The syntax of PC (Propositional Calculus)

Primitive vocabulary

Propositional variables (PV): P, Q, R, ... Truth-functional connectives: \sim (not, it is not the case that, it is false that) \wedge (and), \vee (or) \supset (if ... then ..., only if, implies) \equiv (if and only if)

Formation rules:

Every propositional variable is a *wff* (well-formed formula)

If α if a *wff*, so is $\sim \alpha$

If α and β are *wffs*, then so are: $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \supset \beta)$ and $(\alpha \equiv \beta)$ Nothing else is a *wff*.

Semantics of PC

Interpretation: An interpretation I is an assignment of truth-values to atomic *wffs*, such that

for any wff α , $I(-\alpha)=1$ iff $I(\alpha)=0$;

for any *wffs* α and β , $I(\alpha \land \beta)=1$ *iff* $I(\alpha)=1$ and $I(\beta)=1$;

for any *wffs* α and β , $I(\alpha \lor \beta)=1$ *iff* $I(\alpha)=1$ or $I(\beta)=1$;

for any wffs α and β , $I(\alpha \supset \beta)=1$ iff $I(\alpha)=0$ or $I(\beta)=1$;

for any *wff*s α and β , $I(\alpha = \beta) = 1$ *iff* $I(\alpha) = I(\beta)$.

Tautology: true on all interpretations, e.g. ⊩(Pv~P).

Contradiction: False on all interpretations, e.g. (PA~P).

- Contingent: True on at least one interpretation and false on at least one interpretation, e.g. ($P \supset Q$).
- Logical equivalence: Any two *wffs* α and β are said to be *logically equivalent* if and only if they have the same truth-value on all interpretations, e.g. (P>Q) and (~PvQ).
- Valid argument: There is no interpretation on which the premises are true but not the conclusion, e.g. ($P \supset Q$), $P \Vdash Q$. If an argument is valid then ($\alpha \supset \beta$) is a tautology, where α is the conjunction of its premises and β its conclusion.
- Consistency: A set of *wffs* is consistent *iff* there is at least one interpretation on which they are all true; inconsistent otherwise.

Naïve Set Theory

Notation	List notation: {1, 2, 3, 4,}
	Predicate notation: {x x is a positive integer}
	Recursive rules: (a) $1 \in A$

(b) If $x \in A$, then $x+2 \in A$.

(c) Nothing else is a member of A.

Cardinality: The cardinality of a set A, written as |A| is the number of elements it contains.

Subset: A is a subset of B, that is $A \subseteq B$, iff every member of A is also a member of B. Sets with a single member are known as singletons. A set with no members is known as the null set (written as {} or \emptyset). The null set is a subset of every set.

Proper subset: $A \subset B$, iff $A \subseteq B$ and $A \neq B$.

Power set: The power set *P* of any set is the set of its subsets, e.g. if A = {1,2,3}, then $P(A) = \{ \{\}, \{1,2,3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1\}, \{2\}, \{3\} \}$. If |A| = n, the $|P(A)| = 2^n$.

Union: The union of two sets A and B, written as $A \cup B =_{def} \{x \mid x \in A \text{ or } x \in B\}$.

The intersection of two sets A and B, written as $A \cap B =_{def} \{x \mid x \in A \text{ and } x \in B \}$.

Difference or relative complement of A and B, written as $A-B = \{x \mid x \in A \text{ and } x \notin B\}$.

The complement of A written as A' = U - A. The symmetric difference of two sets A and B, denoted $A+B = (A-B)\cup(B-A)$.

In a remote village in Sicily lives a barber who shaves all and only those who do not shave themselves. Who shaves the barber?