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Abstract

Noise has been a concern from the very beginning of signal processing and electrical
engineering in general, although it was perhaps of less interest until vacuum-tube
amplifiers made it audible just after 1900. Rigorous noise models for linear resistors
were developed in 1927 by Nyquist and Johnson [1, 2]. However, the intervening years
have not brought similarly well-established models for noise in nonlinear devices.

This thesis proposes using thermodynamic principles to determine whether a given
nonlinear device noise model is physically valid. These tests are applied to several
models. One conclusion is that the standard Gaussian noise models for nonlinear
devices predict thermodynamically impossible circuit behavior: these models should
be abandoned. But the nonlinear shot-noise model predicts thermodynamically ac-
ceptable behavior under a constraint derived here. This thesis shows how the ther-
modynamic requirements can be reduced to concise mathematical tests, involving no
approximations, for the Gaussian and shot-noise models.

When the above-mentioned constraint is satisfied, the nonlinear shot-noise model
specifies the current noise amplitude at each operating point from knowledge of the
device v− i curve alone. This relation between the dissipative behavior and the noise
fluctuations is called, naturally enough, a fluctuation-dissipation relation. This thesis
further investigates such FDRs, including one for linear resistors in nonlinear circuits
that was previously unexplored.

The aim of this thesis is to provide thermodynamically solid foundations for noise
models. It is hoped that hypothesized noise models developed to match experiment
will be validated against the concise mathematical tests of this thesis. Finding a
correct noise model will help circuit designers and physicists understand the actual
processes causing the noise, and perhaps help them minimize the noise or its effect in
the circuit.

Thesis Supervisor: John L. Wyatt, Jr.
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Noise has long been a concern in signal processing and electrical engineering in gen-

eral. Schottky was investigating noise in diodes in 1918 [3]. The field of noise theory

got its firmest foothold in 1927 with two fundamental papers by Johnson [2] and

Nyquist [1]. Johnson’s experimental measurements of noise in linear resistive mate-

rials motivated Nyquist to develop a theory to explain the noise from physical first

principles. Noise continues to be of great concern, particularly in low power applica-

tions, or in channels where the communication bandwidth is approaching the channel

capacity. Even digital logic in modern integrated circuits can be affected, as the

supply voltage is decreased so that the difference between a “0” and a “1” is smaller.

The circuits of modern electrical engineering do not consist only of linear resistors,

nor are these devices necessarily the most significant noise sources. Any dissipative

device, that is, a device that converts electrical power into heat, also exhibits electrical

noise. Devices such as diodes and transistors also need valid noise models.

This thesis will investigate thermodynamic requirements and restrictions for noise

models for nonlinear devices. Emphasis in the electrical engineering world has tended

to focus on models that accurately reproduce experimental measurements. However,

if the predictions of a hypothesized model violate physical law, such as the laws

of thermodynamics, it cannot be valid. Of course, if a valid model fails to predict

13



14 CHAPTER 1. INTRODUCTION

experiment, it is useless for design purposes. It is expected that obtaining a more

complete model that satisfies thermodynamics and reproduces experiment will lead

to a deeper understanding of the physical processes occurring in the device. With a

deeper understanding of the noise process, designers will have more direct techniques

for reducing the noise or its effect in circuits.

1.1 Noise Models

There are two primary noise models of interest for this thesis: Gaussian thermal

noise and Poisson shot noise. Nyquist-Johnson or thermal noise is the simplest model

for noise. Nyquist originally derived the model for linear resistors at equilibrium to

explain Johnson’s experimental results. A resistor of value R will have a voltage power

spectrum that is white and has magnitude 2kTR (the original works used the value

4kTR, because the authors only allowed positive frequencies). The voltage waveform

will approximate the fictional Gaussian white noise process.

A Gaussian noise model is one for which the noise voltage (or current) at any

particular instant is probabilistically selected according to a Gaussian distribution.

Commonly, the noise model is also assumed to have a flat power spectral density (at

least out to the frequencies of interest for the circuit); this type of model is called

“white noise.” (A correlation between time instants would produce “colored noise.”

The voltage would still be picked from a Gaussian distribution, but the mean or

variance would depend on past voltages.) The power spectral density is the Fourier

transform of the autocorrelation (two-time correlation function). For a white noise

process, the inverse Fourier transform yields a delta-function, meaning that the signal

at any time is uncorrelated with the signal at any other time.

It is the Gaussian nature of the random process that makes this model so mathe-

matically interesting; statistical quantities are easy to compute. A Gaussian random

variable is completely defined by its first two moments, the mean and variance. The
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mathematical tractability of Gaussian white noise has encouraged engineers to extend

this theory to nonlinear resistors. The mean value is assumed to be zero (this is in

fact one of the requirements we will present later). The variance is generally related

in some fashion to the incremental resistance, to align with the Nyquist formula. For

example, Gupta [4] proposes the formula

E{v2
n} = Var{vn} = 4kTB

(
dV

dI
+

1

2
I
d2V

dI2

)∣∣∣∣
I=Idc

,

where k is Boltzmann’s constant, T the Kelvin temperature, and B the bandwidth

of measurement. Unfortunately, such extensions to nonlinear resistors are physically

wrong. This particular formula would predict a negative mean square voltage fluctu-

ation for the tunnel diode in the region where the device has a negative incremental

resistance. This thesis proves that every white Gaussian noise model for nonlinear

devices violates thermodynamic principles.

The second type of noise considered in this paper is shot noise. The term shot

noise [3, 5, 6] dates back to early work by Schottky on vacuum diodes and triodes.

Since current is carried by discrete particles with discrete arrival times, the current

will not be uniform. The effect of random arrival times of electrons is named shot

noise. A Poisson point process can be used as the mathematical model behind shot

noise. The shot noise model will also have a white power spectral density for current

at equilibrium.

For a Poisson noise model, the current at any instant is either zero or a delta-

function of strength corresponding to a single electron. Arrivals of a Poisson process

are conditionally independent given the rate; this lack of correlation between the cur-

rent at different instants leads to a white power spectral density without us specifying

that separately (as we needed to do for Gaussian noise).

Unfortunately, there is even confusion about shot-noise models. The Art of Elec-

tronics [7], which is generally a great guide for practical circuit design, has the state-
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ment that shot noise “like resistor Johnson noise, is Gaussian and white.”

One author [8] claims that any stationary, independent-increments process must

be a combination of a Gaussian process (or Brownian motion) and a Poisson process.

This is not entirely true, since a process with randomly-selected jump heights but

Poisson arrivals would also fit the description. It is important to realize that the power

spectral density determines correlation between two values of the process, which is

separate from the distribution of the values themselves. Other random processes may

make suitable noise models; the methods of this thesis are generally applicable and

may help to determine which noise models ones are physically possible and justifiable.

In particular, so-called 1/f noise, whose power spectral density falls off as 1/f for

large frequencies, is lacking a rigorous model.

Both white noise (with infinite bandwidth) and 1/f noise are unphysical, because

the mean-square value or energy of the signal is infinite. White noise is usually

assumed to roll off above a certain frequency, because of the lowpass filter effect of

parasitic capacitance and the intrinsic resistance. Further, from an experimental point

of view, one is usually only interested in the response up to a given frequency. 1/f

noise has a singularity at zero frequency, which requires a more delicate treatment so

that the noise properties do not depend on peculiar quantities such as the age of the

universe (the zero-frequency point corresponds to infinite time). We are unaware of

a well-grounded theory giving the proper low-frequency behavior and the frequency

at which the transition from 1/f occurs. Many noise models, whether for 1/f noise

or other types of noise in nonlinear devices, are constructed to match experiment.

1.2 Thermodynamic Tests

There are four thermodynamic tests presented in this thesis to assess the validity of

noise models. Chapter 2 applies the first three tests to a circuit with only an ideal

capacitor in addition to the noise model, which makes for mathematically very simple
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tests. This thesis goes on in Chapter 4 to check the noise models in more complicated

circuits, with the goal of verifying correct behavior for arbitrary networks of lossless

elements. Such checks were made for linear resistors in [9], which extends the Nyquist-

Johnson model away from equilibrium. The fourth thermodynamic test is presented

in Chapter 5.

Thermodynamic Requirement #1: No Isothermal Conversion of Heat to

Work

One elementary consequence of the second law of thermodynamics is that no isother-

mal system can have as its sole effect the conversion of some amount of heat into

work [10]. A noisy dissipative device at a fixed temperature T , biased at a voltage V

with the resulting average current iT (V ), must not supply power, on average, to the

external circuit, i.e.,

iT (V ) V ≥ 0, for T > 0 and all V .

Since the average current is assumed to be a continuous function of the applied

voltage, this also implies that the average short-circuit current for a dissipative device

must be zero.

Thermodynamic Requirement #2: Gibbs Distribution at Equilibrium

For any lossless lumped network in thermal equilibrium with a dissipative device at

constant temperature, the equilibrium distribution for inductor fluxes φ and capacitor

charges q must have the Gibbs (or Maxwell-Boltzmann) form [11],

ρo(φ,q) = A exp [−E(φ,q)/kT ] , (1.1)

where E(φ,q) is the sum of all inductor and capacitor stored energies and A serves

to normalize the distribution.
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Thermodynamic Requirement #3: Increasing Entropy During Transients

The second law of thermodynamics must be satisfied during nonequilibrium transient

behavior of any circuit driven by the fluctuations of the dissipative device. The

total entropy of a circuit, i.e., the sum of the entropies of the lossless elements and

the reservoir, must be a nondecreasing function of time, with a maximum value

corresponding to the equilibrium distribution [10].

Thermodynamic Requirement #4: No Heat Transfer between Two

Devices at the Same Temperature

For any circuit consisting of two or more noisy devices, each in thermal contact with

a thermal reservoir of a single temperature T , and any lossless lumped network, there

should be no heat transfer between the devices, that is, no net power delivered or ab-

sorbed by any one of the devices. In contrast, heat should flow from the hotter to the

cooler if the devices are in thermal contact with reservoirs at different temperatures,

but the rate of flow will depend on specifics of the devices and the lossless network.

1.3 Mathematical Tools

This thesis is very mathematical. Since thermodynamic principles are based on prob-

abilistic descriptions of systems, the reader is presumed to have a solid understanding

of probability. Those readers unfamiliar with Gaussian and Poisson random variables

are referred to Papoulis and Gallager [12, 13]. A working knowledge of measure theory

[14] is also useful, particularly for the more mathematical treatments of [15, 16].

The reader should also understand the concepts of autocorrelation and power

spectral density [17, 18]. The principle processes considered in this thesis are white

noise processes, those random processes whose power spectral density is flat.

The stochastic calculations in this thesis make use of the Fokker-Planck equa-
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tion (FPE) and the Master Equation, both versions of the “differential Chapman-

Kolmogorov equation” [19]. The basic idea is that, for a differential equation driven

by random processes, the sample-path solutions are not particularly interesting or

useful. Instead, one looks for the evolution of the probability distribution for the sys-

tem. The FPE, Master Equation, and Chapman-Kolmogorov equation are all forward

evolution equations for the probability distribution of a system.

The FPE allows us to describe the behavior of a circuit driven by Nyquist-Johnson

noise from a linear resistor. This topic was exhaustively developed in [9]. This thesis

will expand the applications to nonlinear resistors.

The Master Equation is easier to understand conceptually. A good introduction,

with excellent physical intuition, is found in van Kampen’s book [20]. If the proba-

bility of being at a point y at time t is P (y, t) and the rate of transition from x to

y is W (x, y), then the following Master Equation can be seen to describe the time

evolution of the probability:

dP (y, t)

dt
=

∫ [
W (y − r, y)P (y − r, t)−W (y, y − r)P (y, t)

]
dr (1.2)

The first term describes flow into the point y from all other points y − r; the second

term describes flow out of y.

The Master Equation is particularly useful for describing the behavior of a system

which moves in random jumps. Examples include birth-death processes (an integer

number of individuals are born or die at each step) or a random walk (each step of

fixed length, randomly chosen left or right). This thesis uses the Master Equation to

describe systems driven by Poisson processes.

The Fokker-Planck equation can be derived as a limit of the Master Equation.

This derivation, as well as a second using a dual-space argument, will be presented

in Chapter 3.
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1.4 Fluctuation-Dissipation Theorems

This thesis is primarily concerned with the physical relations known as fluctuation-

dissipation theorems. The Einstein relation is the earliest such theorem:

D

µ
=

kT

e
,

where D is the diffusivity, µ the mobility, k Boltzmann’s constant, T the temperature,

and e the charge on an electron. The random diffusion of particles is related to

their motion under an applied electric field, when they dissipate the applied power.

Nyquist’s theorem is also a fluctuation-dissipation theorem:

Var{vn} = 4kTBR.

In developing the shot-noise model, we will derive a nonlinear fluctuation-dissipation

theorem. Stratonovich has done extensive work on nonlinear fluctuation-dissipation

relations in [21], but the book is difficult to read, perhaps due to a poor translation.

Chapter 6 also investigates a fluctuation-dissipation theorem for a circuit con-

taining linear resistors, but nonlinear energy storage elements. It is well known that

the thermal noise behavior at the terminals of any linear time-invariant (LTI) RLC

circuit can be predicted from knowledge of the driving-point impedance and temper-

ature alone. This chapter examines the conjecture that similar results hold if the

capacitors and inductors are nonlinear. We refine the conjecture by analyzing the

behavior of an RLC bridge circuit with the nonlinear inductor and capacitor care-

fully matched so the terminal behavior reduces to that of a linear resistor R. We

show that the terminal noise current is not that predicted by the Nyquist-Johnson

model for R if the driving voltage is time-dependent or the inductor and capacitor are

time-varying. This counterexample disproves the conjecture, which does hold, how-

ever, for the bridge circuit with nonlinear (but time-invariant) devices if the driving
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voltage is zero or constant. The chapter makes exact calculations using techniques

from stochastic differential equations and using reversibility arguments.

1.5 Contributions of this Thesis

In addition to presenting the thermodynamic requirements for noise models and re-

ducing them to mathematical tests, this thesis presents the first nonlinear device

noise model that satisfies all of these tests. Previous noise models have been derived

experimentally, and only one or two of the thermodynamic requirements have been

checked, if any.

This thesis also extends the fluctuation-dissipation theorem to include a specific

circuit with nonlinear energy storage elements in steady-state. It then provides a

counterexample for a further extension of the fluctuation-dissipation theorem for

linear resistors but nonlinear energy storage elements in a specific nonequilibrium

situation.

Many sections of this thesis have been accomplished as joint work with other

researchers.

Chapter 2 recounts joint work with Professor Wyatt. After developing this model,

we discovered a distinct but related treatment in [21], which is based on a complicated

“kinetic potential” argument. It uses an approximation [21, eq. (3.3.43)], not used

or needed here and handles the discontinuities in v(t) differently. In addition, I have

explicitly verified that the Poisson model satisfies the increasing entropy (using a new

proof not found in our original paper) and heat transfer requirements.

Chapter 3 is a recapitulation of useful mathematical results from various sources.

I have developed certain special cases that do not appear in the literature in order to

address specific questions in this thesis.

Chapters 4 and 5 are, to my knowledge, completely new. The derivations are my

work alone. This material expands the tests applied to the Poisson model (though
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the necessary condition on the Poisson model is the same as in Chapter 2), and the

mathematics are substantially more complicated than Chapter 2. The Poisson model

for a nonlinear device could not be considered complete without the generalization

beyond the single capacitor. Chapter 5 returns to the single capacitor case, but

considers a further thermodynamic test that we had not previously applied to the

Poisson noise model.

Chapter 6 consists of joint work with Prof. Anderson and Prof. Wyatt. Prof. An-

derson had been thinking about the problem for many years and derived a nonlinear

matching condition. I independently derived a different nonlinear matching condition

and used it to derive the equilibrium and steady-state results for the noisy nonlinear

circuit. The time-varying analysis was Prof. Wyatt’s work.

The original dissertation was submitted May 19, 2000 to the Department of Elec-

trical Engineering and Computer Science. This is a revised version, in which I have

corrected minor typographical errors, which do not affect any of the conclusions. I

used pdfTEXto generate PDF directly; spacing, linebreaks, and pagination may differ

from the original, which used LATEXto generate PostScript.



Chapter 2

Nonlinear Device Noise Models:

Satisfying the Thermodynamic

Requirements

The material of this chapter appeared previously as “Nonlinear Device Noise Models:

Satisfying the Thermodynamic Requirements,” in IEEE Trans. Electron Devices,

January 1999 [22]. A new proof of increasing entropy has been added, and several

minor changes have been made to integrate this paper into the thesis.

2.1 Introduction

Unlike idealized capacitors and inductors, dissipative devices such as resistors, diodes,

and transistors degrade electrical energy to thermal energy. This thermal energy is

expressed as electrical noise.

The Nyquist-Johnson thermal noise model asserts that the behavior of a linear

conductor G at thermal equilibrium at a temperature T Kelvin is accurately modeled

by the Norton representation in Fig. 2-1, where (ignoring the high-frequency roll-off

in the infrared) the current noise source is zero-mean and white with power spectral

23
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Figure 2-1: The Norton equivalent Nyquist-Johnson noise model for a linear conduc-
tor.

density1

Sii(ω; T ) = 2kTG, (2.1)

independent of ω. Equation (2.1) involves only the conductance and the temperature:

it is independent of the physical construction of the conductor [1, 2]. Nyquist’s

theoretical derivation was based on fundamental thermodynamic principles.

The aptly-named fluctuation-dissipation theorem [23, 24, 25, 26] governs the noisy

fluctuations in macroscopic variables of dissipative systems. It generalizes Johnson’s

and Nyquist’s resistor noise model to mechanical, chemical, hydraulic, and other do-

mains. But the classical fluctuation-dissipation theorem is limited to linear dissipative

elements. This chapter will show how thermodynamics also constrains the behavior

of nonlinear devices.

The physical idea in this chapter is similar to that in [1], where resistors were

connected to a transmission line. In Fig. 2-2, a nonlinear 2-terminal device at constant

temperature is connected to a fairly arbitrary lossless network,2 which contains, in

general, nonlinear multi-terminal inductors and capacitors plus ideal gyrators and

1The power spectral density expression is 4kTG when only positive frequencies are considered.
2The network cannot contain ideal diodes, those whose constitutive relations lie on the v− i axes.

Chapter 4 considers this arbitrariness, allowing nonlinear but reciprocal energy storage elements and
linear but possibly nonreciprocal interconnections, such as gyrators.
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arbitrary
lossless
lumped
network

constant−temperature
thermal reservoir

noisy
nonlinear
dissipative
element

Figure 2-2: Test circuit with nonlinear device in thermal equilibrium with an isother-
mal reservoir, connected to a lossless network.

transformers, as in [9], though the results in this chapter are obtained with a single

linear capacitor.

At thermal equilibrium, the voltage and current fluctuations are generally small

and the nonlinear device behavior could be approximated by linearizing about the

origin of the v− i curve. But on rare occasions, the fluctuations will be large enough

to briefly drive the device into the nonlinear regime. Its behavior during such large

equilibrium fluctuations is also constrained by thermodynamic principles. This re-

quirement serves as a pruning mechanism for rejecting many noise models ab initio

and tentatively accepting others: models that predict non-thermodynamic behavior

during large fluctuations (however rare) are non-physical and should be abandoned.

This chapter will introduce three equilibrium and nonequilibrium requirements

that greatly restrict and simplify the class of acceptable models. These require-

ments will be presented as simple mathematical and circuit-theoretical tests for some

noise models. In the literature on nonlinear noise modeling, approximations and

assumptions often introduce confusion over the domain where results apply. This

chapter treats the nonlinear problems exactly, using stochastic differential equation

and Master Equation methods (but we restrict consideration to two-terminal, voltage-

controlled resistive elements for simplicity.) It turns out that consistency with ther-

modynamics cannot be determined from a model’s noise spectrum alone, but depends
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critically on further statistical details.

Section 2.2 lists specific tests a model must pass. Sections 2.3 and 2.4 introduce

the Gaussian noise model for linear and nonlinear elements. Section 2.5 develops the

shot-noise model and can be read independently of Sections 2.3 and 2.4. Section 2.6

compares the two acceptable models.

2.2 Thermodynamic Requirements on Resistor

Noise Models

Thermodynamic Requirement #1: No Isothermal Conversion of Heat to

Work

One elementary consequence of the second law of thermodynamics is that no isother-

mal system can have as its sole effect the conversion of some amount of heat into

work [10]. A noisy dissipative device at a fixed temperature T , biased at a voltage V

with the resulting average current iT (V ), must not supply power, on average, to the

external circuit. Thus the I-V curve must lie in the first and third quadrants, i.e.,

iT (V ) V ≥ 0, for T > 0 and all V .

Since the average current is assumed to be a continuous function of the applied

voltage, this also implies that the average short-circuit current for a dissipative device

must be zero.3

3Since iT (V ) ≥ 0 for all V > 0 and iT (V ) ≤ 0 for all V < 0, the average current cannot be
strictly positive or negative for V = 0 by continuity.
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Thermodynamic Requirement #2: Gibbs Distribution at Equilibrium

For a lossless lumped network in thermal equilibrium with a dissipative device at

constant temperature, the equilibrium distribution for inductor fluxes φ and capacitor

charges q must have the Gibbs (or Maxwell-Boltzmann) form [10, 11, 23],

ρ(φ,q)o = A exp [−E(φ,q)/kT ] , (2.2)

where E(φ,q) is the sum of all inductor and capacitor stored energies and A serves

to normalize the distribution.

Thermodynamic Requirement #3: Increasing Entropy During Transients

The second law of thermodynamics must be satisfied during nonequilibrium transient

behavior of any circuit driven by the fluctuations of the dissipative device. The total

entropy of a circuit, i.e., the sum of the entropies of the lossless elements and the

thermal reservoir, must be a nondecreasing function of time, with a maximum value

corresponding to the equilibrium distribution [10].

These requirements are all consequences of the second law of thermodynamics.

The first requirement under short-circuit conditions and the second requirement in

general govern equilibrium behavior. The first requirement with nonzero d.c. voltage

limits nonequilibrium steady-state behavior. The third governs transient nonequilib-

rium operation.

2.3 Linear Gaussian Model

The Extended Nyquist-Johnson Model

This section considers an extended version of the Nyquist-Johnson model in which the

noise source ξ(t) is Gaussian and the circuit model in Fig. 2-1 holds for all equilibrium
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and nonequilibrium voltages. More specifically, we assume that ξ(t) is unit-amplitude,

stationary, zero-mean Gaussian white noise [27] and

in(t) =
√

2kTG ξ(t), (2.3)

for all time-varying voltages v. This extends the model far beyond the thermodynamic

equilibrium regime for which it was originally proposed [1, 2].

Compliance of the extended Nyquist-Johnson linear Gaussian model with the

thermodynamic requirements was exhaustively addressed in [9], which describes the

behavior of general nonlinear LC circuits driven by this model. However, as an intro-

duction to stochastic differential equation methods and the Fokker-Planck equation

used later, the tests are applied here to simple first-order RC networks.

Thermodynamic Requirement #1: No Isothermal Conversion of Heat to

Work

For the linear Gaussian model, the average noise current is zero and is independent

of the applied voltage. Thus the average electric power dissipated in the element

is always nonnegative for G ≥ 0, and of course the short-circuit average current is

automatically zero. This requirement is met.

Thermodynamic Requirement #2: Gibbs Distribution at Equilibrium

A (possibly nonlinear) capacitor with charge q on the upper plate and constitutive

relation

v = f(q)

is attached to the left side of the noise model in Fig. 2-1. The differential equation

for the resulting circuit,

q̇ = −G f(q)−
√

2kTG ξ(t), (2.4)
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is of the Langevin form [16, 20]. The link between stochastic differential equations

of this sort and thermodynamic variables is provided by the Fokker-Planck equation

(FPE, also known as the forward Kolmogorov equation)4 a differential equation for

the probability density ρ(q, t) of solutions to stochastic differential equations. For the

capacitor charge random process q(t) in (2.4), the FPE takes the form

ρ̇ =
∂

∂q

[
Gf(q) ρ + kTG

∂ρ

∂q

]
= − ∂

∂q
[J(q)] , (2.5)

where J(q) is called the “probability flux” [20]. Using the stored capacitor energy

EC(q) =
∫ q

0
f(q′) dq′, the Gibbs distribution (2.2) can be immediately written:

ρo(q) = A exp [−EC(q)/kT ] . (2.6)

A simple differentiation shows that this density does in fact satisfy the equilibrium

condition ρ̇o = 0 in (2.5). Thus the second thermodynamic requirement is also met.

Note that furthermore J itself vanishes at ρo. (J need only be constant for ρo

to be an equilibrium density of (2.5)). Thus the equilibrium is “detail balanced” in

the language of statistical physics [20] or, equivalently, “reversible” in the language of

random processes. Reversibility is an additional physical requirement for reciprocal

RC circuits that does not hold for general RLC circuits [20, 28].

Thermodynamic Requirement #3: Increasing Entropy During Transients

The entropy SC of the capacitor charge distribution is given by the traditional formula

[11, 21]:

SC
4
= −k

∫
ρ ln ρ dq, (2.7)

4A brief introduction is found in [12, pp. 650-54]; more mathematical rigor is found in [27, p. 172];
more physical intuition is found in [20, Chap. 8]; and the authors found [16, Sec. 5.2] to be generally
helpful.
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where k is Boltzmann’s constant. (Some authors differ by an additive or multiplicative

constant of no interest here.) The capacitor entropy rate is then

ṠC =
d

dt

(
−k

∫
ρ ln ρ dq

)
= −k

∫ +∞

−∞

d

dt
(ρ ln ρ) dq

= −k

∫ +∞

−∞

(
ρ̇ ln ρ + ρ

1

ρ
ρ̇

)
dq = −k

∫ +∞

−∞
ρ̇ ln ρ dq − k

∫ +∞

−∞
ρ̇ dq. (2.8)

The final term must integrate to zero, since the total probability must remain equal to

one. Before attempting to compute the first integral, we also seek an expression for the

rate of change of thermal reservoir entropy. The thermodynamic identity dE = T dS

and its time-dependent form dE
dt

= T dS
dt

relate the heat flow into the reservoir to its

entropy. By conservation of energy, this heat flow is equal to the energy flow out of

the capacitor. Thus we obtain for the time derivative of the reservoir entropy

ṠR =
1

T

d

dt

(
−EC

)
= − 1

T

d

dt

∫ +∞

−∞
EC(q) ρ dq = − 1

T

∫ +∞

−∞
EC(q) ρ̇ dq. (2.9)

Combining the two entropy rate terms yields the total entropy rate Ṡtot:

Ṡtot = ṠC + ṠR = −k

∫ +∞

−∞
ρ̇ ln ρ dq − 1

T

∫ +∞

−∞
EC(q) ρ̇ dq, (2.10)

which, using (2.5), becomes

Ṡtot =

∫ +∞

−∞

[
−k ln ρ− 1

T
EC(q)

]
∂

∂q

(
G fρ + kTG

∂ρ

∂q

)
dq. (2.11)

Integrating by parts, noting that ρ and its derivative fall off to zero very quickly at

infinity so that the product term vanishes there, and recalling that dEC/dq = f , we

have

Ṡtot =

∫ +∞

−∞

[
k
1

ρ

∂ρ

∂q
+

1

T
f

](
G fρ + kTG

∂ρ

∂q

)
dq
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=

∫ +∞

−∞

1

ρ GT

(
G fρ + kTG

∂ρ

∂q

)2

dq ≥ 0. (2.12)

As we hoped, the entropy rate will always be non-negative, since it is the integral of

a squared quantity.

Thus the Gaussian Nyquist-Johnson noise model for a linear resistor satisfies the

equilibrium thermodynamic requirements, and the extended Nyquist-Johnson model

satisfies the nonequilibrium requirements. Appendix B shows that the resistor may

be time-varying; this is of interest for 1/f noise models based on transconductance

fluctuations in the channel of a MOS device.

2.4 Nonlinear Gaussian Models

The total current through any nonlinear resistor at any fixed voltage V and tempera-

ture T can be written as the sum of an average current gT (V ) and a zero-mean noise

current with some power spectral density Sii(ω; T, V ). Note that this statement does

not make any assumptions about the device itself, but merely states a fact about

probability: any random signal can be represented as the sum of its mean and a

zero-mean fluctuation. In many models, e.g., [4, 29], the noise is white, and thus the

current can be written in the form

i(t) = gT (V ) + hT (V ) ξ(t), (2.13)

where ξ(t) is unit-amplitude, stationary, zero-mean white noise. It follows from (2.13)

that at each fixed V and T ,

i = gT (V )

Sii(ω; T, V ) = h2
T (V ), for all ω.
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Figure 2-3: Nonlinear Gaussian device model connected to a linear capacitor. The
noise current amplitude varies instantaneously with the applied voltage in this model.

This section considers the analytically simplest special class of such models where

ξ(t) is Gaussian and (2.13) holds for time-varying voltages at each instant, i.e.,

i = gT (v(t)) + hT (v(t)) ξ(t).

(See Fig. 2-3.) These models are a natural extension of the linear Gaussian model in

Section 2.3.

We will show a somewhat surprising result: no nonlinear device can be described

by a model in this class that meets the equilibrium thermodynamic requirement

(Requirement #2), regardless of the choice of hT (v). We only need a linear capacitor

to illustrate the problem. This lets us focus on the voltage rather than the charge,

since ρv(v, t)dv = ρq(q, t)dq, i.e.,

ρv(v, t) = ρq(q, t)
dq

dv
= Cρq(Cv, t) (2.14)

where ρq is the probability density for charge and ρv is the probability density for

voltage.

The stochastic differential equation (2.15), a nonlinear variant of the Langevin
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equation, describes the dynamics of the capacitor voltage in Fig. 2-3:

v̇(t) = −gT (v)

C
− hT (v)

C
ξ(t). (2.15)

Certain technical problems arise with this equation because white noise of unlim-

ited bandwidth is a mathematical fiction. These problems become especially severe

in (2.15) because hT (v) can vary with v, in contrast to the usual Langevin equation.

The literature focuses on two interpretations for the integral of (2.15), the Itô and the

Stratonovich integrals [20, 30]. (See Appendix 3.6.) The interpretations lead to dif-

ferent densities ρI and ρS (corresponding to the Itô and Stratonovich interpretations)

for the capacitor voltage.

