The syntax of L_{0} (PC with Predicates)
Primitive vocabulary

Names:	d, n, j, m
One-place Predicates:	M, B
Two-place Predicates:	K, L
Truth-functional connectives:	\sim (not, it is not the case that, it is false that)
	\wedge (and), v (or)
	\rightarrow (if \ldots then $\ldots .$, only if, implies)
	\leftrightarrow (if and only if)

Formation rules:

1. If δ is a one-place predicate and α is a name, then $\delta(\alpha)$ is a sentence or wff.
2. If γ is a two-place predicate and α and β are names, then $\gamma(\alpha, \beta)$ is a sentence or wff.
3. If φ is a sentence or wff, then so is: $\sim \varphi$.
4. If φ and ψ are wffs, then so are: $[\varphi \wedge \psi],[\varphi \vee \psi],[\varphi \rightarrow \psi]$ and $[\varphi \leftrightarrow \psi]$. Nothing else is a wff.

Semantics of L_{0} (PC with Predicates)

A model for L_{0} is any ordered pair <A, $F>$ where A is a (non-empty) set of individuals and F is a function that assigns:
to each name or individual constant a member of A to each unary (one-place) predicate a subset of A to each binary (two-place) predicate a subset of $A \times A$
A. Semantic values of basic expressions

If α is a non-logical constant (name or predicate) of L_{0}, then $[[\alpha]]^{M}=F(\alpha)$.
B. Semantic Rules

1. If δ is a one-place predicate and α is a name, then $[[\delta(\alpha)]]^{\mathrm{M}}=1$ iff $[[\alpha]]^{\mathrm{M}} \in$ $[[\delta]]^{\mathrm{M}}$.
2. If γ is a two-place predicate and α and β are names, then $[[\gamma(\alpha, \beta)]]^{M}=1$ iff $<[[\alpha]]^{\mathrm{M}},[[\beta]]^{\mathrm{M}}>\in[[\gamma]]^{\mathrm{M}}$.
3. If φ is a sentence, then $[[\sim \varphi]]^{\mathrm{M}}=1$ iff $[[\varphi]]^{\mathrm{M}}=0$.
4. If φ and ψ are wffs, then $[[\varphi \wedge \psi]]^{\mathrm{M}}=1$ iff $[[\varphi]]^{\mathrm{M}}=1$ and $[[\psi]]^{\mathrm{M}}=1$.
5. If φ and ψ are wffs, then $[[\varphi \vee \psi]]^{\mathrm{M}}=1$ iff $[[\varphi]]^{\mathrm{M}}=1$ or $[[\psi]]^{\mathrm{M}}=1$.
6. If φ and ψ are wffs, then $[[\varphi \rightarrow \psi]]^{\mathrm{M}}=1$ iff $[[\varphi]]^{\mathrm{M}}=0$ or $[[\psi]]^{\mathrm{M}}=1$.
7. If φ and ψ are wffs, then $[[\varphi \leftrightarrow \psi]]^{\mathrm{M}}=1$ iff $[[\varphi]]^{\mathrm{M}}=[[\psi]]^{\mathrm{M}}$.

Model M ${ }^{0}$
A $=$ \{Richard Nixon, John Mitchell, Noam Chomsky, Muhammad Ali $\}$
$F(d)=[[d]]^{\mathrm{M0}}=$ Richard Nixon $\quad \mathrm{F}(\mathrm{j})=[[j]]^{\mathrm{M0}}=$ John Mitchell
$F(n)=[[n]]^{\text {M0 }}=$ Noam Chomsky $F(m)=[[m]]^{\text {M0 }}=$ Muhammad Ali
$F(M)=[[M]]^{\mathrm{M0}}=$ set of people with moustaches $=\{$ John Mitchell $\}$
$F(B)=[[B]]^{\mathrm{M0}}=$ set of people who are bald $=\{$ Richard Nixon, John Mitchell $\}$
$F(K)=[[K]]^{\mathrm{Mo}}=$ set of all pairs of people such that the first knows the second $=$ \{<Richard Nixon, Noam Chomsky>, <Noam Chomsky, Richard Nixon>, <John Mitchell, Richard Nixon>, <Noam Chomsky, Muhammad Ali>, <Richard Nixon, Muhammad Ali>, <Muhammad Ali, Richard Nixon>\}
$\mathrm{F}(\mathrm{L})=[[\mathrm{L}]]^{\mathrm{M0}}=$ set of all pairs of people such that the first loves the second $=$ \{<Richard Nixon, Noam Chomsky>, <Noam Chomsky, Muhammad Ali>, <Muhammad Ali, John Mitchell>, <John Mitchell, Richard Nixon>\}

