Question 1)

Inheritance - Single inheritance, multiple inheritance and Multi-level inheritance

Single inheritance

class clock

{

protected:

int hour;

int minute;

int second;

public:

clock(int h=0,int m=0, int s=0){set(h,m,s);}

void display();

void set(int h=0,int m=0, int s=0);

};

class digital : public clock

{

protected:

int tenssecond;

public:

digital(int h=0, int m=0, int s=0, int t=0)

{set(h,m,s,t);}

void display();

void set(int h=0, int m=0, int s=0, int t=0);

};
[image: image1.png]
A relationship among classes for sharing attributes and behaviour when a new class evolves from one or more existing classes.

In general, it is characterized by is-a relationship and is represented by a tree structure (i.e, Single inheritance).

It is used for Incremental Modification

encapsulating data within a class and exposing the data only through the public interface.

It promotes code reuse
Multiple inheritance

class Letter

{

protected:

 char ch;

public:

 // Default constructor for the Letter base class

 Letter(char c = 'A') {ch = c;}

};

class Number

{

protected:

 int num;

public:

 // Default constructor for the Number base class

 Number(int n = 0) {num = n;}

};

class Grid : public Letter, public Number

{

public:

 // Use the constructors from the base classes

 Grid(char c = 'A', int n = 0) : Letter(c), Number(n) {}

 // Overload the output operator

 friend ostream &operator<<(ostream &o, const Grid &g);

};
[image: image2.png]
might not even use it regularly

there are some situations where a solution with multiple inheritance is cheaper to build, debug, test, optimize, and maintain than a solution without multiple inheritance

Multi-level inheritance
class SuperClass

{

 public int a;

 protected int b;

 private int c;

 public SuperClass(int aVal)
 { a = aVal; }

}

class SubClass extends SuperClass
{

 protected int d;

 public int aMsg ()

{ return d; }

}

class Sub2Class extends SubClass

{

public int a, b, c ;

public Sub2Class(int aVal)

{ super(aVal); }

public int aMsg ()

 {

 a = super.a;

 b = super.b;

 c = super.c;

 return super.aMsg ();

 }

}

[image: image3.jpg]
Polymorphism

· Polymorphism means “many forms”.

· From OO view, polymorphism (through dynamic binding) allows a polymorphic method to operate on objects of different types (classes).

· A polymorphic method has different implementation appropriately defined for different types of objects.

· Benefit: inheritance becomes more flexible as a class may choose to override inherited methods.

· Polymorphism allows software systems be extended more easily during system development and maintenance (Newly added classes provide their own implementations of polymorphic methods without the need to modify exiting classes).

· Classic examples:

· Method Draw in class Shape.

· Method Calculate Salary in class Employee

· Polymorphism may be applied to classes.

· A polymorphic class (commonly known as abstract class) is a mold/template that only defines an interface; it does nothing, and thus has no instances!

· Common examples: C++ Abstract Class (with one or more virtual methods)

Ad hoc polymorphism

Overloading is also known as ad-hoc polymorphism.

Use of a single symbol to represent operators with different argument types, e.g. "-", used either, as a monadic operator to negate an expression, or as a dyadic operator to return the difference between two expressions. Another example is "+" used to add either integers or floating point numbers.
· Ad hoc or function overloading exists when there are multiple function implementations of a given function name.

· There are two types of overloading:

· Interclass overloading.

· Intraclass overloading.

The ability for a class or function (or something else) to be parameterized based on a very limited (and usually explicitly enumerated) subset of types. Implemented via the following language techniques:

Overloading

If one defines the functions (in C++) using overloading

 bool is_positive (int t) { return t > 0; }

 bool is_positive (double t} { return t > 0; }

One can use these for those types above, or for any type which has an implicit conversion to one of these types above. So, the following will work:

 void foo (void)

 {

 int x = 5;

 float y = 4.2;

 double z = -8.23412;

 short q = -0x100;

 if (is_positive(x)) cout << "x is positive\n";

 if (is_positive(y)) cout << "y is positive\n";

 if (is_positive(z)) cout << "z is positive\n";

 if (is_positive(q)) cout << "q is positive\n";

 }

It works for x and z because they are types the is_positive() function is defined on; it works for y and q because there are automatic conversions from short to int and from float to double in C++.

Coercion

Due to a concept known as coercion, a function can become polymorphic without being initially designed for it. Let f be a function that takes an argument of type T, and S be a type that can be automatically converted to T. Then f can be said to be polymorphic with respect to S and T.

Widening

– coercing a value into a larger type

– e.g., int to float, subclass to superclass

Narrowing

– coercing a value into a smaller type

– looses information, e.g., float to int

– PL/I: 1/3 + 25 has value 5.33333333333

Pure polymorphism
· Pure polymorphism exists when a single function implementation can be called using different signatures.

· The function's response is based upon the signature with which it is called.

· LISP and Smalltalk support pure polymorphism.

· This differs from C++ functions that have default arguments. The implementation of a C++ function cannot (for the most part) distinguish how it was called.

Pure Polymorphism also call as Parametric polymorphism
Normal using template to present

Example:
vector<Shape*> shape_stack;

vector<Employee> emp_stack;

…

shape_stack[1]->pop ();

emp_stack[2]->pop ();

……

……..

Shape[] fig = new Shape[4];

fig[0] = new Point(150, 150);

fig[1] = new Rectangle(new Point(40, 30), new Point(60, 70));

fig[2] = new FilledRect(new Point(80, 40), new Point(130, 165),Color.red);

fig[2] = new FilledRect(new Point(80, 40), new Point(130, 165),Color.red);

fig[4] = new Text(new Point(160, 150), "Hello");

for (int i = 1; i < 20; i++)

{
 for (int j = 0; j < fig.length; j++)

{
 fig[j].plot(g);

fig[j].scale(new Point(8, 8), 0.9);

}

}
Question 2b)