The Fokker-Planck equation (FPE) for the Itô interpretation of (2.15) is:

∂ρI

∂t
=

∂

∂v

{
gT (v)

C
ρI(v, t) +

1

2

∂

∂v

[
h2

T (v)

C2
ρI(v, t)

]}
= − ∂

∂v

[
J I(v)

]
, (2.16)

where J I(v) is the probability flux, as in (2.5). The Stratonovich FPE for ρS contains

one additional term:

∂ρS

∂t
=

∂

∂v

{
gT (v)

C
ρS(v, t)− hT (v)pS(v, t)

2 C2

∂

∂v
hT (v) +

1

2

∂

∂v

[
h2

T (v)

C2
ρS(v, t)

]}
= − ∂

∂v

[
JS(v)

]
. (2.17)

Whichever interpretation is used, the equilibrium solution for charge must fit the

Gibbs form (2.2). Equivalently, using (2.14), we require

ρo
v(v) =

exp (−Cv2/2kT )√
2πkT/C

, (2.18)

which happens to be Gaussian only because the capacitor is linear with energy E =
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1
2
Cv2. Noting that

∂ρo
v(v)

∂t
= 0

and recalling from Section 2.3 that J I(v) and JS(v) must vanish identically for RC

circuits, we substitute ρo
v(v) from (2.18) into (2.16) and arrive at the differential

equation
∂h2

T (v)

∂v
= C

[ v

kT
h2

T (v)− 2 gT (v)
]
, (2.19)

or into (2.17) to arrive at

∂h2
T (v)

∂v
= 2C

[ v

kT
h2

T (v)− 2 gT (v)
]
. (2.20)

Since h2
T (v) is a characteristic of the device model, it cannot depend on the value

of C. The only solutions of (2.19) and (2.20) that do not vary with C are those for

which the term in brackets vanishes, i.e.,

h2
T (v) = 2kT

gT (v)

v
.

On the left side, this implies that

∂h2
T (v)

∂v
≡ 0. (2.21)

Together, these last two equations imply that gT (v)/v is constant, i.e.,

gT (v)

v
= G, for all v. (2.22)

Thus, we have concluded that for both the Itô and Stratonovich interpretations for

(2.15), in order to have the correct equilibrium distribution, the resistor must be a

linear resistor with

i = Gv,
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and the resulting noise amplitude,

h2
T (v) = 2kTG,

is precisely that from the the traditional Nyquist-Johnson model for the linear case.

This calculation has shown that no resistor with a nonlinear constitutive relation

i = gT (v) has a Gaussian white noise-current model5 of the form shown in Fig. 2-3,

even within the special domain of thermal equilibrium. This calculation also gave an

independent derivation of the Gaussian Nyquist-Johnson model for a linear resistor

at thermal equilibrium.

Nyquist’s derivation used two resistors connected to a transmission line (a dis-

tributed LC circuit) and required the equipartition theorem to be satisfied by the

energy in the modes of the transmission line. Our derivation uses a simpler circuit,

consisting of only one resistor and one capacitor. However, the Gibbs distribution

is a more stringent requirement than the equipartition theorem, since other non-

thermodynamic distributions satisfy the equipartition theorem.

2.5 Shot-Noise Models

2.5.1 Poisson Models for Shot Noise

The shot-noise model for a current of electrons or holes describes the arrival of each

charged particle as a Dirac delta function of current

±e δ(t− tn),

where tn is the n-th arrival time, e > 0 is the magnitude of the electron charge, and

the sign is chosen positive for a hole and negative for an electron. The arrival times

5at least in the Itô and Stratonovich interpretations of (2.19)
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are randomly distributed. If we further require that the distribution of the arrival

times be memoryless, that is,

Pr(tn − tn−1 > t + h | tn − tn−1 > t) = Pr(tn − tn−1 > h),

we obtain the Poisson point process (PPP), which is a Markov process [13]. A homo-

geneous Poisson point process is stationary, i.e., the average arrival rate λ is constant.

In a shot-noise model, this would mean that the expected number of arrivals in any

time interval of length ∆t is λ∆t, and the average current is ±eλ.

However, λ need not be constant, in which case we obtain an inhomogeneous

Poisson point process, which is not stationary. The expected number of arrivals in

any interval [t, t + ∆t] is ∫ t+∆t

t

λ(τ) dτ.

If we connect our shot-noise source to a capacitor, the charge on the capacitor

will be given by the familiar Poisson counting process (PCP), the integral of the PPP

with respect to time, as seen in Fig. 2-4.

For the following derivations, it will be useful to note that one can reparameterize

the time axis such that an inhomogeneous PCP can be expressed as a homogeneous

PCP on a non-uniform time axis. Let N(t) be a PCP with rate 1. Then to generate

an inhomogeneous PCP Ninhom with the rate λ(t), let

Ninhom(t) = N

(∫ t

0

λ(τ)dτ

)
. (2.23)

The random process Ninhom is still Markovian, with independent increments. [13, 31]

2.5.2 Poisson Device Models

A two-terminal Poisson device model (i.e., a shot-noise model) consists simply of two

independent forward and reverse current random processes. (See Fig. 2-5.)
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Figure 2-4: Possible behavior of (a) the Poisson point process and (b) the correspond-
ing counting process.
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Figure 2-5: Poisson device model connected to a capacitor. The forward current
source, eNf (t), has a voltage-dependent average arrival rate fT (v); similarly for the
reverse current.
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Each current is a Poisson counting process with a rate λ that is a function of the

instantaneous applied voltage v and the temperature T , i.e.,

i(t) =
d

dt

{
eNf

(∫ t

0

fT (v(τ))dτ

)
− eNr

(∫ t

0

rT (v(τ))dτ

)}
, (2.24)

where Nf and Nr are the independent homogeneous forward and reverse counting

processes, and fT (v) and rT (v) the forward and reverse rates, i.e.,

λf = fT (v) > 0, for all v and T > 0,

λr = rT (v) > 0, for all v and T > 0. (2.25)

Note that the Poisson device model incorporates both the deterministic constitutive

relation for the device as well as the stochastic noise behavior: the average current is

i(t) = e [fT (v(t))− rT (v(t))] ,

and the constitutive relation for the device (i.e., the v − i curve) is

i(v) = e [fT (v)− rT (v)] . (2.26)

Under d.c. bias conditions with constant V , the current random process i(t) becomes

stationary and hence has a power spectral density. The spectrum is white, apart from

the d.c component [12], with magnitude

Sii(ω; T, V ) = e2 [fT (V ) + rT (V )] , for ω 6= 0. (2.27)

The analytical simplicity of this model comes from the three very strong assump-

tions that 1) the electron arrival is instantaneous and can therefore be modeled as a

δ-function, 2) the two random processes are mutually independent and memoryless,
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and 3) the expected arrival rate changes instantaneously with v.

For some devices, this model is reasonably accurate over a wide enough range of

d.c. bias voltages to include substantially nonlinear portions of the v−i curve. The pn

junction and the MOSFET in the subthreshold regime are two interesting examples.

One would expect this model also applies to other devices under nonequilibrium bias

conditions, provided a) the lattice remains at a uniform constant temperature during

such operation, and b) the carrier population remains locally in thermal equilibrium

with the lattice, i.e., retains approximately the Gibbs distribution at a constant

temperature T , throughout the device during such operation.

Since the noise statistics are determined by the sum of the average currents (2.27)

while the constitutive relation is determined by the difference (2.26), the development

so far does not imply any unique relation between the constitutive relation and the

noise. We will show that with the thermodynamic requirements, the constitutive

relation and the temperature uniquely specify the current noise at each operating

voltage V .

Example: Subthreshold MOSFET

The subthreshold p-channel MOSFET with fixed gate-to-source voltage Vgs is a two-

terminal device that is well-described by a Poisson model. The derivation of this

model and a comparison with experimental results is given in [32]. There are only

two currents, if and ir, and both are hole diffusion currents in the n-region shown

in Fig. 2-6. The separation of the total currents into forward and reverse currents in

this model is done as follows: given the hole concentration at both ends, the current

from each end is calculated as the diffusion that would occur if the concentration at

the far end were zero. In this model,

if = efT (v) = Isat(Vgs)

ir = erT (v) = Isat(Vgs) exp(−ev/kT ),
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Figure 2-6: MOSFET cross-section.

where v = vds is the drain-to-source voltage, so that

id = if − ir = Isat(Vgs)[1− exp(−ev/kT )],

and the shot-noise amplitude is given by the sum

Sii(ω; T, V ) = e(if + ir), for ω 6= 0.

Example: PN Junction

To develop a shot-noise model for the pn junction in Fig. 2-7, we need expressions for

the forward and reverse currents. The dominant currents are the electron and hole

diffusion currents.

Diffusion currents result from the differences in carrier concentrations on opposite

sides of the junction. At the edge of the space charge region on the p side, the

electron concentration is npo exp(eV/kT ), but deep in the bulk p region, the electron
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Figure 2-7: A pn junction.

concentration is npo. The electron diffusion current, therefore, is proportional to

npo [exp(eV/kT )− 1] .

The hole diffusion concentration is proportional to a similar factor,

pno [exp(eV/kT )− 1] .

Although electrons and holes diffuse in opposite directions, the currents are in the

same direction, yielding a net average current

i = IS [exp(ev/kT )− 1] ,

where the saturation current IS incorporates all the constants, such as the bulk carrier

concentrations and diffusion coefficients.

Dividing the current into forward and reverse currents in this model is not as

clearly justified as it was in the MOSFET case. Nevertheless, following the philos-

ophy of the alternate derivation of noise for the linear resistor in [32], we take the

concentration near the electrode, in this case the electron concentration deep in the
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bulk p region, to determine the concentration for the reverse current of electrons.

Correspondingly, we get a reverse current of holes from their concentration deep in

the n region. This results in a total reverse current (of holes and electrons)

ir = IS = erT (v)

and a forward current

if = IS exp(ev/kT ) = efT (v).

Shot noise is generated by both currents, and for fixed V , the power spectral density

is

Sii(ω; T, V ) = e(if + ir), for ω 6= 0.

More physical detail can be found in most semiconductor device textbooks. For

more details on the noise model, the reader is referred to [29].

2.5.3 Thermodynamic Tests on Poisson Models

Thermodynamic Requirement #1: No Isothermal Conversion of Heat to

Work

The requirement is that

V e [fT (V )− rT (V )] ≥ 0, for T > 0 and all V . (2.28)

It is satisfied for both the subthreshold MOSFET and the pn junction shot-noise

models.

Thermodynamic Requirement #2: Gibbs Distribution at Equilibrium

For this second test, we consider our noisy device in a circuit with a single linear

capacitor, as in Fig. 2-5. The equilibrium distribution of charge on this capacitor
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must have the Gibbs form.

Integrating the circuit differential equation dq
dt

= −i and using the device current

from equation (2.24), we find

q(t) = −e

{
Nf

(∫ t

0

fT (q(τ)/C)dτ

)
−Nr

(∫ t

0

rT (q(τ)/C)dτ

)}
, (2.29)

and we choose the initial condition q(0) = 0. (For mnemonics, recall that in defining

the device model, fT was used for “forward” current and rT for “reverse” current, with

respect to the sign conventions for the device. But in the circuit, it is better to think

of fT as standing for “falling” charge and rT for “rising” charge on the capacitor.)

Note that the rates fT (q(t)/C) and rT (q(t)/C) are discontinuous functions of time,

since the capacitor can only have integer numbers of electrons on its plates. This

raises a question about interpreting the transition rates correctly. Should we use the

charge value before the jump, the value afterwards, or the average?

It turns out that using the charge values before the jump mishandles the dis-

continuities in fT (v(t)) and rT (v(t)): in the subthreshold MOSFET and pn junction

examples, it results in an equilibrium charge distribution that is not Gibbsian and

has a mean value of −1
2
e, contrary to the requirement. For this reason we let the

transition rate be governed by the average of the capacitor voltages before and after

the jump. Using simplified notation for the transition rates

rn
4
= rT

(
(n + 1/2)e

C

)
(2.30)

fn
4
= fT

(
(n− 1/2)e

C

)
, (2.31)

and for the conditional probabilities

p(n, t |m, s)
4
= Pr{q(t) = ne | q(s) = me},
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Figure 2-8: Section of the capacitor charge Markov Chain (2.32). Node k represents
the state with charge +ke on the upper capacitor plate.

one arrives at the forward evolution equation for the probability distribution (i.e.,

the Master Equation [20])

d

dt
p(n, t) = rn−1 p(n− 1, t) + fn+1 p(n + 1, t)− [rn + fn] p(n, t). (2.32)

For more detail, see [33]. These transition probabilities describe the infinite Markov

chain in Fig. 2-8.

The equilibrium distribution po
n satisfies (2.32) with the left hand side set to zero.

Again requiring detailed balance, the total flow between adjacent nodes must vanish,

i.e.,

rn po
n = fn+1 po

n+1, for each n, (2.33)

or
po

n+1

po
n

=
rn

fn+1

, for each n. (2.34)

The equilibrium solution can quickly be found in closed form (except, perhaps, for
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normalization):

po
n

po
0

=



n−1∏
j=0

rj

fj+1

, n > 0

n+1∏
j=0

fj

rj−1

, n < 0.

(2.35)

We may now test this distribution for consistency with the Gibbs form. Gibbs

statistics for our circuit require that the ratio of probabilities of neighboring states

satisfy

po
n+1

po
n

=
exp

[
−

(
(n+1)2e2

2CkT

)]
exp

[
−

(
n2e2

2CkT

)] = exp

[
−

(
(2n + 1)e2

2CkT

)]
= exp

[
−

(
(2n + 1)e

2CvT

)]
= exp

[
−

(
ne

CvT

)]
exp

[
−

(
e

2CvT

)]
.(2.36)

The Markov chain for the circuit also gives an expression (2.34) for the ratios of the

neighboring equilibrium probabilities:

po
n+1

po
n

=
rn

fn+1

=
rT ((n + 1/2)e/C)

fT ((n + 1/2)e/C)
=

rT (vn + e/2C)

fT (vn + e/2C)
, (2.37)

where vn is the voltage on the capacitor when the upper plate stores n positive charges.

Equation (2.37) agrees with the thermodynamic requirement (2.36) for all capacitors

if and only if
rT (v)

fT (v)
= exp (−v/vT ) , for all v. (2.38)

The probability ratio (2.37) from the Markov chain becomes

po
n+1

po
n

=
rT (vn + e/2C)

fT (vn + e/2C)
= exp

(
−vn + e/2C

vT

)
= exp (−ne/CvT ) exp (−e/2CvT ) ,

which agrees precisely with (2.36).

Thus the constraint (2.38) is both necessary and sufficient to guarantee that ev-
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ery shot-noise model leads to a Gibbs equilibrium distribution of charge on a linear

capacitor, as required by thermodynamics. We have also shown that this conclusion

continues to hold even when the capacitor is nonlinear [33]. Both the pn junction and

the subthreshold MOSFET shot noise models satisfy (2.38).

Furthermore, given the positivity restrictions (2.25), it is easy to show that the

constraint (2.38) guarantees Thermodynamic Requirement #1 is also satisfied.

Thermodynamic Requirement #3: Increasing Entropy During Transients

Ref. [34] has a proof based on information theory and the “relative entropy.” A new

proof is presented below.

The capacitor entropy is defined as in Eq. (2.7), but for a discrete state space,

SC
∆
= −k

+∞∑
n=−∞

p(n, t) ln p(n, t) (2.39)

The capacitor entropy rate is

ṠC = −k
+∞∑

n=−∞

(
ṗ(n, t) ln p(n, t) + p(n, t)

d

dt
ln p(n, t)

)

= −k

+∞∑
n=−∞

(
ṗ(n, t) ln p(n, t) + p(n, t)

1

p(n, t)
ṗ(n, t)

)

= −k
+∞∑

n=−∞

ṗ(n, t) ln p(n, t), (2.40)

because the second term sums to zero by conservation of probability.

Using the First Law argument as in Section 2.3, the resistor entropy rate is

ṠR =
1

T

d

dt

(
−EC

)
= − 1

T

d

dt

+∞∑
n=−∞

(ne)2

2C
p(n, t) = − 1

T

+∞∑
n=−∞

(ne)2

2C
ṗ(n, t). (2.41)
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Combining the two entropy rate terms yields the total entropy rate Ṡtot:

Ṡtot = ṠC + ṠR = −k
+∞∑

n=−∞

ṗ(n, t) ln p(n, t)− 1

T

+∞∑
n=−∞

(ne)2

2C
ṗ(n, t)

= −
+∞∑

n=−∞

ṗ(n, t)

(
k ln p(n, t) +

e2

2CT
n2

)
(2.42)

Substituting in the Master Equation (2.32) for ṗ(n, t),

Ṡtot = −
+∞∑

n=−∞

[
rn−1 p(n− 1, t) + fn+1 p(n + 1, t)− [rn + fn] p(n, t)

]
×

(
k ln p(n, t) +

e2

2CT
n2

)
=

+∞∑
n=−∞

[
rn p(n, t)− fn+1 p(n + 1, t)

] (
k ln p(n, t) +

e2

2CT
n2

)

+
+∞∑

n=−∞

[
−rn−1 p(n− 1, t) + fn p(n, t)

] (
k ln p(n, t) +

e2

2CT
n2

)

The terms in square brackets on the last two lines are offset by one, so we can reindex

and then recombine.

Ṡtot =
+∞∑

n=−∞

[
rn p(n, t)− fn+1 p(n + 1, t)

]
×

(
k ln p(n, t) +

e2

2CT
n2 − k ln p(n + 1, t)− e2

2CT
(n + 1)2

)
=

+∞∑
n=−∞

[
rn p(n, t)− fn+1 p(n + 1, t)

] (
k ln

p(n, t)

p(n + 1, t)
− e2

2CT
(2n + 1)

)

Recall the thermodynamic constraint (2.38) and the definitions of fn and rn in

Eqs. (2.31) and (2.30). Factoring suggestively,

Ṡtot =
+∞∑

n=−∞

k rn p(n + 1, t)

[
p(n, t)

p(n + 1, t)
− exp

(
(n + 1/2)e

CvT

)]
×

(
ln

p(n, t)

p(n + 1, t)
− e2

2CkT
(2n + 1)

)
. (2.43)
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The rate rn is positive by assumption in Eq. (2.25); the probabilities p(n, t) are by

definition non-negative; and Boltzmann’s constant k is positive. Note that the terms

in the large parentheses are the logarithms of those in the square brackets, since

vT =
kT

e
⇒ (n + 1/2)e

CvT

=
e2

2CkT
(2n + 1).

Because the logarithm is monotonic,

(a− b) (ln a− ln b) > 0,

unless a = b. Therefore, the total entropy is the sum of infinitely many non-negative

terms,

Ṡtot ≥ 0, (2.44)

with equality if and only if

p(n, t)

p(n + 1, t)
= exp

(
(n + 1/2)e

CvT

)
,

which is precisely the Gibbs relationship (2.36).

Summary

In summary, the shot-noise model satisfies all the thermodynamic requirements pre-

sented here if and only if the forward and reverse rates are related by (2.38), which

applies to both time-varying and d.c. voltages. After developing this model, we discov-

ered a distinct but related treatment in [21]. His derivation is based on a complicated

“kinetic potential” argument. It uses an approximation [21, eq. (3.3.43)], not used or

needed here and handles the discontinuities in v(t) differently. In addition, we have

explicitly verified that the Poisson model satisfies the increasing entropy requirement.

For d.c. voltages V , the constraint (2.38) leads to a prediction of a unique current
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noise amplitude at each operating point. If we define

i = g(V ) = e [fT (V )− rT (V )] = e [exp (V/vT )− 1] rT (V ), (2.45)

then for all ω 6= 0,

Sii(ω; T, V ) = e2 [fT (V ) + rT (V )] = e2 [exp (V/vT ) + 1] rT (V )

=
e [exp (V/vT ) + 1]

[exp (V/vT )− 1]
g(V ) =

e g(V )

tanh (V/2vT )
, (2.46)

at each d.c. voltage V .

2.6 Comparison Between Shot-Noise and

Extended Nyquist-Johnson Models

The two thermodynamically acceptable models, Nyquist-Johnson and shot, are fun-

damentally distinct since the former is Gaussian and the latter is not. But their power

spectra are both white and can be compared. For a device with average current given

by gT (V ) at a fixed operating voltage V and temperature T , we compare the Poisson

model power spectral density (2.46) with the value SNJ
ii that the Nyquist-Johnson

model would predict if one applied it to the linearized conductance g′T (V ),

SNJ
ii = 2kTg′T (V ). (2.47)

It is reassuring to note that the Poisson (2.46) and Nyquist-Johnson (2.47) power

spectral densities agree in the short-circuit case. This can be seen by expanding (2.46)

about V = 0 using l’Hôpital’s rule. But they do not agree elsewhere in general. Note

that there is no reason to believe (2.47) gives a correct prediction for any nonlinear
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device with V 6= 0, despite its occasional use in the literature.

To push the comparison further, we apply both models to a linear conductor G.

The Poisson model (2.46) reduces to

SP
ii =

e G V

tanh(V/2vT )
, (2.48)

while the Nyquist-Johnson model, of course, gives

SNJ
ii = 2kTG. (2.49)

It is interesting that two noise models with different power spectral densities are both

thermodynamically acceptable. The Poisson model predicts a larger current noise

than the Nyquist-Johnson model at each nonzero bias point, since

SP
ii

SNJ
ii

=
V/2vT

tanh(V/2vT )
> 1, for all V 6= 0.

The shot-noise model is “noisier” than the extended Nyquist-Johnson model for

V 6= 0. This is a direct result of the finite size of the electron charge. To see this,

consider a hypothetical family of linear conductors, all having the same conductance G

and temperature T , but in which the charge quantum e comes in various sizes. (These

are rare or nonexistent in electronics, but the Ca++ channel in nerve membrane is

one example of a non-unity charge quantum.) The limiting behavior of (2.48) is

SP
ii → lim

e→0

eGV

tanh( eV
2kT

)
= 2kTG = SNJ

ii , (2.50)

i.e., the shot noise magnitude converges to the extended Nyquist-Johnson noise am-

plitude as the charge quantum vanishes.

A closer analysis shows that for any nonzero V , SP
ii grows monotonically with e

as e increases from zero: the larger the charge quantum, the larger the noise.
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This closer analysis also exposes an odd fact about the shot-noise model for linear

as well as nonlinear devices: at any fixed V , as e → 0, both the forward and reverse

rates grow as 1/e2 rather than the more intuitive 1/e one might expect. Thus the

forward and reverse currents both become infinite in the “small charge quantum” limit

of the Poisson model, while their difference remains finite. This limiting behavior is

necessary so that the noise power remains nonvanishing, as can be seen from the first

expression on the right-hand side of (2.46):

Sii(ω; T, V ) = e2 [fT (V ) + rT (V )] , for ω 6= 0,

where we have constrained fT and rT to be positive. The net current in (2.45) also

remains finite, because

exp (V/vT ) ≈ 1 +
eV

kT

for small e, so that

e [exp (V/vT )− 1] rT (V )

remains constant even though rT (V ) grows as 1/e2.

The table on the following page summarizes the hypotheses and results of the two

approaches.
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Model Shot-noise Extended Nyquist-Johnson

State space discrete continuous

Stochastic process Poisson Gaussian

statistics

Equilibrium condition equal forward and probability flux J (2.5)

(detailed balance) reverse flows in vanishes in Fokker-Planck

Master Equation (2.33) equation

Power spectral density SP
ii = eg(V )

tanh(V/2vT )
(2.46) SNJ

ii = 2kTG (2.49)

Gibbs distribution forward and reverse resistor must be linear (2.22)

requirement rates exponentially

related (2.38)



Chapter 3

Forward Evolution Equations

In this chapter, we will examine more closely the mathematical tools that were used in

the previous chapter. Most of the mathematics here is not new, and it could be argued

that this material belongs in an appendix, if at all. However, a proper understanding

of the Fokker-Planck equation is critical to this thesis, and the relations between some

results yield valuable insights.

This chapter will start in Section 3.1 with a simple derivation of the Fokker-Planck

equation from the Master Equation, which is intuitively much easier to understand.

A key step in the derivation is the truncation of a series after two terms; we will also

see that extending this series (the so-called Kramers-Moyal expansion) will not rescue

the nonlinear Gaussian model.

Section 3.2 will present a simple Fokker-Planck equation, derived from the corre-

sponding stochastic differential equation. Section 3.3 will discuss interpretations of

the stochastic integral, which will be necessary in more complicated systems, where

the white noise is multiplied by a function of the state. The interpretations include

the standard Itô and Stratonovich versions.

Section 3.4 will derive the Fokker-Planck equation from Poisson counters. The

section starts with a description of stochastic processes driven by Poisson counters.

Gaussian white noise is obtained as a limit of a random walk, with decreasing step

53
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size but increasing frequency. The stochastic differential equations do not have a

unique interpretation because of the violent nature of the jump in the state of the

system at the instant the Poisson counter increments. The main focus will be on the

Itô interpretation, but the FPE for other interpretations of the stochastic differential

equations will also be given. Note that it is generally believed [20, 35] that there

is a unique Fokker-Planck equation corresponding to physical reality; it is only the

stochastic differential equation that suffers from ambiguity of interpretation.

A natural extension of this approach to Brownian motion starting with Poisson

counters is a stochastic differential equation driven by both Gaussian white noise

and a Poisson counter. We will present in Section 3.5 the forward equation for the

probability distribution for this case, in preparation for the next chapter, where we

consider linear resistors and shot-noise models in the same circuit.

The main interest in non-Ito stochastic integrals comes from their use in the

nonlinear Gaussian model. Section 3.6 considers the different interpretations for the

stochastic differential equation in Chapter 2. Although one interpretation of the

stochastic integral (ζ = 1, which we will define) allows a nonlinear Gaussian model,

this introduces “spurious drift” [20]. Further, the same model, used to describe a

nonlinear device connected to an inductor rather than a capacitor as in the last

chapter, again shows us that the resistor must be linear.

The last section of this chapter will show under what conditions the Poisson model

will converge to a Gaussian. This analysis is motivated by the analysis of Section 2.6,

where the Poisson and Gaussian had the same power spectral density for e → 0, and

further by the fact that the FPE was derived from Poisson counters.

3.1 The Kramers-Moyal Expansion

This section presents a heuristic derivation of the Fokker-Planck equation as the

limit of a Master Equation, under the assumption that only “small” jumps occur



3.1. THE KRAMERS-MOYAL EXPANSION 55

as the system evolves. The meaning of “small” will be made more precise later.

If this assumption is not valid, then one can continue the so-called Kramers-Moyal

expansion and include further terms. In [20], van Kampen says that these terms are

never exactly zero for physical systems; however, in most applications we are aware

of, these terms are negligible. This section concludes by showing that, even if they

were not negligible, the forward equation including these terms for Gaussian models

for nonlinear resistors still would not admit the correct equilibrium density.

3.1.1 FPE as the Limit of the Master Equation

This section is a recapitulation of the relevant material in [20, p. 198] and [36].

The Master Equation for the time evolution of the probability distribution is

∂

∂t
ρ(t, x) =

∫ +∞

−∞
W (y, x)ρ(t, y)− ρ(t, x)W (x, y) dy

=

∫ +∞

−∞
[W (x− r, x)ρ(t, x− r)−W (x, x + r)ρ(t, x)] dr,

where W (y, x) is the transition rate from y to x. The first term in the summation

is the amount of probability flowing into the point x from all other points, and the

second term is the probability leaving x. The second line is simply a change of

variables, where r = x−y, because the next assumption is that W (x−r, x) is smooth

in x and short-range in r, that is, transitions are overwhelmingly to nearby states.

Under the further assumption that ρ(t, x) is also slowly-varying in x, we can perform

the following Taylor expansion on the first term:

W (x− r, x)ρ(t, x− r) (3.1)

= W (x, x + r)ρ(t, x) +
∂

∂x
[W (x, x + r)ρ(t, x)] (−r)

+
1

2

∂2

∂x2
[W (x, x + r)ρ(t, x)] (−r)2 + o(r2), (3.2)
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where o(r2) denotes a term with the property that o(r2)/r2 → 0 as r → 0. Therefore,

∂

∂t
ρ(t, x) =

∫ +∞

−∞

{
W (x, x + r)ρ(t, x) +

∂

∂x
[W (x, x + r)ρ(t, x)] (−r)

+
1

2

∂2

∂x2
[W (x, x + r)ρ(t, x)] (−r)2 + o(r2)

}
dr

−
∫ +∞

−∞
W (x, x + r)ρ(t, x) dr.

The first and fourth terms cancel, and we can exchange the order of integration (by

r) and differentiation (by x).

∂

∂t
ρ(t, x) = − ∂

∂x

[∫ +∞

−∞
r W (x, x + r) dr

]
︸ ︷︷ ︸

a1(x)

ρ(t, x)

+
1

2

∂2

∂x2

[∫ +∞

−∞
r2 W (x, x + r) dr

]
︸ ︷︷ ︸

a2(x)

ρ(t, x) + o(r2). (3.3)

The “jump moments” [20]

an(x)
∆
=

∫ +∞

−∞
rn W (x, x + r) dr, n = 1, 2, (3.4)

are related to the drift and diffusion coefficients of the FPE. Although van Kampen

asserts that an for n > 2 are never exactly zero for physical systems [20, footnote

**) on p. 199], they are generally neglected. If we can justify neglecting higher-order

terms, this last equation has the same form as the Fokker-Planck equation:

∂

∂t
ρ(t, x) = − ∂

∂x
[a1(x)ρ(t, x)] +

1

2

∂2

∂x2
[a2(x)ρ(t, x)] .

In this way, we have shown that the FPE arises as a natural limit of the Master

Equation. However, this derivation does not connect the FPE back to the stochastic

differential equation. Of course, the Master Equation similarly lacks a connection to
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a stochastic differential equation; in general, one must have some other procedure for

determining the transition probabilities W (y, x). We will show the connection for a

simple system in Section 3.2 and then more generally in Section 3.4.

3.1.2 Kramers-Moyal Forward Equation

Suppose now that the transition probability W (x, x + r) is not short-range in r. For

nonlinear systems, one might find that the first and second order jump moments are

not sufficient to describe the system. In that case, one builds the so-called Kramers-

Moyal expansion. If the Taylor expansion of (3.2) is continued,

W (x− r′, x)ρ(t, x− r′) = W (x, x + r)ρ(t, x)

+
∂

∂x
[W (x, x + r)ρ(t, x)] (−r)

+
1

2

∂2

∂x2
[W (x, x + r)ρ(t, x)] (−r)2

+
1

3!

∂3

∂x3
[W (x, x + r)ρ(t, x)] (−r)3

+ . . .

=
∞∑

n=0

1

n!

