Primitive vocabulary

Names:	d, n, j, m
One-place Predicates:	M, B
Two-place Predicates:	K, L
Truth-functional connectives:	~ (not, it is not the case that, it is false that)
	∧ (and), ∨ (or)
	\rightarrow (if then, only if, implies)
	\leftrightarrow (if and only if)

Formation rules:

- 1. If δ is a one-place predicate and α is a name, then $\delta(\alpha)$ is a sentence or *wff*.
- If γ is a two-place predicate and α and β are names, then γ(α, β) is a sentence or wff.
- 3. If ϕ is a sentence or *wff*, then so is: $\sim \phi$.
- If φ and ψ are *wff*s, then so are: [φ∧ψ], [φ∨ψ], [φ→ψ] and [φ↔ψ].
 Nothing else is a *wff*.

Semantics of L₀ (PC with Predicates)

A model for L_0 is any ordered pair <A, F> where A is a (non-empty) set of individuals and F is a function that assigns:

to each name or individual constant a member of A

to each unary (one-place) predicate a subset of A

to each binary (two-place) predicate a subset of A X A

A. Semantic values of basic expressions

If α is a non-logical constant (name or predicate) of L₀, then $[[\alpha]]^{M} = F(\alpha)$.

- B. Semantic Rules
- 1. If δ is a one-place predicate and α is a name, then $[[\delta(\alpha)]]^M = 1$ iff $[[\alpha]]^M \in [[\delta]]^M$.
- 2. If γ is a two-place predicate and α and β are names, then $[[\gamma (\alpha, \beta)]]^{M} = 1$ iff $< [[\alpha]]^{M}, [[\beta]]^{M} > \in [[\gamma]]^{M}.$
- 3. If φ is a sentence, then $[[\sim \varphi]]^M = 1$ iff $[[\varphi]]^M = 0$.
- 4. If ϕ and ψ are *wffs*, then $[[\phi \land \psi]]^M = 1$ iff $[[\phi]]^M = 1$ and $[[\psi]]^M = 1$.
- 5. If φ and ψ are *wff*s, then $[[\varphi \lor \psi]]^M = 1$ iff $[[\varphi]]^M = 1$ or $[[\psi]]^M = 1$.
- 6. If ϕ and ψ are *wff*s, then $[[\phi \rightarrow \psi]]^M = 1$ iff $[[\phi]]^M = 0$ or $[[\psi]]^M = 1$.
- 7. If φ and ψ are *wff*s, then $[[\varphi \leftrightarrow \psi]]^M = 1$ iff $[[\varphi]]^M = [[\psi]]^M$.

Model M⁰

A = {Richard Nixon, John Mitchell, Noam Chomsky, Muhammad Ali}

 $F(d) = [[d]]^{M0} = Richard Nixon$ $F(j) = [[j]]^{M0} = John Mitchell$

 $F(n) = [[n]]^{M0} = Noam Chomsky$ $F(m) = [[m]]^{M0} = Muhammad Ali$

 $F(M) = [[M]]^{M0}$ = set of people with moustaches = {John Mitchell}

 $F(B) = [[B]]^{M0}$ = set of people who are bald = {Richard Nixon, John Mitchell}

 $F(K) = [[K]]^{M0}$ = set of all pairs of people such that the first knows the second = {<Richard Nixon, Noam Chomsky>, <Noam Chomsky, Richard Nixon>, <John Mitchell, Richard Nixon>, <Noam Chomsky, Muhammad Ali>, <Richard Nixon, Muhammad Ali>, <Muhammad Ali, Richard Nixon>}

F(L) = [[L]]^{M0} = set of all pairs of people such that the first loves the second = {<Richard Nixon, Noam Chomsky>, <Noam Chomsky, Muhammad Ali>, <Muhammad Ali, John Mitchell>, <John Mitchell, Richard Nixon>}

Model M¹

 $\begin{array}{ll} \mathsf{A} = \{ \text{David Crystal, Norah Jones, John Wayne, Mother Teresa} \} \\ \mathsf{F}(d) = [[d]]^{M1} = \text{David Crystal} & \mathsf{F}(j) = [[j]]^{M1} = \text{John Wayne} \\ \mathsf{F}(n) = [[n]]^{M1} = \text{Norah Jones} & \mathsf{F}(m) = [[m]]^{M1} = \text{Mother Teresa} \\ \mathsf{F}(M) = [[M]]^{M1} = \text{set of people with moustaches} = \{ \text{David Crystal, John Wayne} \} \\ \mathsf{F}(B) = [[B]]^{M1} = \text{set of people who are beautiful} = \{ \text{Norah Jones, John Wayne} \} \\ \mathsf{F}(K) = [[K]]^{M1} = \text{set of all pairs of people such that the first knows the second} = \\ \{ \text{Norah Jones, John Wayne>, <Norah Jones, Mother Teresa>, <John Wayne, \\ \text{Mother Teresa>, <David Crystal, Mother Teresa>, <David Crystal, John Wayne> \} \\ \\ \mathsf{F}(L) = [[L]]^{M1} = \text{set of all pairs of people such that the first hates the second} = \\ \{ \text{David Crystal, Norah Jones>, <John Wayne, David Crystal> \} \\ \end{array}$

NOTE: The meaning of logical connectives remain the same across models.

Questions:(A) Translate the following L_0 wffs into English and compute the missing truth-values, citing semantic rules:

1. $[[M(d)]]^{M0} = ?$ 2. $[[B(d)]]^{M0} = ?$ 3. $[[M(j)]]^{M0} = ?$ 4. $[[B(j)]]^{M0} = ?$ 5. $[[K(m, n)]]^{M0} = ?$ 6. $[[K(n, m)]]^{M0} = ?$ 7. $[[L(n, d)]]^{M0} = ?$ 8. $[[L(j, d)]]^{M0} = ?$ For example:

(1) Richard Nixon has a moustache. $[[M(d)]]^{M0} = 1$ iff $[[d]]^{M0} \in [[M]]^{M0}$ (by B1). $[[M]]^{M0} = F(M) = \{\text{John Mitchell}\}, [[d]]^{M0} = F(d) = \text{Richard Nixon (by A). Richard Nixon <math>\notin \{\text{John Mitchell}\}.$ Therefore, $[[M(d)]]^{M0} = 0.$

(B) Write down all the sentences or wffs of L_0 and their semantic values with respect to model M^1 .

Characteristic function: If A is a set of individuals and S is any subset of A, we define a function f_S on the set A by letting

 $f_{\rm S}(a) = 1$ if $a \in {\rm S}$, and $f_{\rm S}(a) = 0$ otherwise

for each *a* in *A*. This function is called the *characteristic function* of *S* (with respect to *A*) and belongs to $\{0,1\}^A$

Revised Semantics of L₀ (PC with Predicates)

A model for L_0 is any ordered pair <A, F> where A is a (non-empty) set of individuals and F is a function that assigns:

to each name or individual constant a member of A

to each unary (one-place) predicate a characteristic function of a subset of A with respect to A

to each binary (two-place) predicate a function in $({0,1}^A)^A$.

A. Semantic values of basic expressions

If α is a non-logical constant (name or predicate) of L₀, then $[[\alpha]]^{M} = F(\alpha)$.

- B. Semantic Rules
- 8. If δ is a one-place predicate and α is a name, then $[[\delta(\alpha)]]^{M} = [[\delta]]^{M}([[\alpha]]^{M})$.
- 9. If γ is a two-place predicate and α and β are names, then $[[\gamma (\alpha, \beta)]]^{M} = {[[\gamma]]^{M}([[\beta]]^{M})}([[\alpha]]^{M}).$