The syntax of PC (Propositional Calculus)
Primitive vocabulary
Propositional variables (PV): P, Q, R, ...
Truth-functional connectives: ~ (not, it is not the case that, it is false that)

$$
\begin{aligned}
& \wedge(\text { and }), \vee(\text { or }) \\
& \supset \text { (if ... then } \ldots, \text { only if, implies) } \\
& \equiv \text { (if and only if) }
\end{aligned}
$$

Formation rules:
Every propositional variable is a wff (well-formed formula)
If α if a wff, so is $\sim \alpha$
If α and β are wffs, then so are: $(\alpha \wedge \beta),(\alpha \vee \beta),(\alpha \supset \beta)$ and $(\alpha \equiv \beta)$
Nothing else is a wff.

Semantics of PC

Interpretation: An interpretation I is an assignment of truth-values to atomic wffs, such that
for any wff $\alpha, I(\sim \alpha)=1$ iff $I(\alpha)=0 ;$
for any wffs α and $\beta, I(\alpha \wedge \beta)=1$ iff $I(\alpha)=1$ and $I(\beta)=1$;
for any wffs α and $\beta, I(\alpha \vee \beta)=1$ iff $I(\alpha)=1$ or $I(\beta)=1$;
for any wffs α and $\beta, I(\alpha \supset \beta)=1$ iff $I(\alpha)=0$ or $I(\beta)=1$;
for any wffs α and $\beta, I(\alpha \equiv \beta)=1$ iff $I(\alpha)=I(\beta)$.
Tautology: true on all interpretations, e.g. $\Vdash(\mathrm{Pv} \sim \mathrm{P})$.
Contradiction: False on all interpretations, e.g. ($\mathrm{P} \wedge \sim P$).
Contingent: True on at least one interpretation and false on at least one interpretation, e.g. ($\mathrm{P} \supset \mathrm{Q}$).
Logical equivalence: Any two wffs α and β are said to be logically equivalent if and only if they have the same truth-value on all interpretations, e.g. ($\mathrm{P} \supset \mathrm{Q}$) and ($\sim \mathrm{PvQ}$).

Valid argument: There is no interpretation on which the premises are true but not the conclusion, e.g. $(P \supset Q), P \Vdash Q$. If an argument is valid then $(\alpha \supset \beta)$ is a tautology, where α is the conjunction of its premises and β its conclusion.
Consistency: A set of wffs is consistent iff there is at least one interpretation on which they are all true; inconsistent otherwise.

Naïve Set Theory

Notation List notation: $\{1,2,3,4, \ldots\}$
Predicate notation: $\{x \mid x$ is a positive integer $\}$
Recursive rules: (a) $1 \in A$
(b) If $x \in A$, then $x+2 \in A$.
(c) Nothing else is a member of A.

Cardinality: The cardinality of a set A, written as $|A|$ is the number of elements it contains.
Subset: A is a subset of B, that is $A \subseteq B$, iff every member of A is also a member of B. Sets with a single member are known as singletons. A set with no members is known as the null set (written as $\}$ or \varnothing). The null set is a subset of every set.

Proper subset: $A \subset B$, iff $A \subseteq B$ and $A \neq B$.
Power set: The power set P of any set is the set of its subsets, e.g. if $A=\{1,2,3\}$, then $P(A)=\{\{ \},\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\}\}$. If $|A|=n$, the $|P(A)|=2^{n}$.

Union: The union of two sets A and B, written as $A \cup B={ }_{\text {def }}\{x \mid x \in A$ or $x \in B\}$.
The intersection of two sets A and B, written as $A \cap B={ }_{\operatorname{def}}\{x \mid x \in A$ and $x \in B\}$.
Difference or relative complement of A and B, written as $A-B=\{x \mid x \in A$ and $x \notin B\}$.
The complement of A written as $A^{\prime}=U-A$. The symmetric difference of two sets A and B, denoted $A+B=(A-B) \cup(B-A)$.

In a remote village in Sicily lives a barber who shaves all and only those who do not shave themselves. Who shaves the barber?