∂n

∂xn
[W (x, x + r)ρ(t, x)] (−r)n,

the corresponding probability evolution equation is

∂

∂t
ρ(t, x) =

∞∑
n=1

(−1)n

n!

∂n

∂xn

[
an(x)ρ(t, x)

]
, (3.5)

where the jump moments an are given by Eq. 3.4 for higher values of n.
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v(t)
C T

g  (v)+

−

Nonlinear Gaussian device model

T
h  (v) ξ (t)

i

Figure 3-1: Nonlinear Gaussian device model connected to a linear capacitor

3.1.3 Nonlinear Gaussian Model

Now, let us consider the expanded Kramers-Moyal evolution equation applied to the

Gaussian model for a nonlinear resistor. Specifically, will the Gibbs distribution be

an equilibrium (ρ̇ = 0) for Eq. (3.5)?

Weiss and Mathis claim [37] that adding more terms in the expansion to describe

a nonlinear system will require “additional information” not determined by network

theory; they offer that these terms might be determined by experiment. This subsec-

tion will explore the possibility that the thermodynamic requirements might supply

this “additional information.”

Recall from Section 2.4 that the circuit differential equation for Fig. 3-1 is

v̇(t) = −g(v)

C
− h(v)

C
ξ(t).

The fourth-order “Kramers-Moyal expanded Fokker-Planck equation” (KME-FPE)

for the density ρ is

∂ρ

∂t
=

∂

∂v

[
g(v)

C
ρ

]
+

1

2

∂2

∂v2

[
h2(v)

C2
ρ

]
− 1

6

∂3

∂v3

[
a3(v)ρ

]
+

1

24

∂4

∂v4

[
a4(v)ρ

]
=

∂

∂v

{
g(v)

C
ρ +

1

2

∂

∂v

[
h2(v)

C2
ρ

]
− 1

6

∂2

∂v2

[
a3(v)ρ

]
+

1

24

∂3

∂v3

[
a4(v)ρ

]}
. (3.6)
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The equilibrium distribution should be Gibbsian:

ρeq(v) =
1√

2πkT/C
exp

(
−Cv2

2kT

)
.

We assume detailed balance (as we did previously for the simple FPE), such that the

quantity inside the braces of (3.6) must be identically zero (not just constant with

respect to v).

0 =
g(v)

C
ρeq +

1

2C2

∂

∂v

[
h2(v)ρeq

]
− 1

6

∂2

∂v2

[
a3(v)ρeq

]
+

1

24

∂3

∂v3

[
a4(v)ρeq

]
However, even from this equation, it is clear that the extra terms of the expansion

cannot be determined by this equation. Conversely, the equilibrium density for the

nonlinear Gaussian model is not Gibbsian for any choice of the jump moments. Ap-

plying the product rule to the second term on the right hand side will yield a term

1

2C2

(
∂h2(v)

∂v

)
ρeq(v). (3.7)

But the noise model h2(v) and the jump moments cannot depend on the value of

the capacitance. Partial derivatives of the equilibrium distribution will bring down

positive powers of the capacitance,

∂ρeq(v)

∂v
= −Cv

kT
ρeq(v).

There is thus no way to cancel out the term (3.7), with the inverse square power of

C, except under the same conclusion found in Chapter 2:

∂h2(v)

∂v
= 0.
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3.2 The FPE for a Constant-Coefficient SDE

This section derives the simplest Fokker-Planck equation, that corresponding to a

stochastic differential equation with constant coefficients. This derivation will serve

as a motivation for the much more complicated derivation in Section 3.4 for state-

dependent stochastic differential equations.

Consider the equation

dx = f dt + g ξ(t) dt, (3.8)

where ξ(t) is a unit-variance Gaussian white noise process (note that ξ(t) = dw(t) in

the notation of the previous section) and f and g are constants. (They could more

generally be functions of time, but this section is trying for the simplest derivation.)

This equation is really shorthand for

x(t) = x(0) +

∫ t

0

f ds +

∫ t

0

g ξ(s) ds. (3.9)

Since ξ(s) is a Gaussian random variable for each s and the integration is a linear

operation, x(t) must also be Gaussian. Its mean is

E{x(t)} = E{x(0)}+ E

{∫ t

0

f ds

}
+ E

{∫ t

0

g ξ(s) ds

}
= x(0) + ft + 0,

since ξ(t) is zero-mean. The variance of x(t) is

E
{
[x(t)− E{x(t)}]2

}
= E

{[
x(0) +

∫ t

0

f ds +

∫ t

0

g ξ(s) ds− x(0)− ft

]2
}

= E

{[∫ t

0

g ξ(s)ds

]2
}

= g2

∫ t

0

ds

∫ t

0

ds′ E{ξ(s) ξ(s′)}

= g2 t.
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Thus, x(t) is a Gaussian random process with mean ft and variance g2t. The proba-

bility density function for x(t) is

ρ(x, t) =
1√

2πg2t
exp

[
−(x− ft)2

2g2t

]
. (3.10)

Differentiation yields

∂ρ(x, t)

∂t
=

−1

2t
ρ(x, t) +

2ft(x− ft) + (x− ft)2

2g2t2
ρ(x, t)

∂ρ(x, t)

∂x
= −(x− ft)

g2t
ρ(x, t)

∂2ρ(x, t)

∂x2
=

(x− ft)2

g4t2
ρ(x, t)− 1

b2t
ρ(x, t).

Simple algebra then verifies the statement

∂ρ(x, t)

∂t
= −f

∂ρ(x, t)

∂x
+

1

2
g2 ∂2ρ(x, t)

∂x2
. (3.11)

We have thus shown that, for a stochastic process described by Eq. (3.8), its prob-

ability density function evolves according to Eq. (3.11), the Fokker-Planck equation

corresponding to the stochastic differential equation. The next section will consider

more complicated situations where f and g depend on x and t.

3.3 Stochastic Integrals

In this section, we consider so-called stochastic integrals. The object is to find the

proper way to compute the integral

∫ b

a

w(t) dw(t), (3.12)
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where w(t) is the Brownian motion, with mean 0 and variance t. Note that previous

sections have written ξ(t) for dw(t); Gaussian white noise is the name engineers use for

the derivative of the Brownian motion. This integral is not well-defined, because w is

not of bounded variation. The proper computation of this integral will be important

in systems where the amplitude scaling the white noise (g in Eq. (3.8)) depends on

the state.

There are two main interpretations of Eq. (3.12): the Itô and Stratonovich. These

two integration methods are but two of a continuum of possibilities indexed by a

parameter that runs between 0 and 1. Schuss [16] uses λ for this parameter; Arnold

[15] uses a (where a = 1 − λ). We shall use ζ, because λ is much more commonly

used as the rate of a Poisson process. The integral is expressed as the limit of a

parameterized summation,

(ζ)

∫ b

a

w(t) dw(t)
∆
= lim

(P ) n→∞

n−1∑
i=0

[(1− ζ)w(ti) + ζw(ti+1)] [w(ti+1)− w(ti)] . (3.13)

where lim(P ) n→∞ means that the summation converges in probability as n →∞. The

fact that w(t) is not of bounded variation implies that the summation converges only

in probability but unfortunately not along sample paths. Furthermore, this same

lack of smoothness causes the random process to which this function converges in

probability to depend on the particular value of ζ, contrary to the more familiar case

when w(t) is of bounded variation.

The first subsection is taken from [16], but the remainder of the section was left

as exercises in that book.
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3.3.1 The Itô Integral

The result of the Itô integral is a martingale. The integral is written as the limit of

the summation for ζ = 0,

(I)

∫ b

a

w(t) dw(t)
∆
= lim

(P ) n→∞

n−1∑
i=0

w(ti) [w(ti+1)− w(ti)] , (3.14)

where ti = a + i[(b− a)/n]. Let us define

In
∆
=

n−1∑
i=0

w(ti) [w(ti+1)− w(ti)] ,

and work on a clever manipulation of the summand.

w(ti) [w(ti+1)− w(ti)] = w(ti)w(ti+1)− w2(ti)

= w(ti)w(ti+1)− w2(ti)−
1

2
w2(ti+1) +

1

2
w2(ti+1)

= −1

2

[
w2(ti+1)− 2w(ti)w(ti+1) + w2(ti)

]
+

1

2
w2(ti+1)−

1

2
w2(ti)

= −1

2
[w(ti+1)− w(ti)]

2 +
1

2
w2(ti+1)−

1

2
w2(ti) (3.15)

Therefore,

In =
n−1∑
i=0

{
1

2
w2(ti+1)−

1

2
w2(ti)−

1

2
[w(ti+1)− w(ti)]

2

}
. (3.16)

The first two terms cancel each other out for all intermediate values of i, leaving only

the first term for i = n− 1 and the second term for i = 0. Hence,

In =
1

2

[
w2(b)− w2(a)

]
−

n−1∑
i=0

1

2
[w(ti+1)− w(ti)]

2 =
1

2

[
w2(b)− w2(a)

]
− 1

2
ηn, (3.17)

where

ηn
∆
=

n−1∑
i=0

(δiw)2 and δiw
∆
= w(ti+1)− w(ti).
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Now, each increment δiw of the Brownian motion w(t) has distribution N(0, ti+1− ti)

and is independent of the other increments. Note that the variance is (ti+1− ti), and

standard notation is N(µ, σ2), whereas Schuss uses N(µ, σ). Therefore,

E{ηn} = E

{
n−1∑
i=0

(δiw)2

}
=

n−1∑
i=0

E
{
(δiw)2

}
=

n−1∑
i=0

(ti+1 − ti) = b− a. (3.18)

By Chebyshev’s inequality,

Pr
{∣∣∣ηn − E{ηn}

∣∣∣ > ε
}
≤ Var{ηn}

ε2
.

Again using independence,

Var {ηn} =
n−1∑
i=0

Var
{
(δiw)2

}
=

n−1∑
i=0

E
{
(δiw)4

}
− E{(δiw)2}2.

Now, since δiw is normally distributed, these expectations are easily calculated:

E
{
(δiw)4

}
= 3σ4 = 3(ti+1 − ti)

2

E
{
(δiw)2

}
= σ2 = (ti+1 − ti),

so that the variance of ηn is

Var {ηn} =
n−1∑
i=0

3(ti+1 − ti)
2 − (ti+1 − ti)

2 =
n−1∑
i=0

2(ti+1 − ti)
2

= 2

(
(b− a)

n

)2

n = 2
(b− a)2

n
,

because (ti+1 − ti) = (b−a)
n

for all i. Returning to Chebyshev’s inequality,

Pr
{∣∣∣ηn − E{ηn}

∣∣∣ > ε
}
≤ 2

ε2

(b− a)2

n

n→∞−→ 0, for any ε > 0,

which is to say, ηn converges to E{ηn} = b− a in probability.
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Substituting this back into Eq. (3.17),

In →
1

2
[w(b)− w(a)]− 1

2
[b− a] . (3.19)

Thus, we have computed the Itô integral

(I)

∫ b

a

w(t) dw(t) =
1

2

[
w2(b)− w2(a)

]
− 1

2
[b− a] . (3.20)

3.3.2 Backwards Integral

Schuss calls the integral for ζ = 1 the “Backwards integral.” This is an unfortu-

nate choice of terminology, because the “backward equation” generally refers to the

evolution equation in reverse time for a probability distribution (starting at a given

final condition, what is the probability distribution for where the system could have

started?). Therefore, when we look for the Fokker-Planck equation for ζ = 1, we

must take care to distinguish this from the backward equation.

For this definition of the stochastic integral (3.12), w(t) is evaluated after the

jump in the summation:

(B)

∫ b

a

w(t) dw(t)
∆
= lim

(P ) n→∞

n−1∑
i=0

w(ti+1) [w(ti+1)− w(ti)] . (3.21)

In this case, the summand is rearranged as follows:

w(ti+1) [w(ti+1)− w(ti)] = w2(ti+1)− w(ti+1)w(ti)

= w2(ti+1)− w(ti+1)w(ti) +
1

2
w2(ti)−

1

2
w2(ti)

=
1

2

[
w2(ti+1)− 2w(ti)w(ti+1) + w2(ti)

]
+

1

2
w2(ti+1)−

1

2
w2(ti)

=
1

2
[w(ti+1)− w(ti)]

2 +
1

2
w2(ti+1)−

1

2
w2(ti). (3.22)
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This summand differs from that for the Itô approach (3.15) only in the sign of the

first term. Therefore, the rest of the steps are identical to the previous section, except

that ηn changes sign. Therefore,

(B)

∫ b

a

w(t) dw(t) =
1

2

[
w2(b)− w2(a)

]
+

1

2
[b− a] . (3.23)

3.3.3 Stratonovich Integral

Stratonovich [38] defined a different stochastic integral by evaluating w(t) at an av-

erage before and after the jump, that is, with ζ = 1/2. In this case, the summand

takes on a particularly simple form:

(S)

∫ b

a

w(t) dw(t)
∆
= lim

(P ) n→∞

n−1∑
i=0

w(ti+1) + w(ti)

2
[w(ti+1)− w(ti)] (3.24)

=
1

2
lim

(P ) n→∞

n−1∑
i=0

w2(ti+1)− w2(ti) (3.25)

=
1

2

[
w2(b)− w2(a)

]
, (3.26)

since, as before, the intermediate terms in the summation cancel except the first term

for i = n− 1 and the second term for i = 0.

3.3.4 Arbitrary ζ

Now we are in a position to evaluate the stochastic integral (3.12) for any value of ζ,

which specifies when w(t) is evaluated. (The Itô integral has ζ = 0; the Backwards

integral has ζ = 1.) Recall

(ζ)

∫ b

a

w(t) dw(t) = lim
(P ) n→∞

n−1∑
i=0

[(1− ζ)w(ti) + ζw(ti+1)] [w(ti+1)− w(ti)] . (3.27)

This integral can be computed very quickly by using the results of the Itô and
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Backward integrals:

n−1∑
i=0

[(1− ζ)w(ti) + ζw(ti+1)] [w(ti+1)− w(ti)] (3.28)

= (1− ζ)
n−1∑
i=0

w(ti) [w(ti+1)− w(ti)] + ζ

n−1∑
i=0

w(ti+1) [w(ti+1)− w(ti)]

n→∞−→ (1− ζ) (I)

∫ b

a

w(t) dw(t) + ζ (B)

∫ b

a

w(t) dw(t)

=

[
w2(b)− w2(a)

2

]
+

(
ζ − 1

2

)
[b− a] . (3.29)

The definitions of the Itô and Backwards integrals allowed for a very simple cal-

culation of the ζ-integral. It is possible and only somewhat more difficult to calculate

the ζ-integral from the integrals for any two distinct values ζ1 and ζ2. Specifically,

one may calculate the ζ-integral from the Itô and Stratonovich integrals:

n−1∑
i=0

[(1− ζ)w(ti) + ζw(ti+1)] [w(ti+1)− w(ti)] (3.30)

= (1− 2ζ)
n−1∑
i=0

w(ti) [w(ti+1)− w(ti)]

+2ζ
n−1∑
i=0

w(ti+1) + w(ti)

2
[w(ti+1)− w(ti)]

n→∞−→ (1− 2ζ) (I)

∫ b

a

w(t) dw(t) + 2ζ (S)

∫ b

a

w(t) dw(t)

=

[
w2(b)− w2(a)

2

]
+

(
ζ − 1

2

)
[b− a] . (3.31)

Since the two usual interpretations are the Itô and Stratonovich integrals, it may

prove useful to have this expression. In particular, the Fokker-Planck equation is

given in several references in two forms: the Itô and Stratonovich. Therefore, it

should be simple to combine them and quickly find the ζ-FPE, without having to

investigate the limits of summations and calculate expectations.
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3.4 A Dual-Space Derivation of the Fokker-Planck

Equation

In this section, the Fokker-Planck equation is derived starting from the stochastic

differential equation. We first encountered the derivation in [39]. The arguments are

completed by means of characteristic functions in [40].

3.4.1 Single Poisson Counter

Consider the equation

x(t) = x(0) +

∫ t

0

f(x(σ), σ) dσ +

∫ t

0

g(x(σ), σ) dN, (3.32)

where N is a Poisson counting process of rate λ, as described in Section 2.5. Brockett

[39] states that

Definition: A function x(·) is a solution of Eq. (3.32) in the Itô sense if,

on an interval where N is constant, x satisfies ẋ = f(x, t) and if N jumps

at t1, x behaves in a neighborhood of t1 according to the rule

lim
t↓t1

x(t) = g(lim
t↑t1

x(t), t1) + lim
t↑t1

x(t)

and x(·) is taken to be continuous from the left.

In this case, the “differential form” of Eq. (3.32) is

dx = f(x) dt + g(x) dN. (3.33)

(Later in this section, we will consider solutions in other senses than Itô. By evaluat-

ing the limit of g(x(t), t1) in different ways, one derives a ζ-Fokker-Planck equation

instead of an Itô FPE.)
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Consider some smooth function Ψ(x) with compact support. This is the start

of the dual-space argument: in order to prove a statement about a function, we

consider its inner product with other functions Ψ. Because of the arbitrariness of Ψ,

an equation in its inner product space must also be valid without the inner products.

Itô’s rule for jump processes states

dΨ =
dΨ

dx
f(x)dt + [Ψ(x + g(x))−Ψ(x)] dN. (3.34)

If g(x) were zero in (3.33), the first term simply gives the result of the usual chain

rule for differentiation. The second term makes use of the Itô interpretation: if N

jumps by 1, then the argument of Ψ jumps from x to x + g(x), therefore Ψ jumps

from Ψ(x) to Ψ(x + g(x)).

Since g(x) is evaluated before the jump, the martingale property states that dN

is independent of [Ψ(x + g(x))−Ψ(x)]. Therefore, the expectation of the product in

the second term in (3.34) can be replaced by a product of expectations.

E {[Ψ(x + g(x))−Ψ(x)] dN} = E {[Ψ(x + g(x))−Ψ(x)] (dN − λ dt + λ dt)}

= E {Ψ(x + g(x))−Ψ(x)}E {dN − λ dt}

+E {Ψ(x + g(x))−Ψ(x)}λ dt

= E {Ψ(x + g(x))−Ψ(x)}λdt,

since E {dN − λ dt} = 0.

Applying the expectation to all the terms in (3.34) and dividing out the dt from

the right-hand side yields

d

dt
E {Ψ} = E

{
dΨ

dx
f(x)

}
+ E {Ψ(x + g(x))−Ψ(x)}λ. (3.35)
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Now, assume that there exists a probability distribution ρ(t, x); expectation is

calculated by integration against this distribution.

d

dt

∫ +∞

−∞
Ψ(x)ρ(t, x)dx =

∫ +∞

−∞

dΨ

dx
f(x)ρ(t, x)dx

+

∫ +∞

−∞
[Ψ(x + g(x))−Ψ(x)] λρ(t, x)dx (3.36)

Consider the terms individually. For the left-hand side, the order of differentiation

and integration may be interchanged:

d

dt

∫ +∞

−∞
Ψ(x)ρ(t, x) dx =

∫ +∞

−∞
Ψ(x)

∂

∂t
ρ(t, x) dx. (3.37)

Integration by parts on the first term on the right-hand side yields

∫ +∞

−∞

dΨ

dx
f(x)ρ(t, x) dx = Ψf(x)ρ(t, x)

∣∣∣+∞
−∞

−
∫ +∞

−∞
Ψ(x)

∂

∂x

[
f(x)ρ(t, x)

]
dx

= −
∫ +∞

−∞
Ψ(x)

∂

∂x

[
f(x)ρ(t, x)

]
dx, (3.38)

because Ψ is of compact support. The other term on the right-hand side consists of

two subterms,

∫ +∞

−∞
[Ψ(x + g(x))−Ψ(x)] λ ρ(t, x) dx

=

∫ +∞

−∞
Ψ(x + g(x)) λ ρ(t, x) dx−

∫ +∞

−∞
Ψ(x) λ ρ(t, x) dx.

The object is to express all the terms of Eq. (3.36) as integrals involving Ψ(x). Let us

assume that g̃(x) = x + g(x) is a one-to-one function, and thus has an inverse. Then

a change of variables y = x + g(x) converts the first subterm to

∫ +∞

−∞
Ψ(x + g(x)) λ ρ(t, x) dx =

∫ +∞

−∞
Ψ(y) λ ρ(t, g̃−1(y)) Jg̃−1(y) dy, (3.39)
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where Jg̃−1(y) is the Jacobian (i.e., the absolute value of the determinant) of the

transformation x = g̃−1(y). But y is just a dummy variable, so we can replace it by

x to match the other terms.

Using (3.37)-(3.39), (3.36) becomes

∫ +∞

−∞
Ψ(x)

∂

∂t
ρ(t, x) dx =

−
∫ +∞

−∞
Ψ(x)

∂

∂x

[
f(x)ρ(t, x)

]
dx

+

∫ +∞

−∞
Ψ(x) λ ρ(t, g̃−1(x)) Jg̃−1(x) dx

−
∫ +∞

−∞
Ψ(x)λρ(t, x) dx. (3.40)

Since this must be true for any Ψ (smooth and of compact support), we find that the

equation must be true without the integration against Ψ.

∂

∂t
ρ(t, x) = − ∂

∂x

[
f(x)ρ(t, x)

]
+ λρ(t, g̃−1(x)) Jg̃−1(x)− λρ(t, x) (3.41)

3.4.2 Two Poisson Counters

Consider now consider two independent Poisson counters, with equal rates, but with

opposite effects on a random process wµ governed by

dwµ =
1
√

µ
(dN1 − dN2) , (3.42)

where now the rates of N1 and N2 are λ = µ/2. (The drift term f = 0.) Obviously,

d

dt
E{wµ} =

1
√

µ
(µ/2− µ/2) = 0.
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Now, if Ψ = w2, Itô’s rule for the jump processes states

dw2
µ =

[(
wµ + 1√

µ

)2

− w2
µ

]
dN1 +

[(
wµ − 1√

µ

)2

− w2
µ

]
dN2

=

(
2wµ√

µ
+

1

µ

)
dN1 +

(
−2wµ√

µ
+

1

µ

)
dN2

=
2wµ√

µ
(dN1 − dN2) +

1

µ
(dN1 + dN2) .

Since N1 and N2 have the same probabilistic descriptions,

E{dN1} = E{dN2} = (µ/2) dt,

so that
d

dt
E{w2

µ} = 0 +
1

µ
(µ/2 + µ/2) = 1.

Thus, independent of µ, wµ is a zero-mean process whose variance grows linearly with

time. If wµ starts deterministically at the origin,

E{w2
µ(t)} = t.

In fact, there is an easier way to obtain this result. Since the drift term f(x, t)

does not appear in Eq. (3.42), and the jump height g(x, t) is independent of x, the

equation is equivalent to

wµ(t) =
1
√

µ
[N1(t)−N2(t)] .

From this equation, it is immediate that

E{wµ(t)} = 0 and E{w2
µ(t)} = t.

In the limit as µ →∞, the rates of the jump processes N1 and N2 are becoming
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very large, but the length of the step taken at each jump is vanishing. The first

and second moments match those for the Brownian motion for all µ. Further cal-

culations show that the higher moments converge as µ → ∞ to the moments of the

Brownian motion. It remains to be shown that the process we obtain in fact is the

Brownian motion. For this, we use the result cited in [40], namely that convergence

in distribution follows from convergence of characteristic functions.

The characteristic function of a Gaussian (or normal) random process with mean

0 and variance t is

φ(u; t) = exp

(
−1

2
u2t

)
.

The characteristic function of a Poisson random process N(t) of rate λ is

φN(u; t) = E {exp (juN(t))} = exp [λt (exp(ju)− 1)] ,

where j =
√
−1. Using properties of the characteristic function (scaling the step

heights and recognizing that the characteristic function of the sum of two independent

random variables is the product of their characteristic functions), the characteristic

function of wµ is seen to be

φµ(u; t) = exp
[µ

2
t
(
exp(ju/

√
µ)− 1

)]
exp

[µ

2
t
(
exp(−ju/

√
µ)− 1

)]
= exp

[µ

2
t
(
exp(ju/

√
µ) + exp(−ju/

√
µ)− 2

)]
.

As µ →∞, the inside exponentials may be expanded

exp(ju/
√

µ) = 1 +
ju
√

µ
− u2

2µ
+ o(1/µ).

Then,

φµ(u; t) = exp

[
µ

2
t
(
1 +

ju
√

µ
− u2

2µ
+ o(1/µ) + 1− ju

√
µ
− u2

2µ
+ o(1/µ)− 2

)]
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= exp

[
−u2

2
t +

µt

2
o(1/µ)

]
, (3.43)

where o(1/µ) denotes a term such that µ o(1/µ) → 0 as µ →∞. Since the character-

istic function of wµ converges to the characteristic function of Brownian motion, we

conclude that wµ converges in distribution to the Brownian motion.

Consider now the process z governed by

dz =
1

µ
(dN1 + dN2) .

Its mean evolves as

d

dt
Ez = 1 ⇒ Ez(t) = t + Ez(0).

Itô’s rule gives for the square of z

dz2 =
[
(z + 1/µ)2 − z2

]
(dN1 + dN2) =

(
2z

µ
+

1

µ2

)
(dN1 + dN2),

so that the mean-square value evolves as

d

dt
Ez2 =

(
2Ez

µ
+

1

µ2

)
(µ/2 + µ/2) = 2Ez +

1

µ

= 2t + 2Ez(0) +
1

µ
.

Then

Ez2(t) = t2 + 2tEz(0) +
t

µ
+ Ez2(0).

Supposing that z(0) = 0 with probability 1, Ez(0) = Ez2(0) = 0. Then considering

the limit as µ →∞, the variance approaches zero:

Ez2(t)− (Ez(t))2 = t/µ → 0.
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We then identify

dz = dt (3.44)

in the limit µ →∞.

3.4.3 Itô Rule for Brownian Motion

We can use the calculations of the previous section to obtain a new Itô rule for a

stochastic process driven by Brownian motion. We will approximate

dx = f(x) dt + g(x) dw

by the jump-process-driven differential

dx = f(x) dt + g(x)
1
√

µ
(dN1 − dN2) , (3.45)

(where the rates of N1 and N2 are µ/2) and consider the limit µ →∞.

Again, considering an arbitrary Ψ(x) (smooth and of compact support), Itô’s rule

for jump processes yields

dΨ =
dΨ

dx
f(x) dt +

[
Ψ

(
x + g(x) 1√

µ

)
−Ψ(x)

]
dN1 +

[
Ψ

(
x− g(x) 1√

µ

)
−Ψ(x)

]
dN2.

(3.46)

Under the further assumption that Ψ is twice differentiable, the Taylor expansion of

Ψ(x + δ) about x for small δ = ±g(x)/
√

µ is

dΨ =
dΨ

dx
f(x) dt

+

[
Ψ(x) +

dΨ

dx

g(x)
√

µ
+

1

2

d2Ψ

dx2

g2(x)

µ
+ o(1/µ)−Ψ(x)

]
dN1

+

[
Ψ(x)− dΨ

dx

g(x)
√

µ
+

1

2

d2Ψ

dx2

g2(x)

µ
+ o(1/µ)−Ψ(x)

]
dN2
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=
dΨ

dx
f(x) dt +

dΨ

dx

g(x)
√

µ
(dN1 − dN2) +

1

2

d2Ψ

dx2

g2(x)

µ
(dN1 + dN2)

+o(1/µ) dN1 + o(1/µ) dN2,

where o(1/µ) denotes terms such that µ o(1/µ) → 0 as µ → ∞. Since E{dN1}

and E{dN2} are in fact of order µ, the last two terms vanish as µ → ∞. Using

the identifications in the previous subsection for w and z in the same limit, we have

derived a new Itô’s rule for a stochastic process driven by Brownian motion:

dΨ =
dΨ

dx
f(x) dt +

dΨ

dx
g(x) dw +

1

2

d2Ψ

dx2
g2(x) dt. (3.47)

3.4.4 Fokker-Planck Equation

Using this new Itô rule, we may now derive the forward equation for a stochastic

process driven by Brownian motion, that is, the Fokker-Planck equation. Consider

the stochastic process governed by

dx = f(x) dt + g(x) dw. (3.48)

For Ψ twice-differentiable and of compact support,

dΨ =
dΨ

dx
f(x) dt +

dΨ

dx
g(x) dw +

1

2

d2Ψ

dx2
g2(x) dt.

Now, dw has expectation 0 and is independent of x by the martingale property, so

that
d

dt
E {Ψ} = E

{
dΨ

dx
f(x)

}
+

1

2
E

{
d2Ψ

dx2
g2(x)

}
. (3.49)

Assuming that there exists a suitable ρ(t, x), the expectation may be expressed as an

integral, as before.

d

dt

∫ +∞

−∞
ρ(t, x)Ψ dx =

∫ +∞

−∞
ρ(t, x)

dΨ

dx
f(x) dx +

1

2

∫ +∞

−∞
ρ(t, x)

d2Ψ

dx2
g2(x) dx (3.50)
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Integration by parts yields

∫ +∞

−∞
Ψ(x)

∂

∂t
ρ(t, x) dx = −

∫ +∞

−∞
Ψ(x)

d

dx

[
f(x)ρ(t, x)

]
dx

+
1

2

∫ +∞

−∞
Ψ(x)

∂

∂x2

[
ρ(t, x)g2(x)

]
dx, (3.51)

because Ψ has compact support). Since expression must hold for every Ψ, it must

also hold without the integration against Ψ.

∂

∂t
ρ(t, x) = − ∂

∂x

[
f(x)ρ(t, x)

]
+

1

2

∂

∂x2

[
ρ(t, x)g2(x)

]
dx (3.52)

This is the (Itô-form) Fokker-Planck equation corresponding to the stochastic differ-

ential equation (3.48).

3.4.5 Non-Itô Fokker-Planck Equations

As there are different interpretations of the stochastic integral, as defined in Section

3.3, there are also different forms of the Fokker-Planck equation.

In particular, for the Stratonovich interpretation of the stochastic differential equa-

tion

dx = f(x) dt + g(x) dw, (3.53)

the corresponding Fokker-Planck equation is [19, 41]

∂

∂t
ρ(t, x) = − ∂

∂x

[
f(x)ρ(t, x) +

1

2
g(x)

dg(x)

dx
ρ(t, x)

]
+

1

2

∂

∂x2

[
ρ(t, x)g2(x)

]
dx. (3.54)

Note that this equation could also be obtained in the Itô interpretation for the stochas-

tic differential equation

dx =

[
f(x) +

1

2
g(x)

dg(x)

dx

]
dt + g(x) dw.
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The term 1
2
g(x)g′(x) is called the “Zakai-Wong correction term” in [16]. Other authors

[19, 41] have also given the transformation between Itô and Stratonovich stochastic

differentials. The correction term is sometimes called “spurious drift” [20], since it

adds a contribution to the drift term of the (Itô) equation, based on the form of the

noise. Note that the correction vanishes in the case that g(x) is a constant.

