
STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 1 of 11

Do not award half marks.

In all cases give credit for appropriate alternative answers.

Question 1 (Compulsory)

(a) Briefly explain one purpose of each of the following terms used in the Object-

oriented C++ programming language context. [4]

class
� contains the related data and operations that act on the data

together

friend function
� to access private data in a class which is a non member function

static member function
� for accessing static data member of a class

virtual functions
� allow derived classes to replace the implementation provided by

the base class.

Award 1 mark for correct explanation.
Accept alternative correct explanation. [4 marks]

(b) Name one feature of Object-oriented programming that promotes code reuse.

Briefly explain how the feature supports code reuse as one of the benefits of

Object-oriented programming. [2]

Inheritance [1]
New classes can be derived altering or adding new properties to an
existing one. [1]

Accept alternative correct explanation.

(c) How do message and method in Object-oriented programming relate to each

other to your understanding? [2]

Message is a request to invoke a method in a class through an object. [1]
Method is an operation in the class to act on the data member. [1]

Award 1 mark for correct explanation.
Accept alternative correct explanation.

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 2 of 11

(d) Identify one similarity and one difference between constructor and copy

constructor in their purposes. [3]

Constructor and copy constructor are for initialization [1]
Constructor is for initializing data contained in object when created.[1]
Copy constructor is to make a copy of existing object. [1]

Award 1 mark for correct explanation.
Accept alternative correct explanation.

(e) Create a class named Job that holds the following members:

� an array of 20 characters, jobId

� a float pointer, cost

Both member variables are not made accessible to any other class. [3]

class Job { [1]
char jobId[20]; [1]
float *cost; [1]

}

(f) Implement a constructor that takes two default parameters to initialize properly

the member variables: jobId, which is a character pointer, and a float c. It uses

the “new” operator to allocate memory storage for member variable cost. jobId

should hold “default”, cost is 0. [3]

Job :: Job (char *jobId = “default”, float c = 0) [1]
{ strcpy(this->jobId, jobId); [1]

cost = new float(c); [1] }

(g) Implement a destructor for the class Job. [2]

Job :: ~Job() [1] { delete cost; } [1]

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 3 of 11

(h) Implement a method setCost for Job class that takes in input a parameter float

amtReduce. If cost is greater than amtReduce it reduces member variable cost

by amtReduce and returns 1; otherwise it returns 0.

int Job :: setCost (float amtReduce) [3]

int Job :: setCost (float amtReduce)
{ if (amtReduce < cost) [1] { cost -= amtReduce;

return 1; }
return 0; }

(i) Should the programmer need to implement a copy constructor for Job class to

override the default copy constructor? Explain why. [2]

Yes [1]
One of the data members is a pointer [1]

(j) Create an array of 10 objects of type Job named engrProject. [1]

Job engrProject[10]; [1]

(k) Implement a recursive function named aboveCost – whose signature is given

below – that takes an array called project of n objects of type Job and returns an

integer that represents the number of projects that are equal to or greater than

the tgtcost.

int aboveCost(int n, Job project[], float tgtcost) [5]

int aboveCost(int n, Job project[], float tgtcost)
{ int count ;

if (n = = -1) return 0; [1]
else count = aboveCost(n-1, project, tgtcost) [2]

if (project[n].getCost() >= tgtcost) [1]
return count +1;

else
return count; [1]

}

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 4 of 11

Question 2

(a) Briefly explain the term “multiple inheritance” in C++ object-oriented

programming. [1]

A derived class inherits more than one base class. [1]

Accept alternative correct explanation.

(b) When a created class is made to inherit the data members and member functions

of another class, what are the member functions that cannot be inherited? [3]

constructors [1]
destructors [1]
assignment operator = [1]

(c) Given the declaration of classes as follows.

class Research {

private:

char *projectTitle;

float hrs;

public:

void display();

int getResearchHrs();

research(float h, char *pt);

};

class Teaching {

protected:

char unitTitle[20];

int hrs;

// the default constructor by the C++ compiler is not overridden

};

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 5 of 11

(i) Create a derived class named Lecturer that inherits the classes Research

and Teaching in a protected way. [2]

class Lecturer : protect Research, Teaching {}

1 mark for correct multiple inheritance syntax
1 mark for protect

(ii) Implement a suitable constructor for the class Lecturer that takes

appropriate parameters for initializing inherited data members. [4]

Lecturer :: Lecturer(char *pt, float hr, int ht, char uT[]) [1] :
Research(hr, pt) [1]
 { Teaching::hrs = ht; [1]

strcpy(unitTitle, uT); [1]
 };

(iii) Implement a method getWorkHrs() for Lecturer class that returns a type

float containing the total hours of both the base classes. [3]

float getWorkHrs() [1] { return Teaching::hrs +
 (float) getResearchHrs(); }

1 mark for choosing correctly the hours in both base classes.
1 mark for casting getResearchHrs

(iv) Implement a method named display() which has the same name and

parameter declaration as the display method in Research class, and

displays the data members in both classes. [2]

void Lecturer :: display()
{ Research::display(); [1]
 cout << “Unit Title” << unitTitle << “Hours worked” <<
 Teaching::hrs << endl; [1] }

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 6 of 11

Question 3

(a) Encapsulation promotes data hiding. Briefly explain the term encapsulation and

identify one advantage for hiding the data. [2]

Encapsulation is the process of hiding the details of an object that do not
contribute to its (abstract) essential characteristics. [1] Smaller objects
can be combined into a larger element that can be treated as a whole. [1]

Accept alternative correct explanation.

