydro-androsterone.

Butenandt, Ruzicka and others then produced from sterols various new substances which, when tested as male sex hormones, were found to be active in varying degrees.*

* Professor Adolf Butenandt was awarded half of the Nobel Prize in Chemistry for 1939, for his work on sex hormones. Owing to political conditions at the time, Professor Butenandt was prevented from accepting the prize. In 1949 he received the gold medal and the diploma.