For the case of the “Backward integral,” there is yet another Fokker-Planck equa-

tion, derived in [42] using the same methods as above:

∂

∂t
ρ(t, x) = − ∂

∂x

[
f(x)ρ(t, x) + g(x)

dg(x)

dx
ρ(t, x)

]
+

1

2

∂

∂x2

[
ρ(t, x)g2(x)

]
dx. (3.55)

In fact, for any value of ζ, it can be shown [43] that the ζ-Fokker-Planck equation

for Eq. (3.53) is

∂

∂t
ρ(t, x) = − ∂

∂x

[
f(x)ρ(t, x) + ζ g(x)

dg(x)

dx
ρ(t, x)

]
+

1

2

∂

∂x2

[
ρ(t, x)g2(x)

]
dx. (3.56)

3.5 Brownian Motion and Jumps

Consider the stochastic differential equation driven by both white noise and a Poisson

counter,

dx = f(x) dt + g(x) dN + h(x) dw, (3.57)

where dw is Gaussian white noise, understood as the limit of the two opposed Poisson

counters, and N is a Poisson counter of rate λ.

It is a simple extension of the derivations in the previous section to show that the

forward equation for the probability distribution in this case is

∂ρ(t, x)

∂t
= − ∂

∂x
[f(x) ρ(t, x)] +

1

2

∂2

∂x2

[
h2(x) ρ(t, x)

]
+λ ρ(t, g̃−1(x)) Jg̃−1(x)− λ ρ(t, x). (3.58)
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It will be useful for the following chapter to derive the forward equation for a

special vector case:

dx = a(x) dt + b dw +
m∑

i=1

gi dNi(λi(x)), (3.59)

where w is a vector of Brownian motions. The number m of Poisson counters need not

be the same as the dimension n of the vector x. In this special case, the coefficients

of both the Brownian motions and the Poisson counter are constants. Therefore,

g̃ = x+g and Jg̃−1(x) is the identity matrix. However, the rates λi(x) of the Poisson

counters are not constant, but instead depend on a function of the present state.

The existence and uniqueness of solutions x(t) to this equation will be addressed in

Appendix C.

Itô’s rule for this SDE yields

dΨ(x) = (∇Ψ(x)) a(x) dt + (∇Ψ(x))b dw +
(
∇2Ψ(x)

)
bbT

+
n∑

i=1

[Ψ(x + gi(x))−Ψ(x)] dNi(λi(x)).

Using the Itô interpretation means that x is a martingale, and further, x is indepen-

dent of dw, which is a zero-mean random variable. Taking expectations of this last

equation does require one further trick, however.

E
{

[Ψ(x + gi(x))−Ψ(x)] dNi(λi(x)
}

= E
{[

Ψ(x + gi(x))−Ψ(x)
](

dNi(λi(x))− λi(x) dt + λi(x) dt
)}

Conditioned on the rate λi, the Poisson counters have independent increments. There-

fore, conditioned on the rate, the increment described by dNi(λi(x))−λi(x)dt is inde-

pendent of previous jumps in the process. Further, for any rate λi(x), this increment
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is zero mean,

E {dNi(λi(x))− λi(x) dt} = 0.

Since this is true for any rate λi(x), we claim that

E
{

[Ψ(x + gi(x))−Ψ(x)] dNi(λi(x))
}

= E
{[

Ψ(x + gi(x))−Ψ(x)
]
λi(x) dt

}
.

(3.60)

Note that λi(x) is inside the expectation.

Following the procedures of the previous section, we arrive at the forward equation

for the probability distribution for the system driven by both Brownian motion and

Poisson counters:

∂ρ(t,x)

∂t
= −∇T [a(x) ρ(t,x)] +

1

2

∑
i,j

∂

∂xi

∂

∂xj

(
bbT

)
ij

ρ(t,x)

+
m∑

i=1

λi(x− gi)ρ(t,x− gi)−
m∑

i=1

λi(x)ρ(t,x). (3.61)

3.6 Interpretations of the Stochastic Integral for

the Nonlinear Gaussian Model

Gaussian white noise of unlimited bandwidth is an idealization of the derivative of

Brownian motion w(t). Though dw
dτ

does not exist, (2.15) is really shorthand for

v(t) = v(0)− 1

C

∫ t

0

gT (v(τ)) dτ +
1

C

∫ t

0

hT (v(τ))
dw

dτ
dτ

= v(0)− 1

C

∫ t

0

gT (v(τ)) dτ +
1

C

∫ t

0

hT (v(τ)) dw(τ).

The second line, in which dw
dτ

does not appear, is almost a rigorous statement of the

meaning of (2.15), since v(t) and w(t) are continuous functions. But one ambiguity

remains: the interpretation of the second integral in terms of the stochastic integrals
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defined in Section 3.3. Although that section dealt with the integral

∫
w(t) dw(t),

the same problem arises for any function of Brownian motion,

∫
f(x) dw(t),

when x is a random process driven by the white noise dw(t).

For Eq. (2.15), the stochastic integral may be expressed as the summation param-

eterized by ζ,

(ζ)

∫ t

0

hT (v(τ)) dw(τ)

4
= lim

(P ) n→∞

n−1∑
i=0

[
(1− ζ) hT

(
v

(
it

n

))
+ ζ hT

(
v

(
(i + 1)t

n

))]
×

[
w

(
(i + 1)t

n

)
− w

(
it

n

)]
, (3.62)

as shown in Section 3.3 for a simpler integral. The literature is primarily concerned

with two interpretations for the above equation: the Itô or stochastic integral (ζ = 0)

and the Stratonovich integral (ζ = 1/2). The Itô approach yields a non-anticipating

martingale [16]. The Stratonovich approach is obtained by considering mathematical

limits of idealized physical systems. Rationalization for the other values of ζ is not

clear.

When the stochastic differential equation (2.15) is interpreted in a more general

sense for any ζ as an integral equation

v(t) = v(0)− 1

C

∫ t

0

gT (v(τ)) dτ +
1

C
(ζ)

∫ t

0

hT (v(τ)) dw(τ),

and when the functions gT and hT and their derivatives are continuous and satisfy
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Lipschitz conditions (found in [30]), it can be shown [42, 43] that the corresponding

Fokker-Planck equation is

∂ρ

∂t
=

∂

∂v

{
gT (v)

C
ρ(v, t)− ζhT (v)ρ(v, t)

C2

∂

∂v
hT (v) +

1

2

∂

∂v

[
h2

T (v)

C2
ρ(v, t)

]}
, (3.63)

which simplifies to (2.16) or (2.17), respectively, in the Itô and Stratonovich cases.

Although the rational and physical justification for other values of ζ are unclear,

one specific value weakens the conclusion in Section 2.4. For ζ = 1, which yields a

“Backwards integral” [16], there is a second form of solution to (2.19):

h2
T (v) = 2kT

gT (v)

v
, (3.64)

a unique noise amplitude determined solely by the resistor constitutive relation, again

independent of C. Note that it reduces to the Nyquist-Johnson model in the case of

a linear resistor.

3.6.1 Entropy for ζ = 1

In Chapter 2, we did not check the entropy rate of the nonlinear Gaussian model for

compliance with Thermodynamic Requirement #3, since the model did not satisfy

the second Requirement of the Gibbs distribution. For completeness, we should check

the entropy for the ζ = 1 Fokker-Planck equation.

The nonlinear Gaussian model is constructed in voltage rather than charge. Cor-

responding to Eq. (2.8), the capacitor entropy rate in voltage is

ṠC = −k

∫ +∞

−∞
ρ̇v ln ρv dv. (3.65)



3.6. INTERPRETATIONS OF THE STOCHASTIC INTEGRAL 83

The reservoir entropy rate, corresponding to Eq. (2.9) is

ṠR = − 1

T

∫ +∞

−∞
EC(v) ρ̇v dv. (3.66)

The total entropy rate is the sum of the last two equations, but we will substitute

Eq. (3.63) for ρ̇v and then integrate by parts.

Ṡtot = −
∫ +∞

−∞

(
k ln ρv +

EC(v)

T

)
ρ̇v dv

= −
∫ +∞

−∞

(
k ln ρv +

Cv2

2T

)
∂

∂v

{
gT (v)

C
ρv −

ζhT (v)ρv

C2

∂

∂v
hT (v)

+
1

2

∂

∂v

[
h2

T (v)

C2
ρv

]}
dv

=

∫ +∞

−∞

(
k

1

ρv

∂ρv

∂v
+

Cv

T

) {
gT (v)

C
ρv −

ζhT (v)ρv

C2

∂

∂v
hT (v)

+
hT (v) ρv

C2

∂hT (v)

∂v
+

h2
T (v)

C2

∂ρv

∂v

}
dv

=

∫ +∞

−∞

(
k

1

ρv

∂ρv

∂v
+

Cv

T

) {
gT (v)

C
ρv + (1− ζ)hT (v)

hT (v)ρv

C2

∂

∂v
hT (v)

+
h2

T (v)

C2

∂ρv

∂v

}
dv

It is not obvious whether this is nonnegative for arbitrary values of ζ. Since the

nonlinear Gaussian model has the correct equilibrium density only when ζ = 1 and

h2(v) = 2kTg(v)/v, let us proceed with that value of ζ.

Ṡtot =

∫ +∞

−∞

(
k

1

ρv

∂ρv

∂v
+

Cv

T

) {
gT (v)

C
ρv +

2kTg(v)

v C2

∂ρv

∂v

}
dv

=

∫ +∞

−∞

(
k

1

ρv

∂ρv

∂v
+

Cv

T

) [
g(v)

v

T

C2
ρv

](
Cv

T
+

k

ρv

∂ρv

∂v

)
dv

=

∫ +∞

−∞

[
g(v)

v

T

C2
ρv

](
Cv

T
+

k

ρv

∂ρv

∂v

)2

dv (3.67)

Since the device is passive, g(v)/v > 0 for v 6= 0, and hence the integrand is always
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+
−

−

+

+

−

k(i, T ) ξ(t)

vr = r(i)

vL = Ldi
dt

i

Figure 3-2: Voltage-noise source with inductor

nonnegative. Thermodynamic Requirement #3 is satisfied for the nonlinear Gaussian

model with ζ = 1.

3.6.2 Nonlinear Gaussian Model with an Inductor

Unfortunately, testing the Thermodynamic Requirements for a capacitor load is not

sufficient to prove that a noise model is valid. If one instead considers the nonlinear

resistance in a circuit with an inductor, one gets an incompatible variance for the

white noise voltage.

The differential equation governing the circuit in Fig. 3-2 is

di

dt
= −r(i)

L
+

k(i, T )

L
ξ(t). (3.68)

The Fokker-Planck equation with the Zakai-Wong correction states

∂ρ(i, t)

∂t
=

∂

∂i

{
r(i)

L
ρ(i, t)− ζk(i, T )

L2
ρ(i, t)

∂k(i, T )

∂i
+

1

2

∂

∂i

[
k2(i, T )

L2
ρ(i, t)

]}
. (3.69)

Thermodynamic Requirement #2 states that the the equilibrium density is Gibbs
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distribution in terms of inductor energy as a function of current:

ρeq(i) =
exp

(
− Li2

2kT

)
√

2πkT/L
.

Again, the term in braces in (3.69) must vanish identically at equilibrium:

0 =
r(i)

L
− ζ

2L2

∂k2(i, T )

∂i
+

1

2L2

∂k2(i, T )

∂i
+

k2(i, T )

2L2

(
−Li

kT

)
.

Corresponding to (2.19), we get

(ζ − 1)
∂k2(i, T )

∂i
= 2Lr(i)− Li

kT
k2(i, T ).

The voltage noise source cannot know the value of the inductor, so both sides must

equal zero. From the right hand side, we get

k2(i, T ) =
2kTr(i)

i
. (3.70)

If ζ is arbitrary, the resistor must be linear, as before, and

∂k2(i, T )

∂i
= 0 ⇒ k2(i, T ) = 2kTR.

If ζ = 1, we are again considering the Backward integral, and we get a unique

noise amplitude (3.70) for each constitutive relation r(i) for the nonlinear resistor.

Similar calculations can be performed on the Hamiltonian system consisting of a

linear capacitor and inductor with the nonlinear resistance, either all in parallel and

with a current noise source, or all in series with a voltage noise source. The state

space is now two dimensional, so the calculations are more complex, but the result is

the same: for a voltage noise source, one obtains (3.64) and for a current noise source

one obtains (3.70). However, this voltage noise amplitude does not correspond to the
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v

ii

v

Figure 3-3: Fluctuations

result obtained for the parallel current noise course. Consider biasing the device at

a certain voltage and current combination. If we bias at constant voltage we observe

current fluctuations. If we bias at constant current, we see voltage fluctuations, which

in turn give rise to current fluctuations through the resistor. Since the internal state

of the nonlinear device is the same whether we specify the voltage or current (for

a monotone v − i curve), we require these fluctuations to be equivalent. Consider

Fig. 3-3. The equations corresponding to this requirement are as follows:

∆v
di

dv
= ∆i ⇒

k(i, T )
di

dv
= h(v, T ) ⇒

√
2kT

r(i)

i

di

dv
=

√
2kT

g(v)

v
⇒

di

dv
=

i

v
.

The only device for which di/dv = i/v around every operating point is the linear

resistor. We interpret this to mean that the Gaussian noise model does not give us a

correct noise amplitude for any nonlinear device.



3.7. CONVERGENCE OF POISSON TO GAUSSIAN 87

3.7 Convergence of Poisson to Gaussian

This section is motivated by the appearances of the formula

Sii(ω; T, V ) =
2kT g(V )

V
(3.71)

in two different situations.

First, for a nonlinear Gaussian model, if the white noise is scaled by the amplitude

hT (v) =
√

2kTg(v)/v

and the ζ = 1 Fokker-Planck equation is used, then the model satisfies the thermo-

dynamic requirements and has the power spectral density (3.71) when the voltage is

held constant.

Second, in the Poisson model, where

Sii(ω; T, V ) =
e g(V )

tanh(eV/kT )
,

the limit as the electron size e → 0 yields again (3.71) by l’Hôpital’s rule. Section 2.6

showed this to be true for a linear resistor, but it holds more generally.

This “coincidence” will be investigated in two ways: first, from the limiting behav-

ior of the charge random process at a fixed voltage V ; and second, from the limiting

behavior of the forward equation for the probability density. The fact that Brownian

motion was obtained as the limit of Poisson counters further encourages us in this

approach.

3.7.1 The Random Process

The goal of this section is to investigate the random process of the total charge

emitted by the Poisson device. Does it become a Brownian motion in the limit that
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the electron charge goes to zero?

The Poisson model has two oppositely directed Poisson counters with rates

λf = fT (v) λr = rT (v),

which depend on the temperature and instantaneous applied voltage. The device

constitutive relation is

g(v) = i(v) = e [fT (v)− rT (v)] . (3.72)

The thermodynamic requirement is

fT (v)

rT (v)
= exp(ev/kT ) = exp(v/vT ). (3.73)

By using (3.73), one may solve for the forward and reverse rates in terms of the

constitutive relation:

rT (v) =
g(v)

e [exp(ev/kT )− 1]
(3.74)

fT (v) =
g(v)

e [1− exp(−v/vT )]
. (3.75)

For small e, one can expand the exponentials (ex = 1 + x + x2/2 + . . .) and the

reciprocal (1/(1 + x) = 1− x + x2 + . . .) in both of these last two equations.

rT (v) =
g(v)

e [(1 + ev/kT + (ev/kT )2/2 + . . .)− 1]

=
g(v)

e2

kT

v

[
1− 1

2

ev

kT
+

1

12

( ev

kT

)2

− 1

720

( ev

kT

)4

+ . . .

]
fT (v) =

g(v)

e [1− (1− ev/kT + (ev/kT )2/2 + . . .)]

=
g(v)

e2

kT

v

[
1 +

1

2

ev

kT
+

1

12

( ev

kT

)2

− 1

720

( ev

kT

)4

+ . . .

]
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Note that

fT (v)− rT (v) =
g(v)

e2

kT

v

[ ev

kT

]
=

g(v)

e
,

because the other terms cancel exactly.

However,

fT (v) + rT (v) =
g(v)

e2

kT

v

[
2 +

2

12

( ev

kT

)2

− 2

720

( ev

kT

)4

+ . . .

]
,

so that

e2 [fT (v) + rT (v)] =
2kT g(v)

v
(3.76)

is only exact for e = 0.

Now let us consider, at a fixed voltage V , the random process defined by

i = dq = e [dNf − dNr] , (3.77)

where Nf and Nr are a Poisson processes with rates fT (V ) and rT (V ), respectively.

Then,
d

dt
E{q} = e [fT (V )− rT (V )] = g(v) (3.78)

so that

E{q(t)} = E{q(0)}+ g(V )t. (3.79)

Since, for fixed V , the processes Nf and Nr are independent, one adds their variances

(and scales by e2) to find the variance of q = e[Nf −Nr].

Var{q(t)} = Var{q(0)}+ e2 [fT (V ) + rT (V )] t (3.80)

= Var{q(0)}+ 2kT
g(V )

V

[
1 +

1

12

(
eV

kT

)2

− 1

720

(
eV

kT

)4

+ . . .

]
t (3.81)

The process M e(t) = q(t)− E{q(t)} is zero mean, and has a variance that grows

linearly with t, for all values of e. Because the Poisson counters have independent
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increments, w(t) does as well. Unfortunately, Brownian motion is continuous, whereas

M e(t) is not continuous for any e > 0, so that we need the following martingale

convergence theorem from Karr [44] to show that M e(t) has a limit as e → 0 that is

a continuous martingale.

Theorem 5.10 [44]. Let M1, M2, . . . be mean zero square integrable mar-

tingales and let v be a continuous nondecreasing function on [0, 1] with

v0 = 0. Suppose that

a) For each t, 〈Mn〉t
d→ vt;

b) There are constants cn ↓ 0 such that

lim
n→∞

P

{
sup
t≥1

|∆Mn
t | ≤ cn

}
= 1.

Then there exists a continuous Gaussian martingale M , with 〈M〉t = vt

for all t, such that Mn d→ M on the function space D[0, 1].

If we choose e = cn = 1/n (and let Var{q(0)} = 0), then

vt = 2kT
g(V )

V
t.

For a fixed voltage V , the rates rT (V ) and fT (V ) are constant, and the quadratic (or

predictable) variation [44, p. 417] is

〈M e〉t = e2 [fT (V ) + rT (V )] t.

Thus, applying the theorem to our case, the sequence of martingales M e converges to

a Gaussian martingale M over [0, 1] (and hence, presumably, over any finite interval).

Now, since M is a continuous zero-mean martingale with variance growing linearly

with time, it is necessarily a scaled Brownian motion by a theorem of Doob [45,

Thm. 11.9].
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3.7.2 The Forward Equation

The goal of this section will be to show that, for a circuit consisting of a linear capac-

itor driven by a noisy nonlinear device, the forward equation for the Poisson process

description converges to the Fokker-Planck equation for a Gaussian description as the

size of the Poisson jumps grows smaller.

Consider the forward equation

∂ρ(t, q)

∂t
= fT (vα(q + e)) ρ(t, q + e) + rT (vβ(q − e)) ρ(t, q − e)

−fT (vα(q)) ρ(t, q)− rT (vβ(q)) ρ(t, q). (3.82)

As e → 0, we would like to see this become some sort of Fokker-Planck equation. The

idea is to use the definition of derivative to replace the expressions on the right-hand

side.

The centered approximation for the first derivative is

dh

dx
= lim

e→0

h(x + e)− h(x− e)

2e
,

and the usual formula for the second derivative is

d2h

dx2
= lim

h→0

h(x + e)− 2h(x) + h(x− e)

e2
.

Because of the differences among vα, vβ, and v, we need to evaluate the rates at the

“average” voltage between the state we are leaving and the state we are going to. For

a circuit with a single linear capacitor, the voltages in (3.82) are

vα(q + e) = vβ(q) =
q + e/2

C
(3.83)

vα(q) = vβ(q − e) =
q − e/2

C
. (3.84)
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So, by Taylor expansion,

fT (vα(q + e)) = fT

(
q + e/2

C

)
= fT

(
q + e

C

)
− e

2C
f ′T

(
q + e

C

)
.

We need to express all the derivatives in terms of d/dq:

dfT

dq
=

dfT

dv

dv

dq
= f ′T

1

C
,

since v = q/C. Finally, we have

fT (vα(q + e)) = fT

(
q + e

C

)
− e

2

dfT

dq
, (3.85)

and similarly for the other terms.

If we plug these first-order expansions into the forward equation (3.82), we arrive

at

∂ρ(t, q)

∂t
=

[
fT (v(q + e))− e

2

dfT (v(q + e)

dq

]
ρ(t, q + e)

+

[
rT (v(q − e)) +

e

2

drT (q − e)

dq

]
ρ(t, q − e)

−
[
fT (v(q)) +

e

2

dfT (v(q))

dq

]
ρ(t, q)−

[
rT (v(q)) +

e

2

drT (v(q))

dq

]
ρ(t, q)

= fT (v(q + e)) ρ(t, q + e) + rT (v(q − e)) ρ(t, q − e)

−
[
fT (v(q)) + rT (v(q))

]
ρ(t, q)

+
e

2

[
− dfT

dq

∣∣∣∣
q+e

ρ(t, q + e) +
dfT

dq

∣∣∣∣
q

ρ(t, q)

+
drT

dq

∣∣∣∣
q−e

ρ(t, q − e)− drT

dq

∣∣∣∣
q

ρ(t, q)

]
.
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Now, using the centered derivative expressions, we obtain

∂ρ(t, q)

∂t
=

∂

∂q

[
e
(
fT (v(q))− rT (v(q))

)
ρ(t, q)

]
+

1

2

∂2

∂q2

[
e2

(
fT (v(q)) + rT (v(q))

)
ρ(t, q)

]
+

e

2

[
− dfT

dq

∣∣∣∣
q+e

ρ(t, q + e) +
dfT

dq

∣∣∣∣
q

ρ(t, q)

+
drT

dq

∣∣∣∣
q−e

ρ(t, q − e)− drT

dq

∣∣∣∣
q

ρ(t, q)

]
.

The terms in the second line are non-centered derivative formulas

dfT

dq

∣∣∣∣
q+e

ρ(t, q + e)− dfT

dq

∣∣∣∣
q

ρ(t, q) =
∂

∂q

(
dfT

dq
ρ(t, q)

)

(and similarly for drT /dq). It is not clear why these can be applied in this case;

perhaps further Taylor expansions of fT (vα(·)) would allow use of centered formulas.

In any case, by substituting these in, we get

∂ρ(t, q)

∂t
=

∂

∂q

[
e
(
fT (v(q))− rT (v(q))

)
ρ(t, q)

]
+

1

2

∂2

∂q2

[
e2

(
fT (v(q)) + rT (v(q))

)
ρ(t, q)

]
+

e2

2

[
− ∂

∂q

(
dfT

dq
ρ(t, q)

)
− ∂

∂q

(
drT

dq
ρ(t, q)

)]

=
∂

∂q

[
e
(
fT (v(q))− rT (v(q))

)
ρ(t, q)

]
+

1

2

∂2

∂q2

[
e2

(
fT (v(q)) + rT (v(q))

)
ρ(t, q)

]
−1

2

∂

∂q

(
d[e2(fT + rT )]

dq
ρ(t, q)

)
.
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Now, we are ready to apply (3.72) and (3.76).

∂ρ(t, q)

∂t
=

∂

∂q

[
g(v(q)) ρ(t, q)

]
+

1

2

∂2

∂q2

[
2kT

g(v(q))

v(q)
ρ(t, q)

]
−1

2

∂

∂q

[
∂

∂q

(
2kT

g(v(q))

v(q)

)
ρ(t, q)

]

This is the (ζ = 1)-FPE.

3.7.3 Summary of Convergence Issues

In the limit that the electron charge goes to zero, the Poisson noise model no longer

depends on the load. The rates of the Poisson counters depend on the average voltage

(3.84) before and after a jump of one electron, but these voltages are the same if

the electron charge is infinitesimal. This limit of the model yields the same circuit

equations as the nonlinear Gaussian model for ζ = 1. Unfortunately, Section 3.6.2

showed that, even for ζ = 1, the Gaussian model still cannot be considered as a useful

model for nonlinear devices because, when the device is biased at a fixed current, the

model predicts an noise amplitude that is incompatible with the prediction when the

device is biased at a fixed voltage. It is impossible to test the prediction of the Poisson

model at a constant current, because this would create a cutset of current sources, in

violation of the rules of circuit theory.

3.8 Final Thoughts

This chapter has presented a great deal of mathematics. It is hoped that the reader

obtained some insight into stochastic differential equations and the Fokker-Planck

equation. If not, at least the difficult derivations are now out of the way, and we may

proceed to use the results in the following chapters.



Chapter 4

A Lossless Multiport Driven by the

Shot-Noise Model and

Nyquist-Johnson Resistors

4.1 Introduction

This chapter generalizes the tests of Chapter 2 for circuits driven by noise. The

template for these generalization is [9], which considered the Nyquist-Johnson noise

model driving a general lossless network. This chapter will feature both the Nyquist-

Johnson Gaussian model and the shot-noise Poisson model in the same circuit, driving

a multiport inductor and a multiport capacitor.

Other extensions are found in [46, 47]. These papers present specific examples

such as a diode driving a time-varying capacitor; a diode driving a parallel inductor-

capacitor combination; and a parallel circuit consisting of a resistor and a diode

driving a capacitor and an inductor. These examples are special cases of the for-

mulation of this chapter. The reader who finds the mathematics in this chapter too

daunting or dry may prefer these specific examples.

95
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M
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Figure 4-1: Three noise models driving a multiport capacitor and a multiport inductor
through a linear, lossless, memoryless interconnection box.

The time-varying capacitor in [46] is used to show that work may be extracted from

a heat engine consisting of two nonlinear resistors. A direct result of the increasing

entropy for this circuit is that the efficiency of this heat engine is bounded by the

Carnot efficiency. This argument is not reproduced here.

The circuit for consideration is shown in Fig. 4-1, where M is a linear, lossless,

and memoryless interconnection box that may contain transformers or gyrators. It

connects the three types of noisy devices to a multiport inductor and a multiport

capacitor. The resistor box N consists of Norton-form resistors, and the box T consists

of Thévenin-form.

The following equation describes the box:

iC

vL

vd

vn

it


=



A B D J K

−BT F H P Q

−DT −HT 0 S U

−JT −PT −ST W X

−KT −QT −UT −XT Y





vC

iL

id

in

vt


(4.1)

The entire matrix must be antisymmetric because the box is lossless, giving rise to

the structure and constraining A, F, W, and Y to be antisymmetric, as well. The
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(3,3) entry need only be antisymmetric for a lossless box; however, we also need to

rule out the delta-functions of current from one shot-noise device being “gyrated”

into voltages for other devices. The (voltage-dependent) rates are only defined for

finite voltages. The other matrices on the diagonal can be non-zero, however, for

multiports containing transformers and gyrators.

If the multiport is reciprocal, then many of the submatrices must be zero: A, F,

H, K, P, S, W, and Y. There are no gyrators to convert voltages to currents or

vice-versa. In this case, the matrix equation is

iC

vL

vd

vn

it


=



0 B D J 0

−BT 0 0 0 Q

−DT 0 0 0 U

−JT 0 0 0 X

0 −QT −UT −XT 0





vC

iL

id

in

vt


The matrix formulation of Eq. (4.1) rules out some circuits. In particular, it

forbids non-controllable circuits, such as those containing capacitor loops or inductor

cutsets. Further, an inductor may not be in series with a shot-noise device, because

this would constrain their currents to be equal, rather than independent variables. A

specific example is the series diode-LC circuit. In such a circuit, all three elements

have the same current flowing through them, so there is only one independent current

variable, whereas the equations show two (iL and id). A similar problem would occur

with a capacitor voltage and a “gyrated” diode current.

We choose as independent variables id, in, and vt, because these variables con-

tain stochastic terms. The diode currents are random impulses of current. The

Norton-form resistors in box N have current noise sources, whereas the Thévenin-

form resistors T have voltage noise sources.

Since iL and vC are independent variables, they do not have delta-functions
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“forced” through them by the multiport interconnection; hence it is safe to differ-

entiate these quantities to generate the dynamics of the circuit (iC = C dvC/dt and

vL = L diL/dt for linear devices). It is fortuitous that the formulation rules out this

circuit, because differentiating the delta-functions of current from the diodes would

produce doublets in the inductor voltages or capacitor currents.

Hence, our choice of representation seems to have ruled out all of the pathologies

that we need to rule out for simple interconnections.

In principle, one does not need two forms for the simple linear resistor, since they

are indistinguishable at their ports. However, once we have chosen the independent

variables in and vt, it is most convenient for the matrix representation (4.1) to use

the Thévenin form for resistors that are connected to voltage-controlled ports and the

Norton form for those connected to current-controlled ports. Consider the following

two examples. In Fig. 4-2 (a), a Thévenin form resistor is connected to a capacitor.

KVL constrains vt = vC , but this resistor model has vt as the independent variable

and we have chosen vC as an independent state variable. Hence, for an RC loop, it is

easier to use the Norton model. In Fig. 4-2 (b), a Norton form resistor is connected to

an inductor. KCL constrains in = iL, but this resistor model has in as the independent

variable and we have chosen iL as an independent state variable. Hence, for an RL

loop, we prefer the Thévenin model. The solution presented in this paper assumes

that the Norton model is used for resistors that drive current-controlled ports and the

Thévenin model for resistors that drive voltage-controlled ports of the interconnection

box M. The solution in [9] does not properly point out that for the circuit of Fig. 4-2

(b), a further step is necessary to convert the noise current into a voltage.