(b) Given the declaration of String class as below.

class String {

char *buf;

int len;

public:

String(char *c="")

 { len = strlen(c);

buf = new char[len+1];

strcpy(buf, c); }

};

(i) Implement an iterative method countChar that returns a type integer of

the number of occurrences variable c in an object s of type String.

int countchar(String s, char c) [3]

int countChar(String s, char c)
{ int count = 0;

for (int x=0; x<s.length(); x++) [1]
if (s[x] == c) [1]

count ++;
return count; } [1]

(ii) Implement a method for String to overload the assignment operator = to

perform a deep copy. [4]

String &operator=(const String &s) [1]
{ if (this == &s) [1]

return *this;
delete [] buf;
int len = s.length;
buf = new char[len+1];
strcpy(buf, s.buf); [1]
return *this; [1]

}

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 7 of 11

(c) A class can be a friend to another class. Briefly explain what you have

understood in the context of C++ object-oriented programming. [2]

All the functions in the friend class can access all the private elements of
the other class. This is useful when objects of a class are managed by
another class. [1]

Friendship status is one way. A class specifies a friendship relationship
by placing the function prototype with the friend keyword. [1]

Accept alternative correct explanation.

(d) Given the declaration of classes as follows.

class Customer {

public:

char *custId; }

class CustAccount {

Customer cust;

double paymentMadeToDate;

double updatePayment(CustTransaction c); }

class CustTransaction {

Customer cust;

double amtPaid; }

Implement a method updatePayment for CustAccount class that is a non-

member function of CustTransaction class to deduct paymentMadeToDate by

amtPaid. It returns the updated payment. [4]

 double CustAccount:: updatePayMent(CustTransaction c) [1]
 { if (strcmp(c.cust.custId,cust.custId)== 0) [1]

 paymentMadeToDate =paymentMadeToDate - c.amtPaid; [1]
return paymentMadeToDate; [1]
}

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 8 of 11

Question 4

(a) Constructors execute automatically in two phases:

1. Initialization

2. Assignment

Name two types of data member that require initialization list syntax other than

reference data type. [2]

constant data type [1]
another class object that has a constructor and either the constructor
requires parameters or we want to override the default values. [1]

(b) Given the declaration of customer class.

class Customer {

private: char *name;

};

(i) Create a class named CreditCard that has private two members are a

reference object named cust of type customer and a static member

issuseno that is initialized to 10000.

Include a constructor that takes an appropriate parameter for initializing

the data member and increments member issueno by one for each new

instance created. [4]

class CreditCard {
Customer &cust; [1]
static int issueno = 10000; [1]

public: CreditCard(Customer &c) : cust(c) { [1]
issueno++; } [1]

}

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 9 of 11

(ii) Implement a static member function getIssueNo that returns the static

member issueno. Note: The definition getIssueNo is part of the

CreditCard class. [2]

static int getIssueNo() [1]
{ return issueno; } [1]

(iii) Briefly explain why static member functions cannot call non-static

member functions. [1]

static member functions have no ‘this’ pointer.

(iv) Assume the existence of method display() in CreditCard class, but the

C++ compiler reports an error on the main() below. Briefly explain the

error. [2]

void main()

{ Customer cust("DBS");

const CreditCard DBS(cust);

DBS.display(); }

constant object DBS gives an error [1] when attempting to call non
const member display(). [1]

(v) Create a class named CreditList that has two private members: a

creditHolder which is a pointer to CreditCard and an integer creditNo.

Include a constructor that takes an integer s to allocating exact memory s

arrays for creaditHolder and s is assigned to creditNo. [4]

class CreditList {
private:

CreditCard *creditHolder; [1]
int creditNo; }

[1m for correct creditNo and class syntax]

public: CreditList(int s)
{ creditHolder = new CreditCard[s]; [1]
 creditNo = s; }

[1 for correct signature and proper s assigning]

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 10 of 11

Question 5

(a) Polymorphism literally means many forms. Briefly explain the relationship

between parametric and polymorphism. [2]

Parametric means the class and/or functions are created without being
specifying the type and they are later instantiated. [1] As such, the class
and/or functions may appear in different types. [1]

Accept alternative correct explanation.

(b) Given the generic class as below.

template <class U, class T>

class Generic {

U data;

T key;

public:

Generic (U data, T key);

U getData();

T getKey();

}

(i) Create a class named GenericObj that has a private object objData of

type Generic and define a public method getData() that returns the data

member of class Generic. [4]

template <class U, class T> [1]
 class GeneriObj { [1]

Generic<U, T> objData; [1]
public: U getData() [1] { return objdata.getData();} [1]
}

(ii) Implement a pure virtual method named setObj that takes in a parameter

newData of type U. [2]

template<class U, class T> [1]
virtual void setObj(U newData) = 0; [1]

(iii) Implement a method that overloads the operator + which takes in an

object obj of type Generic and returns an object of type GenericObj

which is the sum of the two objects. [2]

Generic<U, T> operator+ (Generic<U,T> obj) [1]
{ return Generic (obj.data + data, obj.key + key); } [1]

STRICTLY CONFIDENTIAL

CS255 - April 2003 - Mark Scheme

Page 11 of 11

(iv) Implement a friend function that overloads the relational operator less

than which takes in two arguments obj1 and obj2 of type Generic and

returns an integer 1 if the member key of obj1 is less than obj2’s key; 0

otherwise. You may define this friend function in the GenericObj class. [3]

friend int operator<(generic<U, T> obj1, generic<U, T> obj2) [1]
{ if (obj1.key < obj2.key) return 1 [1]

return 0;} [1]

(c) Does the C compiler report any error if an instance of type GenericObj is

created? Why? [2]

Yes [1] because pure virtual functions cannot be instantiated [1]

- END OF PAPER -