Model M^{1}
A $=\{$ David Crystal, Norah Jones, John Wayne, Mother Teresa\}
$\mathrm{F}(\mathrm{d})=[[\mathrm{d}]]^{\mathrm{M} 1}=$ David Crystal $\quad \mathrm{F}(\mathrm{j})=[[\mathrm{j}]]^{\mathrm{M} 1}=$ John Wayne
$F(n)=[[n]]^{\mathrm{M} 1}=$ Norah Jones $\quad \mathrm{F}(\mathrm{m})=[[\mathrm{m}]]^{\mathrm{M} 1}=$ Mother Teresa
$F(M)=[[M]]^{M 1}=$ set of people with moustaches = \{David Crystal, John Wayne $\}$
$F(B)=[[B]]^{\mathrm{M} 1}=$ set of people who are beautiful $=\{$ Norah Jones, John Wayne $\}$
$F(K)=[[K]]^{\mathrm{M1}}=$ set of all pairs of people such that the first knows the second $=$ \{<Norah Jones, John Wayne>, <Norah Jones, Mother Teresa>, <John Wayne, Mother Teresa>, <David Crystal, Mother Teresa>, <David Crystal, John Wayne>\}
$\mathrm{F}(\mathrm{L})=[[\mathrm{L}]]^{\mathrm{M1}}=$ set of all pairs of people such that the first hates the second $=$ \{<David Crystal, Norah Jones>, <John Wayne, David Crystal>\}

NOTE: The meaning of logical connectives remain the same across models.
Questions:(A) Translate the following L_{0} wffs into English and compute the missing truth-values, citing semantic rules:

1. $[[\mathrm{M}(\mathrm{d})]]^{\mathrm{M0}}=$?
2. $[[B(\mathrm{~d})]]^{\mathrm{M} 0}=$?
3. $[[\mathrm{M}(\mathrm{j})]]^{\mathrm{M0}}=$?
4. $[[\mathrm{B}(\mathrm{j})]]^{\mathrm{Mo}}=$?
5. $[[K(m, n)]]^{\mathrm{M0}}=$?
6. $[[K(n, m)]]^{M 0}=$?
7. $[[L(\mathrm{n}, \mathrm{d})]]^{\mathrm{M0}}=$?
8. $[[L(j, d)]]^{M 0}=$?

For example:
(1) Richard Nixon has a moustache. $[[\mathrm{M}(\mathrm{d})]]^{\mathrm{M0}}=1$ iff $[[\mathrm{d}]]^{\mathrm{M0}} \in[[\mathrm{M}]]^{\mathrm{M0}}$ (by B1).
$[[M]]^{\mathrm{M0}}=\mathrm{F}(\mathrm{M})=\{$ John Mitchell $\},[[\mathrm{d}]]^{\mathrm{M0}}=\mathrm{F}(\mathrm{d})=$ Richard Nixon (by A). Richard Nixon $\notin\left\{\right.$ John Miitchell\}. Therefore, $[[\mathrm{M}(\mathrm{d})]]^{\mathrm{M0}}=0$.
(B) Write down all the sentences or wffs of L_{0} and their semantic values with respect to model M^{1}.

Characteristic function: If A is a set of individuals and S is any subset of A, we define a function f_{S} on the set A by letting
$f_{S}(a)=1$ if $a \in S$, and
$f_{S}(a)=0$ otherwise
for each a in A. This function is called the characteristic function of S (with respect to A) and belongs to $\{0,1\}^{A}$

Revised Semantics of L_{0} (PC with Predicates)
A model for L_{0} is any ordered pair <A, $F>$ where A is a (non-empty) set of individuals and F is a function that assigns:
to each name or individual constant a member of A
to each unary (one-place) predicate a characteristic function of a subset of A with respect to A
to each binary (two-place) predicate a function in $\left(\{0,1\}^{A}\right)^{A}$.
A. Semantic values of basic expressions

If α is a non-logical constant (name or predicate) of L_{0}, then $[[\alpha]]^{M}=F(\alpha)$.
B. Semantic Rules
8. If δ is a one-place predicate and α is a name, then $[[\delta(\alpha)]]^{\mathrm{M}}=[[\delta]]^{\mathrm{M}}\left([[\alpha]]^{\mathrm{M})}\right.$.
9. If γ is a two-place predicate and α and β are names, then $[[\gamma(\alpha, \beta)]]^{M}=$ $\left\{[[\gamma]]^{\mathrm{M}}\left([[\beta]]^{\mathrm{M}}\right)\right\}\left([[\alpha]]^{\mathrm{M}}\right)$.