4.2 The Forward Equation

The matrix representation from the previous section is a stochastic differential equa-

tion (SDE). In the most general case, the capacitors and inductors may be nonlinear,
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+
−

(a) (b)

Figure 4-2: Linear resistors in inconvenient circuits

in which case it is best to choose the capacitor charge q and inductor flux φ as state

variables.

iC =
dq

dt
and vL =

dφ

dt

Using these relations in the matrix equation (4.1), the corresponding state evolution

equation is

d

 q

φ

 =

 A B

−BT F

 vC

iL

 dt +

 D

H

 id dt +

 J K

P Q

 in

vt

 dt.(4.2)

Using the differential form (3.33) for stochastic differential equations driven by Pois-

son counters, the shot-noise model for the diodes states

id = e {dNf (vd)− dNr (vd)} , (4.3)

where Nf is a vector of forward currents (each of which only depends on its own

voltage for our diode model, but the notation is already very cumbersome), and Nf

is a vector of reverse currents. The voltage vd is given by the third row of the matrix
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equation (4.1),

vd = −
[

DT HT

]  vC

iL

 +
[

S U
]  in

vt

 . (4.4)

For the resistors, using the reference directions in Fig. 4-1, we have

in = G vn − ξn (4.5)

vt = R it + ξt, (4.6)

where G is a diagonal matrix of the conductances of the Norton-form resistors, R

is the diagonal matrix of the resistances of the Thévenin-form resistors, and the ξ

terms are vectors of Gaussian white-noise sources with the appropriate power spectral

densities. Then, using the last two rows of the matrix equation (4.1), we can solve

for in

vt

 =

I−

 G 0

0 R

 W X

−XT Y

−1

×


 G 0

0 R


−

 J P

K Q

T  vC

iL

 +

 −ST

−UT

 id

 +

 −ξn

ξt


 .(4.7)

Unfortunately, it does not seem possible to invert both sets of equations for the

diodes and the resistors. Ideally, we need to rewrite (4.3) and (4.7) so that they

depend only on the state variables vC and iL. But we are stuck with in and vt inside

the Poisson counter arguments.

A greater concern is guaranteeing that the diode voltages are always finite. At any

instant that a Poisson counter fires, causing a delta-function of current in some diode,

this current could (depending on ST and UT ) potentially cause a delta-function of

current in or voltage vt in (4.7), which could (depending on S and U) then feed back
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into the diode voltage in (4.4). (In fact, by writing out a few equations, one sees

that for any i, j such that Sjk 6= 0, diode current idj
will cause delta-functions in ink

and therefore vdj
; similarly for Ujk 6= 0.) We do not allow singular voltages for the

forward and reverse rates of the Poisson counters, so we must constrain S = 0 and

U = 0. This is sufficient to allow us to proceed.

One further remark, though, at this point: it would make some physical sense to

insist that every diode have a capacitor connected across its terminals, corresponding

to the junction capacitance of the diode. The capacitor would integrate the current

out of the diodes and ensure a finite (if discontinuous) voltage. However, we need

not make this restriction, corresponding to H = 0, and our Poisson model might in

fact be used for some nonlinear device other than a diode. The H matrix gyrates an

inductor current into a diode voltage; the capacitor voltages and inductor currents

are the “smoothest” quantities in the circuit, so it is physically sensible to require

that the diode voltage depend only on some linear combination of these quantities.

Under the constraints S = 0 and U = 0, we can return to the stochastic differential

equation (SDE) formulation (4.2)

d

 q

φ

 =

 A B

−BT F

 vC

iL

 dt

+

 D

H

 e

dNf

[
−DT −HT

]  vC

iL


−dNr

[
−DT −HT

]  vC

iL


+

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1

×
{ G 0

0 R

 −JT −PT

−KT −QT

 vC

iL

 dt (continued)
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+

 √
2kTG 0

0
√

2kTR

 −dwn

dwt

}

=


 A B

−BT F

 +

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1

×

 G 0

0 R

 −JT −PT

−KT −QT

}  vC

iL

 dt

+

 D

H

 e

dNf

[
−DT −HT

]  vC

iL


−dNr

[
−DT −HT

]  vC

iL


+

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1

×

 √
2kTG 0

0
√

2kTR

 −dwn

dwt

 , (4.8)

where by
√

2kTG we mean
√

2kT G1/2, and the matrix square-root is well-defined,

because G and R are positive diagonal matrices.

In the nonlinear case, the capacitor voltage and inductor current may be expressed

in terms of the stored energies as

vC = ∇qEC(q,qin)
∆
= f(q,qin) (4.9)

iL = ∇φEL(φ, φin)
∆
= h(φ, φin), (4.10)
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where φin and qin are inputs to the system. Using these definitions,

d

 q

φ

 =


 A B

−BT F

 +

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1

×

 G 0

0 R

 −JT −PT

−KT −QT

}  f(q,qin)

h(φ, φin)

 dt

+

 D

H

 e

dNf

[
−DT −HT

]  f(q,qin)

h(φ, φin)


−dNr

[
−DT −HT

]  f(q,qin)

h(φ, φin)


+

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1

×

 √
2kTG 0

0
√

2kTR

 −dwn

dwt

 (4.11)

For a stochastic differential equation of the form

dx = a(x) dt + b dw +
m∑

i=1

gi dNi(λi(x)),

where a is a vector, b is a matrix, dw is a vector of unit-variance Gaussian white

noises, gi are constant vectors, and Ni are Poisson counters with (state-dependent)

rates λi, it was shown in Section 3.5 that the forward equation is given by Eq. (3.61),

namely,

∂ρ(x, t)

∂t
= −∇T [a(x) ρ(t,x)] +

1

2

∑
i,j

∂

∂xi

∂

∂xj

(
bbT

)
ij

ρ(t,x)

+
m∑

i=1

λi(x− gi)ρ(x− gi, t)−
m∑

i=1

λi(x)ρ(x, t)
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where ∇T = [∂/∂x1, ∂/∂x2, . . .] is a vector of partial derivatives with respect to all

the variables and
(
bbT

)
ij

is the (i,j)-th element of the matrix. It will be useful for

the remainder of this chapter to write a vector form for the term containing bbT ;

note that this matrix does not depend on x.

∑
i,j

∂

∂xi

∂

∂xj

(
bbT

)
ij

ρ(t,x) =
∑
i,j

(
bbT

)
ij

∂

∂xi

∂

∂xj

ρ(t,x) = ∇TbbT∇ρ(t,x)

where both ∇T and ∇ are understood to operate on ρ(t,x). Because of the linear

algebra identity xTMy = tr
{
MyxT

}
, where tr{} is the trace operator, this can also

be expressed as

∇TbbT∇ρ(t,x) = tr
{
bbT∇∇T ρ(t,x)

}
For the case of Eq. (4.11),

a(q, φ) =


 A B

−BT F

 +

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1

×

 G 0

0 R

 −JT −PT

−KT −QT

}  f(q,qin)

h(φ, φin)

 (4.12)

and

b =

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  √
2kTG 0

0
√

2kTR

 (4.13)

(Note: “elements” of these matrices are, in general, matrices as well; for example, the

(1,1) element of b has the same dimensions as J.) Also, the constant vectors in front

of the Poisson counters are

gi = ±

 D

H

 e

where the sign depends on whether the particular counter Ni is a forward or reverse
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counter. Therefore, the forward equation for Eq. (4.11) is

d

dt
ρ(t,q, φ)

= −
[
∇T

q ,∇T

φ

] [
a(q, φ) ρ(t,q, φ)

]
+

1

2

[
∇T

q ,∇T

φ

]
(bbT )

 ∇q

∇T

φ

 ρ(t,q, φ)

+

nd∑
i=1

λfi
(ṽ+

i ) ρ(q− e Di, φ− e Hi)−
nd∑
i=1

λfi
(v+

i ) ρ(t,q, φ)

+

nd∑
i=1

λri
(ṽ−i ) ρ(q + e Di, φ + e Hi)−

nd∑
i=1

λri
(v−i ) ρ(t,q, φ) (4.14)

In this equation, λfi
is the rate of the i-th forward Poisson process (similarly for λri

),

dNfi
(vi)

dt
= λfi

(v+
i )

dNri
(vi)

dt
= λri

(v−i ) (4.15)

and these rates depend on the “effective” voltages, defined as

v+
i

∆
= the effective voltage on the i-th diode when the state

jumps from (q, φ) to (q + eDi, φ + eHi) (4.16)

v−i
∆
= the effective voltage on the i-th diode when the state

jumps from (q, φ) to (q− eDi, φ− eHi) (4.17)

ṽ+
i

∆
= the voltage for a jump from (q̃− eDi, φ̃− eHi) to (q̃, φ̃) (4.18)

ṽ−i
∆
= the voltage for a jump from (q̃ + eDi, φ̃ + eHi) to (q̃, φ̃) (4.19)

The exact form of these voltages will be given later.
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4.3 Equilibrium Density

Given the forward equation (4.14), the first question to be answered is: what is the

equilibrium density? Thermodynamic Requirement #2 states it must be the Gibbs

density:

ρeq(q, φ) = A exp [−ELC(q, φ)/kT ] , (4.20)

where ELC is the energy stored in the capacitors and inductors, and A serves to

normalize the equation [10, 11, 23].

Ref. [9] does not explicitly show this for the general linear resistor case, and the

matrices here are considerably different from that paper, so it should be verified

explicitly that this distribution is an equilibrium. The two drift terms of the first

line of (4.14) tend to concentrate the density at the origin. This is balanced by the

diffusion terms on the second line. The four jump terms also affect the distribution,

but whether they concentrate or spread it is determined by the rates λfi
and λri

.

4.3.1 Drift Terms

The drift terms of the forward equation (4.14) are

−
[
∇T

q ,∇T

φ

] [
a(q, φ) ρeq(q, φ)

]
, (4.21)

where a is defined in Eq. (4.12) and is quite complicated. The first term,

 A B

−BT F

 ,

which describes noiseless transfer of energy between the inductors and capacitors, will

vanish because of its antisymmetry and the reciprocity of the inductor and capacitor
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(required by losslessness).

[
∇T

q ,∇T

φ

]  A B

−BT F

 f(q,qin) ρeq(q, φ)

h(φ, φin) ρeq(q, φ)


= ∇T

qAf(q,qin)ρeq(q, φ) +∇T
qBh(φ, φin)ρeq(q, φ)

−∇T

φBT f(q,qin)ρeq(q, φ) +∇T

φFh(φ, φin)ρeq(q, φ)

= ∇T
qAf(q,qin)ρeq(q, φ) + Bh(φ, φin)∇T

qρeq(q, φ)

−BT f(q,qin)∇T

φρeq(q, φ) +∇T

φFh(φ, φin)ρeq(q, φ)

= ∇T
qAf(q,qin)ρeq(q, φ) +∇T

φFh(φ, φin)ρeq(q, φ), (4.22)

where the last equality follows because

∇q ρeq(q, φ) = ρeq(q, φ)

(
−∇qELC

kT

)
=
−f(q,qin)

kT
ρeq(q, φ) (4.23)

∇φ ρeq(q, φ) = ρeq(q, φ)

(
−∇φELC

kT

)
=
−h(φ, φin)

kT
ρeq(q, φ), (4.24)

by the definitions of the storage element constitutive relations, Eqs. (4.9) and (4.10).

Of course, if A = 0 and F = 0 (which corresponds to there being no gyrators in

the interconnection box), then the two remaining terms vanish. However, in general,

A and F are only assumed antisymmetric. Writing out terms of the second inner

product of Eq. (4.22),

∂

∂φi

Fij gj(φ, φin) ρeq(q, φ) +
∂

∂φj

Fji gi(φ, φin) ρeq(q, φ) = 0, for i 6= j. (4.25)

By antisymmetry, Fij = −Fji (and hence Fii = 0). Further, Fij is a constant and has
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no effect on the derivative, so we can factor it out.

0
?
=

∂

∂φi

[gj(φ, φin) ρeq(q, φ)]− ∂

∂φj

[gi(φ, φin) ρeq(q, φ)]

=
∂gj(φ, φin)

∂φi

ρeq(q, φ) + gj(φ, φin)
∂ρeq(q, φ)

∂φi

−
[
∂gi(φ, φin)

∂φj

ρeq(q, φ) + gi(φ, φin)
∂ρeq(q, φ)

∂φj

]
=

[
∂gj(φ, φin)

∂φi

− ∂gi(φ, φin)

∂φj

]
ρeq(q, φ), (4.26)

where the last equality follows by application of (4.24) expressed component-wise.

The factor [
∂gj(φ, φin)

∂φi

− ∂gi(φ, φin)

∂φj

]
(4.27)

tests reciprocity of the multiport inductor, and a lossless inductor must in fact be

reciprocal. Hence, this factor is zero, and we have verified (4.26).

Similarly,

∂

∂qi

Aij fj(q,qin) ρeq(q, φ) +
∂

∂qj

Aji fi(q,qin) ρeq(q, φ) = 0, for i 6= j, (4.28)

because the multiport capacitor is also lossless and reciprocal.

The remaining term of Eq. (4.21), a complicated product, is not so simple to

analyze. In particular, it is unclear how to calculate the inverse, since the submatrices

need not have the same dimensions. Let us define

ã
∆
= −

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

 JT PT

KT QT

 f(q,qin)

h(φ, φin)

 (4.29)
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Then the non-zero drift terms are

−
[
∇T

q ,∇T

φ

] [
ã(q, φ) ρeq(q, φ)

]
=

[
∇T

q ,∇T

φ

]  J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

 JT PT

KT QT

 f(q,qin)

h(φ, φin)

 ρeq(q, φ). (4.30)

Some similar factors appear in the diffusion terms.

4.3.2 Diffusion Terms

The diffusion terms of the forward equation (4.14) are

1

2

[
∇T

q ,∇T

φ

]
(bbT )

 ∇q

∇T

φ

 ρeq(q, φ), (4.31)

where b is defined in Eq. (4.13). Let us compute the matrix (bbT ).

(bbT ) =

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  √
2kTG 0

0
√

2kTR


×

 √
2kTG 0

0
√

2kTR

I−

 G 0

0 R

 W X

−XT Y

−T  J K

P Q

T

= 2kT

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

I−

 G 0

0 R

 W X

−XT Y

−T  JT PT

KT QT

 (4.32)
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Recalling Eqs. (4.23) and (4.24) for the partial derivatives of the equilibrium density,

1

2

[
∇T

q ,∇T

φ

]
(bbT )

 ∇q

∇T

φ

 ρeq(q, φ)

=
[
∇T

q ,∇T

φ

]  J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

I−

 G 0

0 R

 W X

−XT Y

−T  JT PT

KT QT

 −f(q,qin)

−h(φ, φin)

 ρeq(q, φ).

(4.33)

4.3.3 Combining Drift and Diffusion Terms

Note the similarities in the first several factors (in fact, the whole first line on the

right-hand side) of Eqs. (4.30) and (4.33). Combining these equations and collecting

the common factors (but being careful with minus signs), the drift and diffusion terms

of the forward equation are

−
[
∇T

q ,∇T

φ

] [
a(q, φ) ρeq(q, φ)

]
+

1

2

[
∇T

q ,∇T

φ

]
(bbT )

 ∇q

∇T

φ

 ρeq(q, φ)

=
[
∇T

q ,∇T

φ

]  J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

I−

I−

 G 0

0 R

 W X

−XT Y

−T


×

 JT PT

KT QT

 f(q,qin)

h(φ, φin)

 ρeq(q, φ). (4.34)
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Let us consider the third line. Following a trick in [9], a creative factorization manip-

ulates Eq. (4.34) into a very convenient form.I−

I−

 G 0

0 R

 W X

−XT Y

−T


=


I−

 G 0

0 R

 W X

−XT Y

T

− I


I−

 G 0

0 R

 W X

−XT Y

−T

=

I−

 W X

−XT Y

T  G 0

0 R

− I


I−

 G 0

0 R

 W X

−XT Y

−T

=

 W X

−XT Y

T  G 0

0 R

I−

 G 0

0 R

 W X

−XT Y

−T

,

where the last equality follows by the antisymmetry of W and Y.

It was shown above that

[
∇q ∇φ

] 
 A B

−BT F

 f(q)

h(φ)

 ρeq(t,q, φ)

 = 0, (4.35)

because the matrices A and F were antisymmetric. Hence, for Eq. (4.34), we would

like to show that J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

 W X

−XT Y

T  G 0

0 R

I−

 G 0

0 R

 W X

−XT Y

−T  JT PT

KT QT


is antisymmetric. Following the creative factorization, this is automatic, because the
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matrix  W X

−XT Y

T

is antisymmetric, and for any antisymmetric matrix A, BABT is also antisymmetric.

(Of course, G and R are diagonal, and hence equal to their transposes.) Recall that

the inner product terms of Eq. (4.35) involving the (1,2) and (2,1) submatrices will

cancel because the differentiation of ρeq will bring down f or h. Further, the (1,1) and

(2,2) submatrices will cancel by reciprocity of the multiport inductor and capacitor:

∂fj(q)

∂qi

=
∂fi(q)

∂qj

and
∂gj(φ)

∂φi

=
∂gi(φ)

∂φj

. (4.36)

Therefore, the drift and diffusion terms for the Gibbs distribution sum to zero.

4.3.4 Jump Terms

The jump terms of the forward equation (4.14) are

+

nd∑
i=1

λfi
(ṽ+

i ) ρeq(q− e Di, φ− e Hi)−
nd∑
i=1

λfi
(v+

i ) ρeq(t,q, φ)

+

nd∑
i=1

λri
(ṽ−i ) ρeq(q + e Di, φ + e Hi)−

nd∑
i=1

λri
(v−i ) ρeq(t,q, φ). (4.37)

These remaining four terms of (4.14) must cancel. It is certainly sufficient if they

cancel for each i; we claim that it is necessary. For example, if there is only one

diode, its terms cannot cancel against those for other diodes. We expect to show that

λri
(v−i ) ρeq(q, φ) = λfi

(ṽ+
i ) ρeq(q− e Di, φ− e Hi), for all i (4.38)

λfi
(v+

i ) ρeq(q, φ) = λri
(ṽ−i ) ρeq(q + e Di, φ + e Hi), for all i. (4.39)
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Note that, by the definitions of the voltages in Eqs. (4.16) and (4.19), that v+
i and ṽ−i

both relate to jumps between (q, φ) and (q + eDi, φ + eHi), in the forward direction

for v+
i and the reverse direction for ṽ−i .

It is also necessary to find expressions for the “shifted densities,”

ρeq(q + e Di, φ + e Hi) and ρeq(q− e Di, φ− e Hi).

By reversing the definitions of f in (4.9) and h in (4.10), the energy may be expressed

as

ELC(q, φ) =

∮
γ

f(q̃) · dq̃ + h(φ̃) · dφ̃, (4.40)

where γ is a curve that starts at (0,0) and ends at (q, φ). Note that this integral

defining the energy ELC is path-independent because the inductor and capacitor are

reciprocal. Then, by using a simple property of the exponential,

ρeq(q + e Di, φ + e Hi)

= ρeq(q, φ) · exp

[
−1

kT
ELC(q + e Di, φ + e Hi) +

1

kT
ELC(q, φ)

]
= ρeq(q, φ) · exp

[
−1

kT

∮
α

(
f(q̃) · dq̃ + h(φ̃) · dφ̃

)]
, (4.41)

where α is a curve (any curve, by path-independence) that goes from (q, φ) to (q +

eDi, φ + eHi). Similarly,

ρeq(q− e Di, φ− e Hi) = ρeq(q, φ) · exp

[
−1

kT

∮
β

(
f(q̃) · dq̃ + h(φ̃) · dφ̃

)]
, (4.42)

where β goes from (q, φ) to (q− eDi, φ− eHi).

Now, we will finally define the voltages at the instant of a jump as

v+
i = ṽ−i =

−1

e

∮
α

(
f(q̃) · dq̃ + h(φ̃) · dφ̃

)
, (4.43)
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and similarly

v−i = ṽ+
i =

1

e

∮
β

(
f(q̃) · dq̃ + h(φ̃) · dφ̃

)
, (4.44)

where α and β are defined as above. (The sign difference is intentional.) Let us

consider the meaning of these integrals. First, the correspond to the voltages used

in the definitions of rn and fn, Eqs. (2.30) and (2.31), in the single-capacitor case.

Since the integral is path-independent, the curve α (and similarly for β) can simply

be the straight line connecting its endpoints, yielding a parameterization of q̃ and φ̃

as follows:

q̃(t) = t(q + e Di) + (1− t)q = q + e Di t

dq̃ = e Di dt

φ̃(t) = t(φ + e Hi) + (1− t)φ = φ + e Hi t

dφ̃ = e Hi dt,

where t runs from 0 to 1. The line integral can then be calculated explicitly,

v+
i =

−1

e

∮
α

(
f(q̃) · dq̃ + h(φ̃) · dφ̃

)
=

−1

e

∫ 1

0

fT (q + e Di t) e Di dt +
−1

e

∫ 1

0

hT (φ + e Hi t) e Hi dt

= −
∫ 1

0

fT (q + e Di t)Di dt−
∫ 1

0

hT (φ + e Hi t)Hi dt

= −
∫ 1

0

DT
i f (q + e Di t) dt−

∫ 1

0

HT
i h (φ + e Hi t) dt, (4.45)

where the last equality follows because the integrands are scalars, which are equal to

their transposes. DT
i is the transpose of the i-th column of D, which makes it the i-th

row of DT ; similarly for HT
i . Since DT

i and HT
i are constant, they can be factored
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out of the integral to express the voltages in vector form,

v+ = −DT

∫ 1

0

f (q + e Di t) dt−HT

∫ 1

0

h (φ + e Hi t) dt. (4.46)

Now compare this definition to (4.4): v+ is a vector of the effective voltage on each

diode when the system makes a jump between the endpoints of the curve α, from

(q, φ) to (q + eDi, φ + eHi). It is in some sense an average voltage along the curve.

Now, considering v−i , the parameterization of β is

q̃(t) = t(q− e Di) + (1− t)q = q− e Di t

dq̃ = −e Di dt

φ̃(t) = t(φ− e Hi) + (1− t)φ = φ− e Hi t

dφ̃ = −e Hi dt.

The line integration happens exactly the same; the lack of a minus sign in the defini-

tion (4.44) is compensated by the minus signs in dq̃ and dφ̃.

v− = −DT

∫ 1

0

f (q− e Di t) dt−HT

∫ 1

0

h (φ− e Hi t) dt (4.47)

The quantity v+ is a vector of the effective voltage on each diode when the system

makes a jump between the endpoints of the curve β, from (q, φ) to (q−eDi, φ−eHi).

Using the definition (4.43) in (4.41) and (4.44) in (4.42), we find

ρeq(q + e Di, φ + e Hi) = ρeq(q, φ) · exp

[
ev+

i

kT

]
(4.48)

ρeq(q− e Di, φ− e Hi) = ρeq(q, φ) · exp

[
−ev−i
kT

]
, (4.49)

and then substituting the shifted densities into (4.38) and (4.39), we cancel the com-
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mon factor ρeq(q, φ) and conclude that

λfi
(v+

i )

λri
(v+

i )
= exp

[
v+

i

vT

]
(4.50)

and
λri

(v−i )

λfi
(v−i )

= exp

[
−v−i
vT

]
(4.51)

where vT = kT/e. These two conditions are really the same equation, since we can

pick any (q, φ) to evaluate v+
i and v−i . This condition is exactly the condition we

derived in the single-capacitor case,

λfi
(v)

λri
(v)

= exp

[
v

vT

]
, for all v. (4.52)

4.4 Increasing Entropy

Thermodynamic Requirement #3 states that entropy must be monotonically increas-

ing in time. The entropy of the energy storage side is classically defined as [11, 21]

SLC = −k

∫∫
ρ log ρ dq dφ. (4.53)

Only changes in entropy are physically significant; the entropy rate is

dSLC

dt
= −k

∫∫
dρ

dt
log ρ dq dφ− k

∫∫
ρ
1

ρ

dρ

dt
dq dφ

= −k

∫∫
dρ

dt
log ρ dq dφ. (4.54)

The second term from the product rule vanishes, because total probability is con-

served.

The reservoir entropy rate is calculated by use of the First Law of Thermodynam-
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ics, conservation of energy.

dELC

dt
=

dW

dt
− T

dSR

dt
, (4.55)

where ELC is the expected energy stored in the inductor and capacitor, W is the

work done on the system, T is the reservoir temperature, and SR is the entropy of

the reservoir. The expected value of the energy is

ELC(q,qin, φ, φin) =

∫∫
ELC(q,qin, φ, φin) ρ(t,q, φ) dq dφ. (4.56)

When calculating the time derivative of this quantity, ELC depends on time through

the arguments qin and φin, but not through the dummy variables q or φ.

dELC

dt
=

∫∫
ELC(q,qin, φ, φin)

dρ(t,q, φ)

dt
dq dφ

+

∫∫ [
∇qin

ELC(q,qin, φ, φin) · dqin

dt

+∇φin
ELC(q,qin, φ, φin) · dφin

dt

]
ρ(t,q, φ) dq dφ. (4.57)

The power into the system is

dW

dt
= ∇qin

ELC ·
dqin

dt
+∇φin

ELC ·
dφin

dt
, (4.58)

which follows from

∇qin
ELC = vout

dqin

dt
= iin

∇φin
ELC = iout

dφin

dt
= vin,

according to [9], so that each term in (4.58) is a power, v · i. Therefore, the resistor
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entropy rate is

dSR

dt
= − 1

T

∫∫
ELC(q,qin, φ, φin)

dρ(t,q, φ)

dt
dq dφ. (4.59)

The rate of change of the total entropy is

dStot

dt
=

dSLC

dt
+

dSR

dt

= −k

∫∫
dρ

dt
log ρ dq dφ− 1

T

∫∫
ELC(q,qin, φ, φin)

dρ

dt
dq dφ

= −
∫∫

dρ(t,q, φ)

dt

[
k log ρ +

1

T
ELC(q,qin, φ, φin)

]
dq dφ. (4.60)

Note, of course, that at equilibrium, not only is dρ/dt = 0, but also the term in square

brackets reduces to the constant k log A. Integrating any constant times dρ/dt over

all space must yield zero by conservation of total probability.

Substituting the forward equation (4.14) for dρ/dt into (4.60) yields

dStot

dt
= −

∫∫ {
−

[
∇T

q ,∇T

φ

] [
a(q, φ) ρ(t,q, φ)

]
+

1

2

[
∇T

q ,∇T

φ

]
(bbT )

 ∇q

∇T

φ

 ρ(t,q, φ)

+

nd∑
j=1

λfi
(ṽ+

i ) ρ(q− e Di, φ− e Hi)−
nd∑
j=1

λfi
(v+

i ) ρ(t,q, φ)

+

nd∑
j=1

λri
(ṽ−i ) ρ(q + e Di, φ + e Hi)−

nd∑
j=1

λri
(v−i ) ρ(t,q, φ)

}

×
[
k log ρ(t,q, φ) +

1

T
ELC(q,qin, φ, φin)

]
dq dφ. (4.61)

In the first line, a can be replaced with ã, because the difference a− ã corresponds

to noiseless drift in the LC subcircuit, away from equilibrium just as in the equilibrium

situation. The first two lines will be attacked by use of integration by parts. The
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third and fourth lines will be rearranged, using the ratio constraint (4.52).

The first two lines (multiplied by the last) are the entropy terms corresponding

to the noise generated by the linear resistors. The fact that these terms give a non-

negative contribution to the entropy rate was established in [9]. The third and fourth

lines (again multiplied by the last) are the entropy from the shot-noise devices; this

contribution is also nonnegative. Note that the two types of contributions do not

interact: the density ρ and energy ELC are functions of the state variables of the LC

subcircuit, and do not “know” what sort of devices are providing the drive. Therefore,

we may consider the entropy contributions separately. Separate the total entropy rate

Ṡtot into the shot-noise or Poisson contribution, Ṡtot,P , and the Nyquist-Johnson noise

contribution, Ṡtot,NJ .

Ṡtot = Ṡtot,P + Ṡtot,NJ

The Poisson contribution terms are

dStot,P

dt
= −

∫∫ {
nd∑
i=1

λfi
(v−i ) ρ(t,q− e Di, φ− e Hi)−

nd∑
i=1

λfi
(v+

i ) ρ(t,q, φ)

+

nd∑
i=1

λri
(v+

i ) ρ(t,q + e Di, φ + e Hi)−
nd∑
i=1

λri
(v−i ) ρ(t,q, φ)

}

×
[
k log ρ(t,q, φ) +

1

T
ELC(q,qin, φ, φin)

]
dq dφ, (4.62)

where Eqs. (4.43) and (4.44) have replaced ṽ−i and ṽ+
i . For the next step, the rela-

tionship (4.52) between λfi
and λri

is used to replace λfi
.
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dStot,P

dt
= −

∫∫ {
nd∑
i=1

λri
(v−i ) exp

(
v−i /vT

)
ρ(t,q− e Di, φ− e Hi)

−
nd∑
i=1

λri
(v+

i ) exp
(
v+

i /vT

)
ρ(t,q, φ)

+

nd∑
i=1

λri
(v+

i ) ρ(t,q + e Di, φ + e Hi)−
nd∑
i=1

λri
(v−i ) ρ(t,q, φ)

}

×
[
k log ρ(t,q, φ) +

1

T
ELC(q,qin, φ, φin)

]
dq dφ (4.63)

It is helpful to collect terms with respect to λri
at the two voltages, v−i and v+

i .

dStot,P

dt
= −

∫∫ {
nd∑
i=1

λri
(v−i )

[
exp

(
v−i /vT

)
ρ(t,q− e Di, φ− e Hi)− ρ(t,q, φ)

]

−
nd∑
i=1

λri
(v+

i )
[
exp

(
v+

i /vT

)
ρ(t,q, φ)− ρ(t,q + e Di, φ + e Hi)

]}

×
[
k log ρ(t,q, φ) +

1

T
ELC(q,qin, φ, φin)

]
dq dφ (4.64)

The first two lines differ only by a shift in the dummy variables of integration. There-

fore, we can break up the integral, shift the dummy variables in the second line (and

also in the third line), and then recombine. This is essentially the same procedure

used in Section 2.5.3, where the summation was reindexed.

dStot,P

dt
= −

∫∫ nd∑
i=1

λri
(v−i )

[
exp

(
v−i /vT

)
ρ(t,q− e Di, φ− e Hi)− ρ(t,q, φ)

]

×
[ 1

T
ELC(q,qin, φ, φin)− 1

T
ELC(q− e Di,qin, φ− e Hi, φin)

+ k log ρ(t,q, φ)− k log ρ(t,q− e Di, φ− e Hi)
]

dq dφ (4.65)
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The difference in energies may be explicitly calculated,

ELC(q,qin, φ, φin)− ELC(q− e Di,qin, φ− e Hi, φin)

= −
∮

β

(
f(q̃) · dq̃ + h(φ̃) · dφ̃

)
= −e v−i , (4.66)

where the line integral along β was calculated in Eq. (4.44). Using this result,

dStot,P

dt
= −

∫∫ nd∑
i=1

λri
(v−i )

[
exp

(
v−i /vT

)
ρ(t,q− e Di, φ− e Hi)− ρ(t,q, φ)

]

×
[

k log ρ(t,q, φ)− k log ρ(t,q− e Di, φ− e Hi)−
ev−i
T

]
dq dφ

= −
∫∫ nd∑

i=1

k λri
(v−i )

[
exp

(
v−i /vT

)
ρ(t,q− e Di, φ− e Hi)− ρ(t,q, φ)

]

×
[
log ρ(t,q, φ)− log ρ(t,q− e Di, φ− e Hi)−

v−i
vT

]
dq dφ. (4.67)

The terms in the square brackets are logarithmically related:

dStot,P

dt
= −

∫∫ nd∑
i=1

k λri
(v−i ) [ab− c]× [log c− log ab] . (4.68)

Just as in Eq. (2.43), the product

[ab− c]× [log c− log ab]

is always nonpositive because the logarithm is monotonically increasing. When com-

bined with the minus sign in front of the integral, we find that

dStot,P

dt
≥ 0, (4.69)



122 CHAPTER 4. A LOSSLESS MULTIPORT

with equality only when ab = c, that is,

exp
(
v−i /vT

)
ρ(t,q− e Di, φ− e Hi) = ρ(t,q, φ), for all i, (4.70)

which is exactly the condition (4.49) for the equilibrium density ρeq.

Now, let us consider the Nyquist-Johnson contributions.

dStot,NJ

dt
= −

∫∫ {
−

[
∇T

q ,∇T

φ

] [
ã(q, φ) ρ(t,q, φ)

]
+

1

2

[
∇T

q ,∇T

φ

]
(bbT )

 ∇q

∇T

φ

 ρ(t,q, φ)

}

×
[
k log ρ(t,q, φ) +

1

T
ELC(q,qin, φ, φin)

]
dq dφ

=

∫∫ {[
∇T

q ,∇T

φ

] (
ã(q, φ) ρ(t,q, φ)− 1

2
(bbT )

 ∇q

∇T

φ

 ρ(t,q, φ)
)}

×
[
k log ρ(t,q, φ) +

1

T
ELC(q,qin, φ, φin)

]
dq dφ (4.71)

Remember that because ρ must fall off exponentially fast such that its integral over

all space is finite, the product term in integration by parts (“uv” in the formula∫
u dv = uv −

∫
v du) always vanishes. This leaves

dStot,NJ

dt
= −

∫∫ [
∇T

q ,∇T

φ

] [
k log ρ(t,q, φ) +

1

T
ELC(q,qin, φ, φin)

]

·
(
ã(q, φ) ρ(t,q, φ)− 1

2
(bbT )

 ∇q

∇T

φ

 ρ(t,q, φ)
)

dq dφ
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= −
∫∫ (

k

ρ(t,q, φ)

[
∇T

qρ(t,q, φ),∇T

φρ(t,q, φ)
]

+
1

T

[
fT (q,qin),hT (φ, φin)

])

·
(
ã(q, φ) ρ(t,q, φ)− 1

2
(bbT )

 ∇q ρ(t,q, φ)

∇T

φ ρ(t,q, φ)

)
dq dφ.(4.72)

Recall the definitions of ã, Eq. (4.29), and bbT , Eq. (4.32), from the equilibrium

distribution test. Substituting these definitions into Eq. (4.72) and factoring out

terms where possible, we find

dStot,NJ

dt
=∫∫ (

k

ρ(t,q, φ)

[
∇T

q ρ(t,q, φ),∇T

φ ρ(t,q, φ)
]

+
1

T

[
fT (q,qin),hT (φ, φin)

])

×

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

{ JT PT

KT QT

 f(q,qin)

h(φ, φin)

 ρ(t,q, φ)

+kT

I−

 G 0

0 R

 W X

−XT Y

−T  JT PT

KT QT

 ∇q ρ(t,q, φ)

∇φ ρ(t,q, φ)

}
× dq dφ. (4.73)

The extra factor in the next-to-last line for bbT , compared with the middle line for

ã, may be inserted because of a clever factorization trick from [9]. Note that for the

symmetric form (in a simplified case for clarity),
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x (I−G W)−1 G xT

= x
(
G−1 −W

)−1
xT

=
1

2
x

{(
G−1 −W

)−1
+

(
G−1 −W

)−T
}

xT

=
1

2
x

(
G−1 −W

)−1
{(

G−1 −W
)T

+
(
G−1 −W

)} (
G−1 −W

)−T
xT

=
1

2
x

(
G−1 −W

)−1 {
G−1 −WT + G−1 −W

} (
G−1 −W

)−T
xT

= x
(
G−1 −W

)−1
G−1

(
G−1 −W

)−T
xT

= x (I−G W)−1 G (I−G W)−1 xT .

Using this in the ã term gives an expression in bbT ,

[
fT (q,qin),hT (φ, φin)

]  J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

 JT PT

KT QT

 f(q,qin)

h(φ, φin)

 ρ(t,q, φ)

=
[
fT (q,qin),hT (φ, φin)

]  J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

I−

 G 0

0 R

 W X

−XT Y

−T  JT PT

KT QT

 f(q,qin)

h(φ, φin)

 ρ(t,q, φ)

=
1

2kT

[
fT (q,qin),hT (φ, φin)

] (
bbT

)  f(q,qin)

h(φ, φin)

 ρ(t,q, φ). (4.74)

This does not complete the analysis. Of the two terms on the first line of Eq. (4.73),

the last expression only completes the second. The other term must also be re-

expressed: first by integration by parts and then the factorization trick.
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∫∫
k

[
∇T

q ρ(t,q, φ),∇T

φ ρ(t,q, φ)
]

×

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

 JT PT

KT QT

 f(q,qin)

h(φ, φin)

 dq dφ

= −
∫∫

k ρ(t,q, φ)
[
∇T

q ,∇T

φ

]
×

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

 JT PT

KT QT

 f(q,qin)

h(φ, φin)

 dq dφ

= −
∫∫

k ρ(t,q, φ)
[
∇T

q ,∇T

φ

]  J K

P Q


×

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

 JT PT

KT QT

 ∇q

∇T

φ

ELC(q,qin, φ, φin) dq dφ

= −
∫∫

k ρ(t,q, φ)
[
∇T

q ,∇T

φ

]  J K

P Q


×

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

I−

 G 0

0 R

 W X

−XT Y

−T

×

 JT PT

KT QT

 ∇q

∇T

φ

ELC(q,qin, φ, φin) dq dφ
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= −
∫∫

k ρ(t,q, φ)
[
∇T

q ,∇T

φ

]  J K

P Q


×

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

I−

 G 0

0 R

 W X

−XT Y

−T

×

 JT PT

KT QT

 f(q,qin)

h(φ, φin)

 dq dφ

=

∫∫
k

[
∇T

q ρ(t,q, φ),∇T

φ ρ(t,q, φ)
]  J K

P Q


×

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

I−

 G 0

0 R

 W X

−XT Y

−T  JT PT

KT QT

 f(q,qin)

h(φ, φin)

 dq dφ

=

∫∫
1

2T

[
∇T

q ρ(t,q, φ),∇T

φ ρ(t,q, φ)
] (

bbT
)  f(q,qin)

h(φ, φin)

 dq dφ (4.75)

Finally, we obtain (suppressing subscripts for ease of reading)

dStot,NJ

dt
=

∫∫
1

2Tρ

[
fT ρ

kT
+∇T

q ρ,
hT ρ

kT
+∇T

φ ρ

]
(bbT )


fρ + kT ∇q ρ

hρ + kT ∇φ ρ

 dq dφ.

(4.76)

Of course, at equilibrium,

∇q ρeq(q, φ) = − 1

kT
f(q,qin) ρeq and ∇φ ρeq(q, φ) = − 1

kT
h(φ, φin) ρeq,
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so that
dStot,NJ

dt
= 0. Away from equilibrium, we have

dStot,NJ

dt
=

∫∫
1

2Tρ

[
fT ρ

kT
+∇T

q ρ,
hT ρ

kT
+∇T

φ ρ

]

2kT

 J K

P Q

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

I−

 G 0

0 R

 W X

−XT Y

−T  JT PT

KT QT


×

 fρ + kT ∇q ρ

hρ + kT ∇φ ρ

 dq dφ

=

∫∫
1

Tρ

[
fT ρ + kT ∇T

q ρ,hT ρ + kT ∇T

φ ρ
]  J K

P Q


×

I−

 G 0

0 R

 W X

−XT Y

−1  G 0

0 R


×

I−

 G 0

0 R

 W X

−XT Y

−T  JT PT

KT QT


×

 fρ + kT ∇q ρ

hρ + kT ∇φ ρ

 dq dφ

=

∫∫
1

Tρ
xT

 G 0

0 R

x dq dφ, (4.77)

where

x =

I−

 G 0

0 R

 W X

−XT Y

−T  JT PT

KT QT

 fρ + kT ∇q ρ

hρ + kT ∇φ ρ

 .
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Since the resistances and conductances are assumed positive,

dStot,NJ

dt
=

∫∫
1

Tρ
xT

 G 0

0 R

x dq dφ ≥ 0. (4.78)

Since both the Nyquist-Johnson (4.77) and the Poisson (4.67) entropy contribu-

tions are non-negative according to (4.78) and (4.69), respectively, and zero only at

equilibrium, we have shown that

dStot

dt
≥ 0, (4.79)

with equality only at equilibrium.



Chapter 5

Heat Transfer between Noisy

Devices

5.1 Introduction

This chapter will investigate the heat transferred between noisy devices. The question

was motivated by [48], which asked: if one connected a diode and a linear resistor

together in the same circuit, would there be any heat flow between them? If they

are at the same temperature, of course, there should be no heat flow. However, the

tests applied so far only ask about the total circuit behavior. This question is stated

formally as follows:

Thermodynamic Requirement #4: No Heat Transfer between Two

Devices at the Same Temperature

For any circuit consisting of two or more noisy devices, each in thermal contact with

a thermal reservoir of a single temperature T , and any lossless lumped network, there

should be no heat transfer between the devices, that is, no net power delivered or ab-

sorbed by any one of the devices. In contrast, heat should flow from the hotter to the

129
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cooler if the devices are in thermal contact with reservoirs at different temperatures,

but the rate of flow will depend on specifics of the devices and the lossless network.

Ref. [49] showed a general result for power flow in each frequency band between

noise sources. The specific result that two linear resistors with Gaussian noise mod-

els at different temperatures will exchange heat if and only if the temperatures are

different, is independently derived in Section 5.2. Nyquist’s original derivation of the

linear resistor noise model was based in part on this assumption, but did not specify

that the resistors had a Gaussian noise model.

In Section 5.3, random process arguments are used to find the power supplied by

the two sources of a single diode model connected to a capacitor. The expression

derived for the power is used in the remaining sections, which attempt to find the

heat transferred between two diodes or between a diode and a resistor.

The average power supplied by a device is the expectation of the product of v

and i through the device. Of course, the expectation is zero for a lossless device such

as the capacitor. The “pure resistor” in the Norton-form model will dissipate power;

therefore the parallel current noise source must, in expectation, supply power. For

the diode, either shot noise source can supply or dissipate power, depending on the

sign of the applied voltage. However, it turns out that, for this case, power must

instead be calculated as a rate of change of energy.

Section 5.4 calculates the heat transferred between two nonlinear noisy devices,

described by the Poisson shot-noise model, at different temperatures. Although we

do not know the steady-state distribution for the charge on a capacitor driven by two

Poisson devices, we can nonetheless show that heat is transferred from the warmer

device to the cooler. There is no heat transfer when the temperatures are equal, even

if the devices are different (differently-sized diodes, for example).

Section 5.5 calculates the heat transferred between a linear resistor, described by

the Nyquist-Johnson model, and a nonlinear device, described by the Poisson model.
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C
v(t)

G1

2G

ξ (t)12kT  G1 1

2 22kT  G 2ξ (t)

+

−T1

T2

Figure 5-1: Two linear resistors at different temperatures driving a capacitor

In this case, the lack of an expression for the steady-state distribution prevents us

from showing that heat is transferred when the devices are at different temperatures.

However, when the temperatures are equal, the equilibrium distribution is known,

and the devices do not transfer heat.

A related result is presented in [46], which constructs a heat engine from two

nonlinear resistors at different temperatures and a time-varying capacitor switched

between the two resistors. This is a nonlinear extension of the heat engine in [50].

After making the calculations in this chapter, it was found that Gunn [5] also

considered the heat transfer between a linear resistor and a diode at different tem-

peratures. However, that paper uses a linearized approximation to the diode.

5.2 Gaussian to Gaussian

The differential equation for the voltage in the circuit above is

C
dv

dt
= −v(t) (G1 + G2)−

√
2kT1G1 ξ1(t)−

√
2kT2G2 ξ2(t), (5.1)
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where ξ1(t) and ξ2(t) are independent Gaussian random variables of unit variance.

The Fokker-Planck equation is then

∂ρ(t, v)

∂t
=

∂

∂v

[
G1 + G2

C
v ρ(t, v)

]
+

kT1G1

C2

∂2ρ(t, v)

∂v2
+

kT2G2

C2

∂2ρ(t, v)

∂v2
. (5.2)

Steady-state is achieved when

∂ρss(v)

∂t
= 0 =

∂

∂v

[
G1 + G2

C
v ρss(v) +

k (T1G1 + T2G2)

C2

∂ρss(v)

∂v

]
∂ρss(v)

∂v
= − G1 + G2

k(T1G1 + T2G2)
v ρss(v).

It is easy to see that the steady-state distribution will again be a (zero-mean) Gaussian

in v. In fact, this was a priori known, since this is an LTI system with Gaussian

inputs. The remaining free parameter is the variance. Defining

Teff
∆
=

T1G1 + T2G2

G1 + G2

, (5.3)

the steady-state distribution is then

ρss(v) =
1√

2πkTeff/C
exp

[
− C v2

2kTeff

]
. (5.4)

Note if T1 = T2 = T , then Teff = T and we recover the regular Gibbs distribution

at a temperature T . If G1 = G2 = G, then Teff = (T1 + T2)/2, the average of the

temperatures. If the (electrical) conductances are not equal, then Teff is a weighted

average, corresponding to having different thermal conductivities.

Now let us consider the heat transfer when the two temperatures are different.

Most thermodynamic calculations of this sort ask only for the power delivered by

the complete model, pure conductor plus current source. However, it is quite simple

to calculate the heat dissipated in each of the pure conductors, because this only
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depends on the mean square voltage of the capacitor. Because this will be useful for

later calculations, let us write it down.

Pdiss,G1 = G1v2 = G1
kTeff

C
(5.5)

Pdiss,G2 = G2v2 = G2
kTeff

C
(5.6)

If the conductors are equal, then the power dissipated in each conductor is equal. Any

heat transfer must come because the two current sources provide different amounts

of power to the circuit.

The power supplied by the current sources can be calculated using frequency-

domain methods and current division. Because the circuit is linear, the power supplied

by each source may be calculated separately and then added by superposition. The

input current power spectral densities for the left source is

Sii,in = 2kT1G1.

The transfer function for the current division is

H12 =
G2

G1 + G2 + jωC
,

which gives the fraction of the input current that flows through the conductor G2.

The current power spectral density in conductor G2 due to the left source is

Sii,out = Sii,inH12H
∗
12 = 2kT1G1

G2
2

(G1 + G2)2 + ω2C2
. (5.7)

The inverse Fourier transform of the power spectral density is the autocorrelation,

Rii,out(t); the mean square current is the autocorrelation evaluated at t = 0. Thus,
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the power supplied by source 1 and dissipated in conductor 2 is

P1→2 = i21→2/G2 = F−1 {Sii,out}
∣∣
t=0

/G2 =
kT1G1G2

C(G1 + G2)
. (5.8)

By symmetry, the power supplied by source 1 and dissipated in conductor 1 is

P1→1 =
kT1G

2
1

C(G1 + G2)
. (5.9)

Further,

P2→1 =
kT2G1G2

C(G1 + G2)
(5.10)

P2→2 =
kT2G

2
2

C(G1 + G2)
. (5.11)

The total amount of power supplied to the circuit by both sources is

Psupp = P1→2 + P1→1 + P2→1 + P2→2

=
k

C(G1 + G2)

[
T1

(
G1G2 + G2

1

)
T2

(
G1G2 + G2

2

)]
=

k

C
[T1G1 + T2G2] . (5.12)

The total power dissipated in the conductors is

Pdiss = Pdiss,G1 + Pdiss,G2 = (G1 + G2)
kTeff

C

=
k [T1G1 + T2G2]

C
, (5.13)

where the last equality used the definition of Teff , Eq. (5.3).

Thermodynamics asks about the power out of the complete Nyquist-Johnson
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model. For the left-hand model in Fig. 5-1,

P1 = P1→2 + P1→1 − Pdiss,G1

=
k T1G1G2

C(G1 + G2)
+

k T1G
2
1

C(G1 + G2)
−G1

k Teff

C

=
k G1

C

(
T1G2

G1 + G2

+
T1G1

G1 + G2

− T1G1 + T2G2

G1 + G2

)
=

k G1

C

(
T1G2

G1 + G2

− T2G2

G1 + G2

)
=

k G1G2

C(G1 + G2)
(T1 − T2) . (5.14)

Similar calculations (or just conservation of energy) give the power out of the right-

hand source:

P2 =
k G1G2

C(G1 + G2)
(T2 − T1) . (5.15)

For unequal temperatures, say T1 > T2, the left-hand source will supply power P1 > 0;

heat flows from the hotter conductor to the cooler. Of course, if the temperatures are

equal, then both of these powers are zero.

5.3 Single-Device Poisson Model

In this section, the average power delivered by each of the two Poisson sources, forward

and reverse, in the diode model will be calculated. Of course, the two sources together

must supply no net power, because the capacitor is lossless. But it is not immedi-

ately clear how to calculate this power, since the current occurs in delta-functions.

Calculating the expectation of v · i would require the distribution of voltage at firing

times. It turns out that there is a simpler way to analyze the situation.

Gallager’s treatment of Markov processes with countable state spaces is pertinent

here. Although the state space in [13] is indexed by the non-negative integers, a

doubly-infinite state space may be re-indexed such that our positive integers are
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C
v(t)

+

−

T

f r

Figure 5-2: One diode driving a capacitor

assigned to odd integers and negative integers are assigned to even integers. In this

case, the transitions of the diode model would be to “second neighbors” (plus the 0-1

transition), but the theory holds.

Gallager defines qij as the rate of transitions from i to j, and νi =
∑

j qij is the

rate of transitions out of state i. Under certain conditions, the Markov process has

a steady-state distribution {pi}, where pi is not only the steady-state probability of

being in state i but also the time average fraction of time spent in state i. Therefore,

the quantity

piνi
qij

νi

= pi qij

is the time average rate of transitions of the whole Markov process along the particular

arc from i to j. The quantity piνi is the steady-state rate at which transitions occur

out of state i, and the fraction
qij

νi
gives the probability that the transition out is to

state j (or the probability that the Poisson counter for the transition from i to j fires

before any of the other counters out of state i).

The condition given in Gallager’s Theorem 1 of Chapter 6 [13, p. 190] for existence

and uniqueness of the steady-state probabilities {pi} is that

∑
i

pi νi < ∞. (5.16)
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n n+1

r r rnn−1 n+1

f f fn+2n+1n

En− +

Figure 5-3: Markov process on a countable state space

For the diode model, the Gibbs equilibrium distribution is

po
n = A exp

(
− n2e2

2CkT

)
, (5.17)

where 1/A =
∑

n exp
(
− n2e2

2CkT

)
normalizes the distribution. This distribution exists,

and Thermodynamic Requirement #2 states that it must be the equilibrium distri-

bution. That this is the unique solution may be verified by checking Eq. (5.16) for

the model:

∑
i

pi νi =
∑

n

po
n [fn + rn]

=
∑

n

A exp

(
− n2e2

2CkT

)
IS

e

[
exp

(
(n− 1/2)e2

CkT

)
+ 1

]
=

∑
n

A
IS

e

[
exp

(
−(n2 − 2n + 1)e2

2CkT

)
+ exp

(
− n2e2

2CkT

)]
=

∑
m

A
IS

e

[
exp

(
− m2e2

2CkT

)]
+

∑
n

A
IS

e

[
exp

(
− n2e2

2CkT

)]
=

2IS

e
< ∞.

Consider the Markov process shown in Fig. 5-3. En is the change in capacitor
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energy when rn fires, moving the process from n to n + 1 (hence −En corresponds to

the transition n + 1 to n). From the discussion above, pi qij is steady-state rate at

which transitions occur from state i to j. For the capacitor charge chain,

po
n rn = steady-state rate at which transitions occur from state n to n + 1

po
n rn En = steady-state rate at which the energy En is delivered by the reverse

source for transitions from n to n + 1

= steady-state power delivered by the reverse source for transitions from

n to n + 1∑
n po

n rn En = steady-state power delivered by the reverse source on all transitions

For the forward source, each transition out of state n changes the capacitor energy

by −En−1, so that

−
∑

n po
n fn En−1 = steady-state power delivered by the forward source on all

transitions

For the diode model, the following equations were derived in Chapter 2.

po
n = A exp

(
− n2e2

2CkT

)
(5.18)

rn =
IS

e
(5.19)

fn =
IS

e
exp

(
(n− 1/2)e2

CkT

)
(5.20)

En =
(n + 1)2e2 − n2e2

2C
=

(2n + 1)e2

2C
(5.21)

En−1 =
n2e2 − (n− 1)2e2

2C
=

(2n− 1)e2

2C
(5.22)

Therefore,

∑
n

po
n rn En =

∑
n

A exp

(
− n2e2

2CkT

)
IS

e

(2n + 1)e2

2C
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=
IS e

2C

∑
n

A (2n + 1) exp

(
− n2e2

2CkT

)
=

IS e

2C
, (5.23)

where the last equality follows because the distribution is zero-mean (
∑

n npo
n = 0)

and normalized.

For the forward source,

−
∑

n

po
n fn En−1 = −

∑
n

A exp

(
− n2e2

2CkT

)
IS

e
exp

(
(n− 1/2)e2

CkT

)
(2n− 1)e2

2C

= −IS e

2C

∑
n

A (2n− 1) exp

(
−n2e2 + 2ne2 − e2

2CkT

)
= −IS e

2C

∑
n

A (2n− 1) exp

(
−(n− 1)2e2

2CkT

)
= −IS e

2C

∑
m

A (2m + 1) exp

(
−m2e2

2CkT

)
(m = n− 1)

= −IS e

2C
. (5.24)

So, as must have been the case, the power delivered by the reverse source is the

opposite of that absorbed by the forward source.

What if the nonlinear device is not a diode? The net power out of the two Poisson

sources can be shown to vanish by judicious use of the detailed balance criterion. Of

course, this fact is not particularly interesting in this case, since it follows from the

losslessness of the capacitor. Rewriting the summation for the forward source as

−
∑

n

po
n fn En−1 = −

∑
n

po
n+1 fn+1 En,

it is clear that

∑
n

po
n rn En −

∑
n

po
n+1 fn+1 En =

∑
n

(
po

n rn − po
n+1 fn+1

)
En = 0, (5.25)
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Figure 5-4: Two diodes at different temperatures driving a capacitor

because the term in parentheses is the detailed balance criterion. This trick will be

more useful in the next section.

5.4 Poisson to Poisson

Given the result in Section 5.2 for two linear resistors, one might hope that the steady-

state distribution for two diodes in a circuit would also be Gaussian. The forward

equation for this circuit is

∂ρ(t, q)

∂t
=

[
f1 (vα(q + e)) + f2 (vα(q + e))

]
ρ(t, q + e)

+
[
r1 (vβ(q − e)) + r2 (vβ(q − e))

]
ρ(t, q − e)

−
[
f1 (vα(q)) + f2 (vα(q)) + r1 (vβ(q)) + r2 (vβ(q))

]
ρ(t, q), (5.26)

where q = ne is the number of positive charges on the top plate of the capacitor and

vα(q) = vβ(q − e) = (q − e/2)/C is the “effective” voltage for transitions from q to

q − e or vice-versa. The hypothesis is that there is a Teff such that the steady-state

distribution is given by

ρhyp(q) ∝ exp

[
− q2

2CkTeff

]
.
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Substituting this and the expressions for f and r for the diode into the forward

equation (but dividing out the common constant factors), yields

0
?
=

[
exp

(
(n + 1/2)e

CkT1/e

)
+ exp

(
(n + 1/2)e

CkT2/e

)]
exp

(
−(n + 1)2e2

2CkTeff

)
+2 exp

(
−(n− 1)2e2

2CkTeff

)
−

[
exp

(
(n− 1/2)e

CkT1/e

)
+ exp

(
(n− 1/2)e

CkT2/e

)
+ 2

]
exp

(
− n2e2

2CkTeff

)
(5.27)

It does not seem possible to solve this equation for all n.

A second possibility for finding the equilibrium distribution is to use the detailed-

balance criterion. Detailed balance, strictly speaking, is an equilibrium concept.

However, it is still non-sensical for the probability to have a net flow in either direction.

In fact, although the physical situation described here is not equilibrium, the steady-

state distribution is an equilibrium of the Markov process.

The detailed-balance criterion for the Markov process corresponding to the two-

device circuit is

ρss(q)rtot(vβ(q)) = ρss(q + e)ftot(vα(q + e)),

so, with two Poisson devices,

ρss(q)
[
r1(vβ(q)) + r2(vβ(q))

]
= ρss(q + e)

[
f1(vα(q + e)) + f2(vα(q + e))

]
. (5.28)

Using the thermodynamic constraint derived in Chapter 2,

f(v)

r(v)
= exp(v/vT ) ⇔ f1(vα(q + e)

r1(vβ(q))
= exp

(
qe + e2/2

CkT1

)
, (5.29)

the ratio of adjacent states is expressed

ρss(q + e)

ρss(q)
=

r1(vβ(q)) + r2(vβ(q))

r1(vβ(q)) exp
(

evβ(q)

kT1

)
+ r2(vβ(q)) exp

(
evβ(q)

kT2

) . (5.30)
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As in Section 2.5, the probability of a charge q = ne is then calculated by multiplying

(n − 1) of these terms by the probability of q = 0, which is determined by normal-

ization. Then, the power transferred by each source can be written in terms of these

probabilities.

Pr1 =
∑

n

ρss(ne)r1(vβ(ne))En (5.31)

Pr2 =
∑

n

ρss(ne)r2(vβ(ne))En (5.32)

Pf1 = −
∑

n

ρss(ne)f1(vα(ne))En−1 (5.33)

Pf2 = −
∑

n

ρss(ne)f2(vα(ne))En−1 (5.34)

Note that if T1 = T2, then the exponentials in the denominator of Eq. (5.30) are

equal, so that the fraction reduces to

ρss(q + e)

ρss(q)
= exp

(
−evβ(q)

kT

)
= exp

(
−qe + e2/2

CkT

)
, (5.35)

which was calculated in Eq. (2.37). The steady-state distribution is the same as the

equilibrium distribution used in Eq. (2.36),

ρss(q) = A exp

(
− q2

2CkT

)
,

and, in fact, this steady-state is also a physical equilibrium.

To verify equilibrium, it must be shown that no heat is transferred between the

devices, even if they are not identical (in which case, the verification would be trivial

by symmetry). Since the thermodynamic constraint (5.29) must hold for both devices,

and since the equilibrium distribution has the ratio given by (5.35),

ρss(q + e)f1(vα(q + e) = exp

(
qe + e2/2

CkT

)
exp

(
−qe + e2/2

CkT

)
ρss(q)r1(vβ(q))

= ρss(q)r1(vβ(q))
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ρss(q + e)f2(vα(q + e)) = ρss(q)r2(vβ(q)).

Therefore, using the expressions derived above,

P1 = Pr1 + Pf1

=
∑

n

ρss(ne)r1(vβ(ne))En −
∑

n

ρss(ne + e)f1(vα(ne + e))En

=
∑

n

[
ρss(ne)r1(vβ(ne))− ρss(ne + e)f1(vα(ne + e))

]
En

= 0,

and also

P2 = Pr2 + Pf2

=
∑

n

ρss(ne)r2(vβ(ne))En −
∑

n

ρss(ne + e)f2(vα(ne + e))En

=
∑

n

[
ρss(ne)r2(vβ(ne))− ρss(ne + e)f2(vα(ne + e))

]
En

= 0.

Even without knowing the constitutive relation of the devices, we have shown that

there is no heat transferred between the two – so long as they satisfy the thermo-

dynamic constraint (5.29). The devices could be diodes with different saturation

currents, or entirely different nonlinear devices. This result is actually not surprising,

since ρss for the two diodes is equal to ρeq for a single diode, so that the diodes cannot

distinguish whether there is another diode connected to the same capacitor.

Suppose now that the temperatures are not equal. Let us pull an exponential out

of the ratio of adjacent states, Eq. (5.30).

ρss(q + e)

ρss(q)
=

r1(vβ(q)) + r2(vβ(q))

r1(vβ(q)) exp
(

evβ(q)

kT1

)
+ r2(vβ(q)) exp

(
evβ(q)

kT2

)
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= exp

(
−evβ(q)

kT1

)
r1(vβ(q)) + r2(vβ(q))

r1(vβ(q)) + r2(vβ(q)) exp
[

evβ(q)

k

(
1
T2
− 1

T1

)] .(5.36)

Also note that, since vβ(q) = vα(q + e),

f1(vα(ne + e))

r1(vβ(ne))
= exp

(
evβ(q)

kT1

)
.

When we calculate the product of the ratio of adjacent states and the ratio of forward

and reverse rates for device 1, this exponential will cancel. In this case, the expression

for the power supplied by device 1 can be simplified as follows.

P1 = Pr1 + Pf1

=
∑

n

ρss(ne)r1(vβ(ne))En −
∑

n

ρss(ne)f1(vα(ne))En−1

=
∑

n

ρss(ne)r1(vβ(ne))En −
∑

n

ρss(ne + e)f1(vα(ne + e))En

=
∑

n

[
ρss(ne)r1(vβ(ne))− ρss(ne + e)f1(vα(ne + e))

]
En

=
∑

n

ρss(ne) r1(vβ(ne)) En

[
1− ρss(ne + e)

ρss(ne)

f1(vα(ne + e))

r1(vβ(ne))

]
=

∑
n

ρss(ne) r1(vβ(ne)) En

×

1− r1(vβ(ne)) + r2(vβ(ne))

r1(vβ(ne)) + r2(vβ(ne)) exp
[

evβ(ne)

k

(
1
T2
− 1

T1

)]


=
∑

n

ρss(ne) r1(vβ(ne))
(2n + 1)e2

2C

×

1− r1(vβ(ne)) + r2(vβ(ne))

r1(vβ(ne)) + r2(vβ(ne)) exp
[

evβ(q)

k

(
1
T2
− 1

T1

)]


=
e2

2C

∑
n

ρss(ne) r1(vβ(ne)) (2n + 1)

×

1− r1(vβ(ne)) + r2(vβ(ne))

r1(vβ(ne)) + r2(vβ(ne)) exp
[

e2(n+1/2)
Ck

(
1
T2
− 1

T1

)]
(5.37)
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Now suppose T1 > T2. For n ≥ 0,

(2n + 1) > 0 and

(
1

T2

− 1

T1

)
> 0 ⇒ exp

[
e2(n + 1/2)

Ck

(
1

T2

− 1

T1

)]
> 1

⇒ r1(vβ(ne)) + r2(vβ(ne))

r1(vβ(ne)) + r2(vβ(ne)) exp
[

e2(n+1/2)
Ck

(
1
T2
− 1

T1

)] < 1,

because the reverse rates r1(vβ(ne)) and r2(vβ(ne)) are always positive, and hence all

the terms of the summation with n ≥ 0 are positive. For n < 0,

(2n + 1) < 0 and

(
1

T2

− 1

T1

)
> 0 ⇒ exp

[
e2(n + 1/2)

Ck

(
1

T2

− 1

T1

)]
< 1

⇒ r1(vβ(ne)) + r2(vβ(ne))

r1(vβ(ne)) + r2(vβ(ne)) exp
[

e2(n+1/2)
Ck

(
1
T2
− 1

T1

)] > 1.

Now, both (2n + 1) and the term in the biggest square brackets are negative, so the

product is again positive. Hence, the terms of the summation for all n are positive.

P1 > 0 for T1 > T2

Poisson device 1 supplies net power to the circuit. By conservation of energy, device

2 must dissipate net power. The dissipation could be verified directly by factoring

out the T2 exponential in Eq. (5.36) to start the calculation.

5.5 Poisson to Gaussian

This section considers a circuit with both a linear resistor (with a Gaussian noise

model) and a diode (with a Poisson noise model), as in Fig. 5-5. The first order of

business is to to check that no heat flows when the devices are at the same temper-

ature, i.e., when T1 = T2. This test is not considered by Chapter 4, where we first

considered Poisson and Gaussian models describing devices in the same circuit.
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Figure 5-5: A diode and a linear resistor, at different temperatures, driving a capacitor

The expression

ρo
n rn En = steady-state rate at which the energy En is delivered by the reverse

source for transitions from n to n + 1

= steady-state power delivered by the reverse source for transitions from

n to n + 1

was derived in Section 5.3. However, now the state space is continuous. Skipping

over questions of uniqueness, the equilibrium density (for T1 = T2) must be

ρeq(q) =
1√

2πkTC
exp

[
− q2

2kTC

]

by Thermodynamic Requirement #2. The rate rT (vβ(q)) of jumps from q to q + e

was already defined for all voltages (because the capacitance need not have been

an integer). The expression for the energy E(q) of such a jump is also defined for

continuous arguments. To find the total average power delivered by the reverse source,

the term ρo
n rn En is integrated instead of summed.

Pr =

∫ +∞

−∞
ρeq(q) rT (vβ(q)) E(q) dq
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=

∫ +∞

−∞

1√
2πkTC

exp

[
− q2

2kTC

]
IS

e

2qe + e2

2C
dq

=
IS

2C

∫ +∞

−∞

1√
2πkTC

exp

[
− q2

2kTC

]
(2q + e) dq

=
IS e

2C
,

where we have again used the zero-mean property and normalization. Note that this

is the same power computed in the discrete case: the addition of the Nyquist-Johnson

noise source and resistor did not affect the power.

For the forward source,

Pf =

∫ +∞

−∞
ρeq(q) fT (vα(q)) (−E(q − e)) dq

=

∫ +∞

−∞

1√
2πkTC

exp

[
− q2

2kTC

]
IS

e
exp

(
(q − e/2)/C

kT/e

) (
−2qe− e2

2C

)
dq

= − IS

2C

∫ +∞

−∞

1√
2πkTC

exp

[
− 1

2kTC

(
q2 − 2qe + e2

)]
(2q − e) dq

= − IS

2C

∫ +∞

−∞

1√
2πkTC

exp

[
− 1

2kTC
q̃2

]
(2q̃ + e) dq̃ (q̃ = q − e)

= −IS e

2C
.

Again, the power into the forward and reverse Poisson sources cancel.

This cancellation result is not restricted to the diode model, because the net power

can be calculated without knowing the constitutive relation for the device. (The power

contributed by the forward and reverse sources cannot be calculated independently.)

The net power delivered by the Poisson model is

Pshot = Pr + Pf

=

∫ +∞

−∞
ρeq(q) rT (vβ(q)) E(q) dq +

∫ +∞

−∞
ρeq(q̃) fT (vα(q̃)) (−E(q̃ − e)) dq̃

=

∫ +∞

−∞
ρeq(q) rT (vβ(q)) E(q) dq −

∫ +∞

−∞
ρeq(q + e) fT (vα(q + e)) E(q) dq
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=

∫ +∞

−∞

[
ρeq(q) rT (vβ(q))− ρeq(q + e) fT (vα(q + e))

]
E(q) dq. (5.38)

Recall that vβ(q) = vα(q + e) and

fT (vβ(q))

rT (vβ(q))
= exp (vβ(q)/vT ) = exp

(
q + e/2

C

1

kT/e

)
.

Also, because the equilibrium density must be the Gibbs distribution, the ratio of the

values at two points separated by e is given by

ρeq(q + e)

ρeq(q)
=

exp
[
−(q+e)2

2CkT

]
exp

[
−q2

2CkT

] = exp

(
−2qe + e2

2CkT

)
.

Therefore, the quantity in brackets in Eq. (5.38) is zero, and so is the integral:

Pshot = 0.

The same result must obtain for the power into the Nyquist-Johnson model: the

power supplied by the current source is equal to that dissipated in the pure con-

ductance. While the power dissipated in the conductor may be calculated using the

equilibrium voltage density, the frequency-domain techniques of Section 5.2 for calcu-

lating the power supplied by the current source do not apply because of the nonlinear

diode.

We would next like to check that there is power flow between the two models

when the temperatures are not equal. Unfortunately, we do not know the steady-state

distribution for this case, nor do the equations appear to show that the integrand is

always positive.



Chapter 6

Limits to the

Fluctuation-Dissipation Theorem

for Nonlinear Circuits

This chapter diverges significantly from the subject of the rest of this thesis. The

standard fluctuation-dissipation theorem for circuits relates the voltage or current

fluctuations of a linear, time-invariant circuit to its impedance (or admittance). The

previous chapters have all been concerned with nonlinear dissipative devices. In this

chapter, we instead retain linear dissipative devices, but let the energy storage devices

be nonlinear.

The material of this chapter has been accepted for publication as “Limits to the

Fluctuation-Dissipation Theorem for Nonlinear Circuits” in IEEE Trans. Circuits

Syst. I [51]. Minor changes have been made to integrate it into the thesis.

6.1 Introduction

Consider the bridge circuit of Figure 6-1. It is a standard result of linear circuit

theory that under the matching condition L = R2 C, the driving-point impedance

149
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I

V

+

−

R R

L C

i
q

Figure 6-1: Linear noise-free bridge circuit is matched and has input impedance R if
L = R2C.

reduces to R and the natural frequency of the circuit does not appear as a pole

[52, 53]. Regardless of the values of the capacitor and inductor, for high frequencies,

the capacitor is essentially a short circuit, whereas the inductor is essentially an open

circuit; at low frequencies, the opposite occurs. The matching condition ensures that

a balance is preserved for intermediate frequencies: the charging of the capacitor is

matched by the fluxing of the inductor. In the language of control theory, the state

equations become nonminimal in the matched case.

Central Questions in this Chapter

Suppose one has two black boxes, one with a matched bridge circuit inside and the

other with a single equivalent linear resistor. Is it possible to distinguish the two

using the noise behavior? How does the answer change if the inductor and capacitor

are nonlinear or time-varying?

The LTI Case

It is straightforward to verify directly in the LTI case that if a Nyquist-Johnson noise

model [1, 2] (as shown in Fig. 6-2) is associated with each resistor, then the spectrum

of the short-circuit terminal current in a matched bridge circuit is also that of a
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R
iN

Figure 6-2: Nyquist-Johnson thermal noise model (Norton form) is a noiseless linear
resistor in parallel with a Gaussian white noise current source iN with power spectral
density 2kT/R.

Nyquist-Johnson noise model for a single resistor of value R. The verification can be

done by standard frequency-domain techniques or by stochastic calculus [54]. The

highpass filtering of the RC branch is precisely balanced by the lowpass filtering of

the RL branch, so that the terminal noise spectrum is flat. Of course, both resistors

must be at the same temperature. As noted in [53], applying a d.c. voltage to the

circuit would result in differential heating of the resistor in the RL branch. If the

resistors were not properly connected to thermal reservoirs, one could heat up and

become noisier than the other, and the noise spectrum would no longer be flat. This

is a trivial exception to the results of this chapter, which assumes uniform, constant

temperature.

The result above is a particular example of a general circuit theory result, namely,

that a one-port network of LTI passive elements with port admittance Y (jω) presents

a short-circuit thermal noise current with power spectrum 2kT Re{Y (jω)}, where k

is Boltzmann’s constant and T is the absolute temperature [55]. Physicists regard

such results as particular cases of the fluctuation-dissipation theorem [25].
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Generalizations in this Chapter

This chapter studies one carefully chosen example, motivated by the question of

whether some form of fluctuation-dissipation theorem holds for some class of nonlinear

circuits. Our initial formulation appears below as a conjecture for any pair of two-

terminal networks, each comprising an interconnection of LTI resistors at a uniform,

constant temperature, described by the Nyquist-Johnson model, and possibly also

capacitors and inductors that may be nonlinear or time-varying. Two such networks

are said to be zero-state deterministically equivalent if every applied terminal voltage

waveform v(t), t ≥ 0, produces the same current response i(t) from both networks,

provided all capacitor voltages and inductor currents are initially zero and all noise

sources in the resistor models are set to zero. (In the LTI case this just means the

two input admittances are identical.)

Preliminary Fluctuation-Dissipation Conjecture for Networks:

No two zero-state deterministically equivalent networks can be distin-

guished by their terminal noise current responses to any applied voltage

waveform.

The conjecture just hypothesizes that the deterministic terminal behavior uniquely

determines the noise current response for all voltage drives, independent of the details

of the network. The conjecture is true in the LTI case. (Closely related formulations

for the current-driven and multiport cases [55] also hold true for LTI networks, but

we ignore them here for simplicity.)

Main Result of the Chapter

An examination of the bridge circuit will show that this preliminary conjecture is

wrong when the applied voltage waveform or the circuit elements are time-varying.
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This chapter considers only the Nyquist-Johnson model for noise in a linear re-

sistor. That model does not assume any knowledge of the deterministic current flow

mechanism. The results of this chapter disprove the existence of such “black-box”

noise models for systems with internal nonlinearities when the nonlinearities are in

the lossless subsections.

In Section 6.2 we develop the matching condition for the bridge circuit with non-

linear, time-invariant inductor and capacitor under which it becomes deterministically

equivalent to a single linear resistor R at the terminals. In Section 6.3 we show that

such a matched nonlinear bridge gives a short-circuit port current noise statistically

identical to that of the Nyquist-Johnson model for R at thermal equilibrium. We also

show that the same result holds for any d.c. applied voltage once the capacitor and in-

ductor have settled to statistical steady-state. In Section 6.4 we develop the matching

condition for the bridge circuit with linear time-varying inductor and capacitor. We

show that in this case, however, the current noise is not that of the Nyquist-Johnson

model for such a resistor, and thus the preliminary fluctuation-dissipation conjecture

must be modified. We then apply this result to the nonlinear time-invariant bridge

circuit linearized about any trajectory to conclude that the preliminary fluctuation-

dissipation conjecture also fails for the nonlinear bridge circuit with time-varying

input voltage.

All derivations are exact, involving no approximations, except for the last. Further

details, including a stochastic calculus derivation for the LTI bridge, treatment of a

dual circuit, and more explicit calculations in some proofs have been omitted here for

brevity but can be found in [54]. Other mathematically-oriented studies of noise in

nonlinear circuits include [9, 22, 28, 37].
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I
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v  =f(q)C

i  =h(  )L φ
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+

−

+

−

Figure 6-3: The nonlinear bridge circuit

6.2 Nonlinear, Noise-Free Case

Consider the circuit of Figure 6-3. Of course, R > 0. In addition, we require the

following constraints, drawn essentially from [56, 57]:

Assumption 1: Nonlinear reactive element properties. The mappings h :

φ → iL and f : q → vC obey

(i) h(0) = 0, f(0) = 0

(ii) h and f are continuously differentiable functions, and for all values

of the arguments and some fixed ε > 0, there holds

dh

dφ
≥ ε > 0 and

df

dq
≥ ε > 0.

This assumption ensures that the circuit is passive, and that (q, φ) = (0, 0) is a

globally asymptotically stable equilibrium point for V = 0.

As noted in Section 6.1, in the linear case the condition L = R2C ensures that the

bridge appears as a simple linear resistor at its terminals. In the following theorem,

this condition is generalized by finding a condition relating the two nonlinearities

which ensures this simple terminal behavior.
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Theorem 1: Matching Condition for the Nonlinear Bridge. Consider the

circuit of Figure 6-3, with Assumption 1 holding. Suppose the circuit is

in the zero state at t = 0 and is excited by a voltage V (t) for t > 0. Then

for all V (t) there holds

V (t) = R I(t) (6.1)

for all t ≥ 0, if and only if

f(q) = R h(Rq) (6.2)

for all values of q.

Remark: Since f ′(q) = 1/C(q) is the reciprocal of the incremental capacitance and

h′(φ) = 1/L(φ) is the reciprocal of the incremental inductance, then Eq. (6.2) implies

L(φ) = R2 C(q)|q=φ/R, a local version of the linear matching condition L = R2C.

Remark: The above theorem is almost certainly not novel. However, we are

unaware of a reference.

Proof: The circuit differential equations are

dq

dt
=

V − f(q)

R
(6.3)

dφ

dt
= V −R h(φ), (6.4)

and the port current is

I = h(φ) +
dq

dt
= h(φ) +

V

R
− f(q)

R
. (6.5)
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First suppose Eq. (6.2) holds. Observe from Eqs. (6.3) and (6.4) that, irrespective of

V (·),

d(φ−Rq)

dt
= −R h(φ) + f(q)

= −R h(φ) + R h(Rq)

= −R h′(ξ) (φ−Rq) ,

where ξ lies between φ and Rq, by application of the Mean Value Theorem. It follows

that

d

dt
[φ−Rq]2 = −2R h′(ξ) (φ−Rq)2

≤ −2R ε (φ−Rq)2 , (6.6)

using Assumption 1. Since φ(0) = q(0) = 0, then for all t ≥ 0, φ(t) = R q(t). Thus

the matching condition (6.2) together with Eq. (6.5) yields I(t) = V (t)/R as required.

Conversely, if we suppose that I(t) = V (t)/R for all t, then from Eq. (6.5),

R h(φ(t)) = f(q(t)) (6.7)

must hold for all t. In addition the two parallel branches give two distinct expressions

for V (t), also evident from Eqs. (6.3) and (6.4):

V = R h(φ) +
dφ

dt
= f(q) + R

dq

dt
.

In light of Eq. (6.7), the last equality yields

dφ

dt
= R

dq

dt
,
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Figure 6-4: Nonlinear bridge circuit with Nyquist-Johnson noise sources

and with zero initial conditions for φ and q, this means that

φ(t) = R q(t). (6.8)

Hence in Eq. (6.7), we have for all t, R h(R q(t)) = f(q(t)). Since all values of q(t)

are clearly attainable by using some appropriate V (t), it follows that Rh(R q) = f(q)

for all q, as required.

Remark: The arguments above easily show that if the initial conditions are

nonzero, then φ(t) − R q(t) decays to zero exponentially fast, and thus Eq. (6.1)

holds asymptotically for large t.

6.3 Nonlinear, Noisy Case: Successful Results

For this section, a Norton-form Nyquist-Johnson noise model is associated with each

resistor in the circuit, as in Figure 6-4. We would like to show that the terminal

current noise of the matched bridge is the same as that for a single linear resistor,

when V is constant and the circuit is in steady-state. To first order, this result

is clear. Recall that the incremental capacitance and inductance satisfy L(φ) =
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R2 C(q)|q=φ/R. A linearization about the noise-free equilibrium operating point (q, φ)

for a d.c. applied voltage of a nonlinear matched circuit will yield a matched linear

circuit. By superposition, the noise current for the linearized circuit is unaffected by

the applied voltage. The point of this section is to show that this equivalence holds

exactly, even for high temperatures or strong nonlinearities for which the noise could

drive the circuit out of the valid region of linearization.

The circuit is described by stochastic differential equations (SDE’s):

dq

dt
=

V − f(q)

R
− iN2 (6.9)

dφ

dt
= V −R h(φ)−R iN1 , (6.10)

where iN1 and iN2 are independent Gaussian white noise processes with power spectral

density 2kT/R. The port current is

I = h(φ) +
dq

dt
= h(φ) +

V

R
− f(q)

R
− iN2 . (6.11)

One might be tempted to use the matching condition (6.7) and immediately conclude

I = V/R− iN2 . However, this condition does not hold, because (6.7) was derived for

a different excitation: q and φ no longer satisfy φ(t) = R q(t), because they are now

driven by independent noise sources. So, the power spectrum of I must be calculated

more methodically.

6.3.1 The I(t) – V (t) Relation in the Presence of Noise

Before proceeding to study the noise power spectrum, we show that the nonlinear

inductor and capacitor cannot “rectify” the noise, even with a time-varying V (t).

Rectification would cause incorrect “average” behavior, or first-order statistics of the

circuit, such that it would be pointless to study the second-order statistic of the power
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spectral density.

Theorem 2: Terminal Noise Current is Zero-Mean. Consider the circuit

of Figure 6-4, described by equations (6.9) to (6.11), with Assumption

1 and the matching condition (6.2) in force. Let V (t) be an arbitrary

excitation, and assume zero initial conditions. Then

E {I(t)} =
V (t)

R
. (6.12)

Proof: Taking expectations on both sides of Eq. (6.11),

E{I} = E{h(φ)}+
V (t)

R
− E{f(q)}

R
− 0. (6.13)

In order to compute the expectations of f(q) and h(φ), we need to know something

about the probability densities ρ for q and φ. The Fokker-Planck equations [15, 20]

for the evolutions of these densities are, for Eqs. (6.9) and (6.10), respectively,

∂ρq

∂t
= − ∂

∂q

[
V (t)− f(q)

R
ρq

]
+

kT

R

∂2ρq

∂q2
(6.14)

∂ρφ

∂t
= − ∂

∂φ

[(
V (t)−R h(φ)

)
ρφ

]
+ kTR

∂2ρφ

∂φ2
. (6.15)

Using the matching condition (6.2), these two equations become identical up to a

scaling. The reader can verify that a density ρφ(φ, t) satisfies Eq. (6.15) if and only

if the scaled version

ρq(q, t) = R ρφ(R q, t) (6.16)

satisfies Eq. (6.14). The densities corresponding to zero initial conditions (delta func-

tions) also satisfy Eq. (6.16) at t = 0. Thus, the solutions of Eqs. (6.14) and (6.15)

satisfy Eq. (6.16) for all time, and it follows by direct calculation that

E{f(q(t))} = R E{h(φ(t))}, t ≥ 0. (6.17)
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Substituting Eq. (6.17) into Eq. (6.13) shows that the desired result (6.12) holds.

More details are given in [54].

Definition: A steady-state density satisfies dρ
dt

= 0. Thermal equilibrium

for this circuit is the steady state with V = 0.

Corollary: Theorem 2 remains true if, instead of zero initial conditions,

the circuit initially has a steady-state density with V (0) 6= 0.

Proof: The densities

ρq(q) = Aq exp

[
1

kT

∫ q

0

(V − f(q̃)) dq̃

]
(6.18)

ρφ(φ) = Aφ exp

[
1

kT

∫ φ

0

(
V

R
− h(φ̃)

)
dφ̃

]
, (6.19)

where Aq and Aφ are normalization constants, are the steady-state solutions to

Eqs. (6.14) and (6.15). Under the matching condition (6.2), the steady-state ini-

tial densities satisfy Eq. (6.16) at t = 0. Thus, the solutions of Eqs. (6.14) and (6.15)

again satisfy Eq. (6.16) for all time, and the desired result (6.12) holds.

6.3.2 Thermal Noise Current

This section derives the thermal noise current spectrum at the external terminals of

the circuit.

Theorem 3: Terminal Noise Current is that of a Nyquist-Johnson Resistor.

Consider the circuit of Figure 6-4, described by Eqs. (6.9) to (6.11) with

Assumption 1 and the matching condition (6.2) in force. Assume the

circuit is in steady-state at t = 0. Denote by Rnn the autocorrelation of

the terminal noise current n(t) = I(t)− V (t)/R. Then for t, τ > 0,

(a) E {n(t)} = 0,
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(b) Rnn(t− τ) = 2kT
R

δ(t− τ), and

(c)
∫ t

0
n(s) ds is a scaled Wiener process,

provided that one of the following two sufficient conditions holds:

(i) the circuit is LTI, i.e., f(q) = q/C and h(φ) = φ/L, or

(ii) the voltage V (t) is constant.

Proof:

(i) The sufficiency of condition (i) is an immediate consequence of superposition

for linear circuits. The deterministic behavior was shown in Section 6.2, and the

noise behavior for linear circuits at equilibrium was shown in [55]. Adding together

the results of the independent excitations proves the theorem for this condition.

(ii) ⇒ (a) This was shown in Theorem 2.

(ii) ⇒ (b) The autocorrelation of n(t) is, from Eq. (6.11),

Rnn(t, τ) = E

{[
h(φ(t))− f(q(t))

R
− iN2(t)

][
h(φ(τ))− f(q(τ))

R
− iN2(τ)

]}
.

Since iL(·) is independent of iN2(·) and the latter has zero mean,

E
{

h(φ(t)) iN2(τ)
}

= E
{

h(φ(t))
}

E
{

iN2(τ)
}

= 0.

Since iL(·) is also independent of vC(·), though neither has zero mean,

E
{

h(φ(t))
f(q(τ))

R

}
= E

{
h(φ(t))

}
E

{f(q(τ))

R

}
.

The proof of Theorem 2 used the similarity of the Fokker-Planck equations (6.14) and

(6.15) to show

E
{

f(q(t))
}

= R E
{

h(φ(t))
}

,
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for all times t (or τ), and similarly there holds

E
{

h(φ(t)) h(φ(τ))
}

= E
{f(q(t))

R

f(q(τ))

R

}
.

The autocorrelation can thus be simplified to

Rnn(t, τ) = 2E
{f(q(t))

R

f(q(τ))

R

}
− 2E

{f(q(t))

R

}
E

{f(q(τ))

R

}
+E

{f(q(t))

R
iN2(τ)

}
+ E

{
iN2(t)

f(q(τ))

R

}
+ E

{
iN2(t) iN2(τ)

}
.(6.20)

If we multiply both sides of the differential equation (6.9) for q(t) by f(q(τ)) and take

expectations, we obtain

d

dt
E

{
f(q(τ)) q(t)

}
=

V (t)

R
E

{
f(q(τ))

}
− 1

R
E

{
f(q(t)) f(q(τ))

}
−E

{
iN2(t) f(q(τ))

}
.

(6.21)

The dummy time indices t and τ may be interchanged, corresponding to writing the

SDE in τ and multiplying through by f(q(t)), to get

d

dτ
E

{
f(q(t)) q(τ)

}
=

V (τ)

R
E

{
f(q(t))

}
− 1

R
E

{
f(q(τ)) f(q(t))

}
−E

{
iN2(τ) f(q(t))

}
.

(6.22)

Define

F (t, τ) = E
{

f(q(τ)) q(t)
}

,

so that the autocorrelation may be expressed

Rnn(t, τ) =

[
V (t)

R
− E

{
f(q(t))

R

}]
E

{
f(q(τ))

R

}
+

[
V (τ)

R
− E

{
f(q(τ))

R

}]
E

{
f(q(t))

R

}
− 1

R

[
dF (t, τ)

dt
+

dF (τ, t)

dτ

]
+ E

{
iN2(t) iN2(τ)

}
. (6.23)
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For arbitrary time-varying V (t) and strictly nonlinear inductor and capacitor, no

further simplification is apparent.

We now require condition (ii). Since V is constant and the system is initially at

steady-state, it remains in steady-state for t ≥ 0, i.e., q(t) and φ(t) are stationary

random processes. Taking expectations of both sides of the differential equation (6.9),

E

{
dq

dt

}
= 0 = E

{
V − f(q(t))

R

}
+ E

{
iN2(t)

}
,

so that

V = E
{

f(q(t))
}

.

Since q(t) is stationary, F (t, τ) = F (t − τ) depends only on the difference (t − τ).

Further, a consequence of Assumption 1 and Eq. (6.9) is that q(t) is a reversible

process [28], i.e., for all t1 and t2,

Pr [α ≤ q(t1) ≤ α + dα, β ≤ q(t2) ≤ β + dβ] =

Pr [β ≤ q(t1) ≤ β + dβ, α ≤ q(t2) ≤ α + dα] .

As a consequence of reversibility, F is an even function:

F (t− τ) = E {q(t) f(q(τ))} =

∫∫
af(b) p(q(t) = a, q(τ) = b) da db

=

∫∫
af(b) p(q(τ) = a, q(t) = b) da db = E {q(τ) f(q(t))}

= F (τ − t), (6.24)

where p(· , ·) represents the joint probability density of its two arguments, and equality

between the first and second lines follows from reversibility. Since F (·) is an even

function, F ′(·) must be odd, and

d

dt
F (t, τ) =

d

dt
F (t− τ) = F ′(t− τ) = −F ′(τ − t) = − d

dτ
F (τ, t). (6.25)
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Therefore, the autocorrelation reduces to

Rnn(t, τ) = E
{

iN2(t) iN2(τ)
}

=
2kT

R
δ(t− τ).

(ii) ⇒ (c) It remains to show that w(t)
∆
=

∫ t

0
n(s) ds is a scaled Wiener process,

or equivalently, that n(t) is a Gaussian white noise process. From the zero-mean

property of n(t) and its covariance, it is trivial to see that w(t) obeys E {w(t)} = 0

and E {w(t) w(s)} = 2kT
R

min[t, s], and w(t) is a martingale.1 From Eqs. (6.9) and

(6.10), it follows that the sample paths of φ and q are continuous with probability

1, by a result of stochastic differential equation theory [15], and accordingly from

an integrated version of Eq. (6.11), w(t) also has this property. A theorem of Doob

[45] then allows one to conclude that because w(t) is a continuous martingale with

covariance equal to that of a scaled Wiener process, it is necessarily itself a scaled

Wiener process.

It is perhaps somewhat surprising that this analysis holds exactly. There are two

noise sources driving nonlinear elements, so one might expect a nonlinear “mixing”

under which the two drives interact to produce a colored noise spectrum, but this

does not happen in this circuit.

6.4 Failures of the Conjecture

As mentioned in the introduction, there are some situations in which the noise current

of the matched bridge circuit is not statistically equivalent to the noise of a single

linear resistor. Even if the circuit is kept at constant temperature, the conjecture

fails for a time-varying circuit. This failure casts doubts on the hopes of establishing

the general nonlinear nonequilibrium result for a time-varying driving voltage.

1A martingale is a random process w(t) such that the conditional expectation for the future,
given the entire past, is simply the present value. Symbolically, E

{
w(t2)

∣∣ w(t), 0 ≤ t ≤ t1
}

= w(t1)
for all t2 > t1.
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Suppose the energy storage elements in Figure 6-4 are linear, but time varying.

This will provide the first nontrivial failure of fluctuation-dissipation hypothesis in

the Introduction; it is sufficient to consider the short-circuit (undriven) behavior. The

circuit differential equations are

dφ

dt
= −R φ(t)

L(t)
−R iN1(t) (6.26)

dq

dt
= − q(t)

R C(t)
− iN2(t), (6.27)

and we assume E{q(0)} = E{φ(0)} = 0 so that q(t) and φ(t) are zero mean. The

port current is

I(t) =
φ(t)

L(t)
− q(t)

R C(t)
− iN2(t). (6.28)

The corresponding matching condition is of course

L(t) = R2 C(t). (6.29)

The differential equation for q(t) can be solved explicitly in terms of sample paths of

the noise process iN2(t):

q(t) = exp

[
−

∫ t

0

ds

RC(s)

](
q(0)−

∫ t

0

iN2(σ) exp

[∫ σ

0

ds

RC(s)

]
dσ

)
. (6.30)

The autocorrelation function for the port current (which is entirely noise current) for

τ > t is

Rnn(t, τ) = E

{[
φ(t)

L(t)
− q(t)

R C(t)
− iN2(t)

] [
φ(τ)

L(τ)
− q(τ)

R C(τ)
− iN2(τ)

]}

=
1

R2C(t)C(τ)
E

{
q(t) q(τ)

}
+

1

L(t)L(τ)
E

{
φ(t) φ(τ)

}
+

1

RC(τ)
E

{
q(τ) iN2(t)

}
+ E

{
iN2(t) iN2(τ)

}
, (6.31)
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where the other terms vanish because the variables are uncorrelated as argued pre-

viously but now also zero-mean, or by causality in that iN2(τ) cannot affect q(t) for

τ > t. Again by appeal to the Fokker-Planck equations and the matching condition

(6.29), it can be shown that

1

R2 C(t) C(τ)
E

{
q(t) q(τ)

}
=

1

L(t) L(τ)
E

{
φ(t) φ(τ)

}
.

Thus, in order that the short-circuit current noise have the proper autocorrelation, it

must be shown that

2

R2 C(t) C(τ)
E

{
q(t) q(τ)

}
+

1

RC(τ)
E

{
q(τ) iN2(t)

}
= 0. (6.32)

Two quick calculations from Eq. (6.30) yield

E {q(t) q(τ)} = exp

[
−

∫ t

0

ds

RC(s)

]
exp

[
−

∫ τ

0

1

RC(s)
ds

]
×

(
E

{
q2(0)

}
+

2kT

R

∫ t

0

exp

[
2

∫ σ

0

ds

RC(s)

]
dσ

)

and

E {q(τ) iN2(t)} = −2kT

R
exp

[
−

∫ τ

0

ds

RC(s)

]
exp

[∫ t

0

ds

RC(s)

]
.

Substituting these into Eq. (6.32) and canceling common factors, the test reduces to

0
?
= E

{
q2(0)

}
+

2kT

R

∫ t

0

exp

[
2

∫ σ

0

ds

RC(s)

]
dσ−C(t)kT exp

[
2

∫ t

0

ds

RC(s)

]
. (6.33)

Differentiating by t will yield a necessary condition for the equation to be true:

0
?
=

2kT

R
exp

[
2

∫ t

0

ds

RC(s)

]
dσ − dC(t)

dt
kT exp

[
2

∫ t

0

ds

RC(s)

]
−C(t) kT exp

[
2

∫ t

0

ds

RC(s)

](
2

RC(t)

)
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= −dC(t)

dt
kT exp

[
2

∫ t

0

ds

RC(s)

]
.

Thus, the time-varying bridge does not have stationary current noise at the terminals

as required by the Nyquist-Johnson model, except in the trivial case that C is a

constant. In this case, the integrals in Eq. (6.33) can be computed, and if the system

starts at equilibrium, i.e., E{q2(0)} = kTC, then this condition is sufficient as well

as necessary. Of course, if C is a constant, then the bridge is simply the standard

linear, time-invariant circuit, for which the result was already known.

Remark: For a driving voltage V (t) significantly larger than the noise, one could

solve the deterministic system and then compute an approximation for the noise

behavior by linearization about this time-varying solution. This approximation would

behave like the time-varying linear system described above. Since the second-order

statistics for that system are incorrect, we believe that the second-order statistics for

the nonlinear system driven by a time-varying voltage will not match the statistics

of a single linear resistor driven by that same voltage.



168 CHAPTER 6: LIMITS TO THE FLUCTUATION-DISSIPATION THEOREM



Chapter 7

Conclusions

7.1 Results in this Thesis

This thesis has presented four specific requirements that determine whether a noise

model is acceptable. All are based on the second law of thermodynamics. They

provide guidelines for developing physically correct device noise models to correspond

with experimental data.

One important underlying assumption is that the behavior of the device during

any equilibrium fluctuations is constrained by thermodynamic principles. At thermal

equilibrium, the voltage and current fluctuations are generally small and the nonlinear

device behavior could be approximated by linearizing about the origin of the v − i

curve. But on rare occasions, the fluctuations will be large enough to briefly drive the

device into the nonlinear regime. The Gibbs distribution assigns to these fluctuations

very small probabilities, which may not be experimentally measurable. However,

models that predict non-thermodynamic behavior during large fluctuations (however

rare) are non-physical and should be abandoned.

The Nyquist-Johnson Gaussian thermal noise model for linear resistors, extended

to include nonequilibrium operating conditions, satisfies all three of these thermody-
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namic requirements. In contrast, even the equilibrium requirements cannot be met

by the Gaussian model for any nonlinear element with any choice of (operating-point

dependent) noise amplitude.1 In particular, the Gaussian noise model obtained by

applying the Nyquist-Johnson formula to the linearized conductance, e.g. (2.47), is

physically incorrect except in the short-circuit case, though it occasionally appears in

the literature.

We have derived a constraint (2.38) under which the shot-noise model satisfies

all thermodynamic requirements presented here, when describing a nonlinear device

connected to a capacitor. This constraint allows one to predict the current-noise

amplitude at every operating point from knowledge of the device’s v − i curve alone.

The familiar subthreshold MOSFET and pn junction models satisfy this constraint.

Further, we required that a noise model for a device not depend on the circuit

to which the device is connected. For our two-terminal, voltage-controlled resistive

elements, the simplest tests involved only a capacitor connected to our device. In this

case, the current noise may not depend on the value of the capacitance nor on the

total charge accumulated on the capacitor plates, but only on the voltage across the

capacitor’s terminals. This is indeed exactly what one normally means by “device

model.” This requirement was fundamental in the interpretation of Eqs. (2.19), (2.20),

and (2.32). However, our Poisson model does not satisfy this requirement for finite

electron sizes.

In the limit that the electron charge goes to zero, the Poisson model no longer

depends on the capacitor. The dependence for finite electron charge is a quantum-

mechanical effect, since the electron is a charge quantum. In quantum-mechanical

systems, one cannot expect to simply combine equations for the subsystems to de-

scribe the interconnection.

The comparison in Section 2.6 showed that one cannot determine whether a noise

1at least in the standard Itô and Stratonovich interpretations
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model is thermodynamically acceptable by examining its power spectral density alone.

Surprisingly, models with two different noise amplitudes (and different underlying

statistics) turn out to be thermodynamically acceptable for a linear resistor. The

power spectral density is neither sufficient nor necessary; further information on the

underlying probability distribution is required. However, the experiments of Ap-

pendix A show that the linear resistor is not a device that can be described by the

Poisson model. Appendix D shows the difficulties that would face an experimental-

ist attempting to find conditions under which the Poisson model for shot noise will

differ appreciably from the predictions of the Gaussian model applied to a linearized

conductance.

We have explored an extension of the fluctuation-dissipation theorem (or, in circuit

theory terms, a result relating impedances to noise spectra) to a nonlinear situation.

The spectral calculations have been nontrivial, calling on a reversibility idea and

martingale theory. The positive results hold for a specific time-invariant bridge circuit,

linear or nonlinear, in thermal equilibrium or at d.c. steady-state.

The negative results in Section 6.4 show that our original fluctuation-dissipation

conjecture is not correct as stated and must be limited to exclude time-varying net-

works and nonlinear networks with time-varying inputs. Is the modified form below

correct? This remains an open question in the field, and some of the ideas in [28]

may be of assistance.

Modified Fluctuation-Dissipation Conjecture for Circuits

No two zero-state deterministically equivalent time-invariant networks

can be distinguished by the terminal noise currents at any d.c. voltage

input when the networks are in statistical steady-state.

The assumptions here remain those in the paragraph preceding the initial formu-

lation (see the Introduction), including LTI Nyquist-Johnson resistors and nonlinear

inductors and capacitors. Additional assumptions may be required to guarantee re-
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versibility of the charge or flux random processes. The further extensions to include

nonlinear resistor noise models or multiterminal circuits remain completely unex-

plored, so far as we know.

7.2 Suggestions for Further Work

Although the Poisson shot-noise model has been well established by this work, there

are still many questions that could be answered.

One critical question is: how does one determine what devices can be described

by Poisson models? What is it about the devices that allows this description? It is

not the existence of the potential barrier [58]; this is supported by the idea that the

noise in a diode is really generation-recombination noise [48]. To test this idea, one

would look for devices with noisy generation-recombination processes but no potential

barriers.

Since bipolar transistors consist of two pn junctions, it might be possible to extend

the work of this paper to multiterminal Poisson models.

From a duality perspective, it is unsatisfying that there is not a dual shot-noise

model that injects quanta of voltage or flux. We believe that the mathematics would

still work out: in fact, putting the present shot-noise model for charge quanta on the

other side of a gyrator would give the same result. A Josephson junction has quanta

of flux, but it is superconducting, hence not a dissipative device. We are unaware of

a physical device on which to base our model

One fundamental physical question is: is there a transport-level derivation of

Nyquist Johson noise? This derivation would describe the motion of electrons, either

by random diffusion or drift in an applied field, in the same formulation. If one divides

the resistor into along its length, and varies the transmission probabilities across the

boundaries of the sections, one might get shot noise out of the same derivation. By

decreasing the doping level of pn junctions, one eventually gets bulk silicon, which
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is a (linear) resistive material. This logic would not hold if shot noise in a diode is

really generation-recombination noise. Thermal noise is about agitation of electrons

in the conduction band, which is physically different from generation-recombination

processes that add or remove electrons from the conduction band.

From a mathematics standpoint, the fact that both the Gaussian and the Poisson

processes have maximal entropy under some conditions is quite intriguing. It is well

known that the sum of two (independent) Gaussians is again a Gaussian; perhaps

less well-known that the sum of two independent Poisson processes is again a Poisson

process [13]. Loève’s book [59] has some interesting theory of the central limit theorem

as it applies to Poisson random variables.

Last but not least, the proper conditions on an initial distribution must be found

that guarantee existence and uniqueness of solutions to the stochastic differential

equations driven by point processes whose rates depend on the state of the system.
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Appendix A

Simple Experiments

The measurements here show that the linear resistor does not obey the Poisson shot-

noise model. This result is not particularly surprising, given that the Nyquist-Johnson

model has stood sixty years. Thornber states in [60] that “owing to strict charge

neutrality in the resistor, shot noise is not present,” but it is not clear to us what this

means. The Poisson model predicts a higher current noise for V 6= 0, whereas the

extended Nyquist-Johnson model states that the noise is fixed for all voltages.

Recall in Section 2.6, we applied both models to a linear conductor G. The Poisson

model (2.46) reduces to

SP
ii =

2e G V

tanh(V/2vT )
, (A.1)

while the Nyquist-Johnson model, of course, gives

SNJ
ii = 4kTG. (A.2)

(We have doubled the expressions in Section 2.6 for consistency with the measure-

ments of the spectrum analyzer, which displays results for positive frequencies only.)

For an applied voltage of only a few times vT , the Poisson model predicts a doubling

of the noise, compared with V = 0.
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devices
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Figure A-1: Experimental setup.

Fig. A-1 diagrams the measurement circuit. The spectrum analyzer was a Hewlett-

Packard 8568A. The amplifier was an AD829 operational amplifier. The gain of the

circuit, determined by the two resistors in the box marked gain, is RF /R, where

RF = 100kΩ and R = 1kΩ. The capacitor between the op amp and the spectrum

analyzer blocked DC signals (those below the corner frequency of about 340 Hz).

The capacitors on the left side of the circuit, inside the box marked supply, helped

stabilize the voltage. V = 6V was supplied by a 6V lantern battery; V = 0V was

achieved by connecting directly to ground.

For high-frequency noise signals, the test devices experience the same gain as the

1kΩ resistor in the gain box. The capacitor blocks the DC component from reaching

the op amp input.

According to the extended Nyquist-Johnson model for linear resistors, this circuit

will have output voltage noise

∆VNJ =
√

∆V 2
RF + (3∆I2

R) R2
F =

√
4kTRF + 3

4kT

R
R2

F .

For the values in the circuit, ∆VNJ = 7.1× 10−7V/
√

Hz.

For V = 0V, as seen in Section 2.6, the Poisson model predicts the same noise
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as the Nyquist-Johnson model. For V = 6V, the voltage across each of the two test

resistors is 3V, but the resistor in the gain box has no DC voltage across it, so

∆VP =

√
4kTRF +

(
2

2e · 1/R · 3
tanh(3/vT )

+
4kT

R

)
R2

F .

For this circuit, ∆VP = 4.4× 10−6V/
√

Hz at 6V, a factor of about 6 higher than the

Nyquist-Johnson model.

The plots on the next page show that the output voltage noise does not change

significantly at all. It is approximately 1× 10−6 for both V = 0V and V = 6V. This

is slightly higher than the predicted noise, due to contributions from the op amp and

RF interference that were neglected. However, it is clearly less than the noise that

should have been present if the Poisson model were correct.

In another experiment, the resistor values were increased to R = 4kΩ; the mea-

sured voltage noise dropped to 4×10−7. Theoretically, we expected this approximate

halving of the noise, since the dominant term in ∆VNJ is proportional to
√

1/R. This

gives us some confidence that the experiment is measuring the noise we designed it

to (rather than the noise of the op amp or the noise floor of the spectrum analyzer).
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Appendix B

Time-Varying Linear Resistors

This Appendix considers the thermodynamic behavior of an LC circuit driven by

a time-varying resistor. The analysis is motivated by the model for 1/f noise as

a fluctuating resistance, or fluctuating transconductance in the channel of a MOS

device [61]. The resistor will have a time-dependent resistance R(t), and the noise

current variance at each time τ will be that predicted by the Nyquist-Johnson model

for a resistance R(τ).

Circuit Differential Equations

Consider the parallel-LC circuit configuration of Fig. B-1. The circuit differential

equations, which follow from Kirchoff’s Laws, are

dq

dt
= iC = −h(φ)− f(q)

R(t)
−

√
2 kT

R(t)
ξ(t) (B.1)

dφ

dt
= vL = vC = f(q). (B.2)
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R(t)

i  =h(  )φL

v  =f(q)C

Time−varying
Gaussian
noise model

ξi  =    2kT     (t)n
R(t)

Figure B-1: Time-varying resistor in an RLC circuit

The Fokker-Planck equation for the time-evolution of the probability density is there-

fore

d

dt
ρ(t, q, φ) =

∂

∂q

[(
h(φ) +

f(q)

R(t)

)
ρ(t, q, φ)

]
− f(q)

∂

∂φ

[
ρ(t, q, φ)

]
+

∂2

∂q2

[
kT

R(t)
ρ(t, q, φ)

]
. (B.3)

The first two terms correspond to the drift, and the last term expresses diffusion.

Equilibrium Density

Following the steps in Chapter 2 for the constant resistor, the first test is to verify

that the equilibrium density is the Gibbs distribution:

ρeq(q, φ) = A exp [−ELC(q, φ)/kT ] , (B.4)



181

where ELC is the energy stored in the capacitors and inductors, and A serves to

normalize the equation. For an LC circuit, this is

ρeq(q, φ) = A exp

−
(∫ φ

0
h(φ̃) dφ̃ +

∫ q

0
f(q̃) dq̃

)
kT

 . (B.5)

The Fokker-Planck equation requires the partial derivatives of this density.

∂

∂q
ρeq(q, φ) = −f(q)

kT
ρeq(q, φ) (B.6)

∂

∂φ
ρeq(q, φ) = −h(φ)

kT
ρeq(q, φ) (B.7)

Plugging these derivatives in to Eq. (B.3),

0
?
= h(φ)

(
−f(q)

kT

)
ρeq(q, φ) +

∂

∂q

[f(q)

R(t)
ρeq(q, φ)

]
− f(q)

(
−h(φ)

kT

)
ρeq(q, φ)

+
kT

R(t)

∂2

∂q2
ρeq(q, φ)

=
1

R(t)

∂

∂q

[
f(q) + kT

−f(q)

kT
ρeq(q, φ)

]
= 0, (B.8)

we verify that the Gibbs distribution is an equilibrium for the circuit.

Increasing Entropy

In this section, the entropy will be shown to increase monotonically, without use of a

closed-form solution for the probability density ρ.

The entropy of the energy storage side is classically defined as

SLC = −k

∫∫
ρ(t, q, φ) log ρ(t, q, φ) dq dφ (B.9)
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The time rate of change of the inductor-capacitor entropy is then

dSLC

dt
= −k

∫∫
dρ

dt
log ρ dq dφ− k

∫∫
ρ
1

ρ

dρ

dt
dq dφ

= −k

∫∫
ρ̇ log ρ dq dφ. (B.10)

The second term from the product rule vanishes, because total probability is con-

served. The reservoir entropy is calculated by use of the First Law,

dELC

dt
= −T

dSR

dt
, (B.11)

where ELC is the expected energy stored in the inductor and capacitor, T is the

reservoir temperature, and SR is the entropy of the reservoir. Rearranging,

ṠR = − 1

T

∫∫
ELC ρ̇ dq dφ (B.12)

Adding up Eqs. (B.10) and (B.12), the rate of change of the total entropy is

Ṡtot = ṠLC + ṠR =

∫∫ [
−k ln ρ− 1

T
ELC

]
ρ̇(t, q, φ) dq dφ (B.13)

Substituting in the Fokker-Planck equation (B.3) for ρ̇, we obtain

Ṡtot =

∫∫ [
−k ln ρ− 1

T
ELC

]{
∂

∂q

[(
h(φ) +

f(q)

R(t)

)
ρ(t, q, φ)

]
− f(q)

∂

∂φ

[
ρ(t, q, φ)

]
+

∂2

∂q2

[
kT

R(t)
ρ(t, q, φ)

]}
dq dφ

=

∫∫ [
−k ln ρ− 1

T
ELC

] [
h(φ)

∂ρ(t, q, φ)

∂q
− f(q)

∂ρ(t, q, φ)

∂φ

]
dq dφ

+

∫∫ [
−k ln ρ− 1

T
ELC

]
∂

∂q

[f(q)

R(t)
ρ(t, q, φ) +

kT

R(t)

∂ρ(t, q, φ)

∂q

]
dq dφ (B.14)

Let us perform integration by parts on the terms of the next-to-last line. The “uv”
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term (
∫

udv = uv−
∫

vdu) vanishes because ρ vanishes exponentially fast away from

the origin in q or φ. One term will be integrated by parts with respect to q, the other

by φ.

∫∫ [
−k ln ρ− 1

T
ELC

] [
h(φ)

∂ρ(t, q, φ)

∂q

]
dq dφ

= −
∫∫

h(φ) ρ(t, q, φ)
∂

∂q

[
−k ln ρ− 1

T
ELC

]
dq dφ

= −
∫∫

h(φ) ρ(t, q, φ)

[
−k

1

ρ

∂ρ

∂q
− 1

T
f(q)

]
dq dφ

∫∫ [
−k ln ρ− 1

T
ELC

] [
−f(q)

∂ρ(t, q, φ)

∂φ

]
dq dφ

=

∫∫
f(q) ρ(t, q, φ)

∂

∂φ

[
−k ln ρ− 1

T
ELC

]
dq dφ

=

∫∫
f(q) ρ(t, q, φ)

[
−k

1

ρ

∂ρ

∂φ
− 1

T
h(φ)

]
dq dφ

Then, combining these two results and canceling a common term, the next-to-last

line of (B.14) is

∫∫ [
−k ln ρ− 1

T
ELC

] [
h(φ)

∂ρ(t, q, φ)

∂q
− f(q)

∂ρ(t, q, φ)

∂φ

]
dq dφ

=

∫∫
k

[
h(φ)

∂ρ

∂q
− f(q)

∂ρ

∂φ

]
dq dφ

This integral can be computed. Because of the exponential decay of ρ,

∫
h(φ)

∂ρ

∂q
dq = h(φ) ρ(t, q, φ)

∣∣∣q=∞
q=−∞

= 0,

and the definite integral of 0 with respect to φ is still 0. Similarly,

∫
f(q)

∂ρ

∂φ
dφ = 0
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The next-to-last line of (B.14) contained only drift terms, which are noiseless, it should

not be surprising that it vanished. Also note that the resistance did not appear in

these terms, so it did not matter that R(t) was time-varying.

The last line of (B.14) will be integrated by parts with respect to q.

Ṡtot =

∫∫ [
−k ln ρ− 1

T
ELC

]
∂

∂q

[f(q)

R(t)
ρ(t, q, φ) +

kT

R(t)

∂ρ(t, q, φ)

∂q

]
dq dφ

= −
∫∫

∂

∂q

[
−k ln ρ− 1

T
ELC

] [f(q)

R(t)
ρ(t, q, φ) +

kT

R(t)

∂ρ(t, q, φ)

∂q

]
dq dφ

=

∫∫ [
k
1

ρ

∂ρ(t, q, φ)

∂q
+

1

T
f(q)

] [f(q)

R(t)
ρ(t, q, φ) +

kT

R(t)

∂ρ(t, q, φ)

∂q

]
dq dφ

=

∫∫
k

ρ(t, q, φ)

[
∂ρ

∂q
+

ρ

kT
f(q)

]
kT

R(t)

[f(q)

kT
ρ(t, q, φ) +

∂ρ(t, q, φ)

∂q

]
dq dφ

=
k2T

R(t)

∫∫
1

ρ(t, q, φ)

[f(q) ρ(t, q, φ)

kT
+

∂ρ(t, q, φ)

∂q

]2

dq dφ ≥ 0

The entropy is therefore increasing monotonically, showing that Second Law of

Thermodynamics holds for an RLC circuit containing a time-varying R and nonlinear

L and C. Again, it can be seen from the equations for ṠLC (B.10) and ṠR (B.12) that

for an equilibrium density, ρ̇ = 0, the entropy change is identically zero. This can

also be seen in the last line of the last equation, using (B.6) for ∂ρ/∂q.

Notice that the time-varying R(t) did not affect any of the calculations. It does

not matter whether R(t) is varying deterministically (controlled by some other signal,

such as a MOSFET gate voltage) or stochastically (1/f noise).



Appendix C

Existence and Uniqueness of

Solutions to the Forward Equation

This Appendix considers the question: when do solutions exist, and are they unique,

for differential equations driven by jump processes whose rates depend on the state of

the system. Most of the literature on differential equations driven by jump processes

concerns Poisson counters that have deterministic rates, though the rates may be

time-varying.

So-called “doubly-stochastic” Poisson processes have stochastic rates [62, 63].

However, the rate is generally fully determined and then the point process is con-

structed according to the rate. In our case, we want to allow the rate to depend on

the past of the point process. Therefore, we really have two questions:

(i) Does there exist a stochastic process with the (stochastic, state-dependent) rate

we want?

(ii) Does the forward equation driven by this process have a solution that is unique?

The theorems of Brémaud [62] may provide some useful machinery. Under certain

conditions on the stochastic process λt, which is chosen ab initio from a certain

185
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distribution, there exists a counting process with a rate given by that stochastic

process λt.

For this work, one complication is that λt depends on the counting process. How-

ever, λt only depends on the past of the counting process, so it is measurable with

respect to the filtration or past of the counting process. A further complication is

that the rate process λt is not bounded. For the diode model, as v →∞, fT (v) grows

without bound. However, the steady-state probability is vanishing even more quickly

as v →∞, and the function fT (v) describes the rate of transition to smaller voltage,

so that we expect the rate process to satisfy

∫ t

0

λs ds < ∞

almost surely for t ≥ 0.

This machinery was used in [64] to model neuron activity by an “integrate and

fire” method. For a system of equations like

dx = −x dt + dy

dy = f(x(t−)) dN

where f(·) = 0 or 1 and N is a homogeneous Poisson counter of rate µ, then y(t) is

a counting process with (state-dependent) rate µf(x(t−)). Generally, f(x) = 0 for x

less than a threshold: the neuron’s internal cell potential must cross this threshold,

and then it will fire after some random time determined by the homogeneous Poisson

process.

We have not completely understood these results, nor do we understand the rela-

tion between existence of these counting processes and existence of solutions to the

forward equations.

In the case of a circuit consisting of a diode and a linear capacitor, we can say
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more about the existence to solutions of the forward equation (in this case, a Master

Equation) for the Poisson model description of the circuit. We can understand the

discrete state space system of the Poisson model as a doubly-infinite discrete-state

Markov process. Since the Poisson sources only supply single electrons, the capacitor

charge is always an integer. The states of the Markov processes correspond to numbers

of electrons on the capacitor’s upper plate, and the transition rates out of each state

are defined by the complicated, but predetermined, rates fn and rn.

Existence and uniqueness of the equilibrium solution, as mentioned in Chapter 5,

is determined by the criterion of Gallager [13]: If there exists a set of non-negative

numbers {pn} such that

(i)
∑

pn = 1,

(ii) pn νn = pn+1 fn+1 + pn−1 rn−1, and

(iii)
∑

pnνn < ∞,

where νn = fn + rn is the total rate of transitions out of the state n, then {pn} is the

unique steady-state distribution.

We insist that the equilibrium distribution be Gibbs,

po
n = A exp

(
−n2e2

2CkT

)
,

where A normalizes the distribution to satisfy (i). Not only does this distribution

satisfy (ii), but it also satisfies detailed balance,

po
n rn = po

n+1 fn+1.

In Chapter 5, it was shown that (iii) is satisfied for the diode model.
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Recall the following from Chapter 2:

rn = rT

(
(n + 1/2)e

C

)
fn = fT

(
(n− 1/2)e

C

)
fn+1

rn

= exp

(
(n + 1/2)e

CvT

)
g(v) = e

[
fT (v)− rT (v)

]
.

These equations can be solved for

fn =
g

(
(n−1/2)e

C

)
exp

(
(n−1/2)e

CvT

)
exp

(
(n−1/2)e

CvT

)
− 1

rn =
g

(
(n+1/2)e

C

)
exp

(
(n+1/2)e

CvT

)
− 1

One needs very lax conditions on g(v) for the summation
∑

pnνn to be bounded

such that the equilibrium density is valid. In particular, any exponential constitutive

relation will likely be dominated by the exponential of n2 in the Gibbs distribution.

Next, we must ask about the existence (and uniqueness) of solutions for other ini-

tial conditions. Let us specifically consider the diode connected to a linear capacitor,

because this example is sufficient to show the difficulties. Recall that this system had

an equivalent Markov chain description with the forward equation

ṗn =
IS

e
exp

(
(n + 1/2)e2

CkT

)
pn+1 −

IS

e

[
1 + exp

(
(n− 1/2)e2

CkT

)]
pn +

IS

e
pn−1.

For the purposes of this section, we may rescale time to incorporate the constant

IS/e. Further, by properties of the exponential,

exp

(
(n + 1/2)e2

CkT

)
=

[
exp

(
e2

CkT

)]n+1/2
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which allows us to incorporate all the physical constants into the quantity

a
∆
= exp

(
e2

CkT

)
. (C.1)

Comparing this to the Gibbs distribution expression, a = exp(1/σ2), where σ would

be the standard deviation of a continuous Gaussian distribution. (Numerically, it

appears also to be the standard deviation of the discrete Gibbs distribution, but I

cannot prove this analytically.)

Therefore, our forward equation is mathematically equivalent to the expression

ṗn = an+1/2 pn+1 −
[
1 + an−1/2

]
pn + pn−1. (C.2)

Megretski suggested a clever way to find eigenvalues of this system. For the set

of distributions {
pn :

∑
n

an2/2 p2
n < ∞

}
(C.3)

he shows that the spectrum is real and that an infinite number of eigenvalues can

be obtained by the z-transform [65]. (There may be other eigenvalues that are not

obtained by this method, but it turns out that the eigenvalues we want for the next

appendix are obtained from the z-transform.) However, we will also see that this

condition is not sufficient to guarantee that a solution exists for some initial distribu-

tions.

Note for any initial distribution {pn(0)} satisfying this condition, if a solution

exists, then F (t)
∆
=

∑
n an2/2 p2

n(t) is monotonically non-increasing in time along the

trajectory of the solution.

d

dt
F (t) =

d

dt

∑
n

an2/2 p2
n =

∑
n

an2/2 2 pn ṗn

=
∑

n

an2/2 2 pn

(
an+1/2 pn+1 −

[
1 + an−1/2

]
pn + pn−1

)
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=
∑

n

an2/2 2 pn

(
an+1/2 pn+1 − pn

)
+

∑
n

an2/2 2 pn

(
−an−1/2 pn + pn−1

)
=

∑
n

an2/2 2 pn

(
an+1/2 pn+1 − pn

)
+

∑
n

a(n+1)2/2 2 pn+1

(
−an+1/2 pn+1 + pn

)
=

∑
n

2 an2/2
(
pn − an+1/2 pn+1

) (
an+1/2 pn+1 − pn

)
= −

∑
n

2 an2/2
(
pn − an+1/2 pn+1

)2

≤ 0 (C.4)

In fact, F (t) is strictly decreasing unless pn = an+1/2 pn+1 for all n, which is precisely

the condition for the Gibbs equilibrium distribution.

Let us proceed to find the eigenvalues. The z-transform of a sequence pn(t) is

given by

p(z, t)
∆
=

∑
n

z−n pn(t).

We may transform the forward equation (C.2) to obtain

ṗ(z, t) =
z√
a

p(z/a, t)− p(z, t)− 1√
a

p(z/a, t) +
1

z
p(z, t)

=
z − 1√

a
p(z/a, t)− z − 1

z
p(z, t) (C.5)

Now, we may consider evaluating this expression for certain values of z and solving the

resulting differential equations. For z = 1, clearly ṗ(1, t) = 0, either from Eq. (C.5)

or directly because p(1, t) =
∑

n pn(t) = 1 for all t. Now, consider powers of a.

ṗ(a, t) =
a− 1√

a
p(1, t)− a− 1

a
p(a, t)

ṗ(a2, t) =
a2 − 1√

a
p(a, t)− a2 − 1

a2
p(a2, t)

· · ·

ṗ(an, t) =
an − 1√

a
p(an−1, t)− an − 1

an
p(an, t)
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Clearly, the eigenvalues of this system are

λ̃n = −an − 1

an
= −1 + a−n, n = 0, 1, 2, . . . (C.6)

These will be used in the next appendix to find the power spectral density of the

diode-capacitor system.

However, now let us consider negative powers of a. We re-write Eq. (C.5) to read

ṗ(z, t) =
z − 1√

a
p(z/a, t) +

(
1

z
− 1

)
p(z, t).

Then,

ṗ(1/a, t) =
1/a− 1√

a
p(1/a2, t) + (a− 1) p(1/a, t)

ṗ(1/a2, t) =
1/a2 − 1√

a
p(1/a3, t) + (a2 − 1) p(1/a2, t)

· · ·

ṗ(1/an, t) =
1/an − 1√

a
p(1/an+1, t) + (an − 1) p(1/an, t)

Suppose there were an initial distribution {pn(0)} such that its z-transform satisfied

the following:

p(1/a, 0) 6= 0

p(1/an, 0) = 0, n = 2, 3, . . .

The initial conditions for p(1/an, t), along with their differential equations, mean that

p(1/an, t) ≡ 0, n = 2, 3, . . .

but

p(1/a, t) = exp [(a− 1)t] p(1/a, 0).
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Since a > 1, this shows that p(1/a, t) grows exponentially, even though F (t) =∑
n an2/2 p2

n(t) is monotonically non-increasing along trajectories.

The initial distribution with z-transform

p(z, 0) =
∞∏

m=2

(
1− 1

az

)

has the initial conditions required.

Megretski [65] concludes that there is no solution to the system of equations (C.2)

for this initial distribution, so we need a stronger condition on the initial distribution

than that expressed by (C.3). We believe that any distribution with a finite number

of non-zero pn will be well-behaved, as will, of course, any equilibrium density.



Appendix D

Poisson Model Power Spectral

Density

In this appendix, we will consider under what circumstances the Poisson model for

shot noise will differ appreciably from the Gaussian model applied to a linearized

conductance. We will investigate this by means of the power spectral density of a

diode connected to a capacitor. In any measurement technique for the power spec-

tral density, there will be a capacitance in the circuit: the input capacitance of the

instrument, if not others.

D.1 Symbolic Analysis

The power spectral density of the linearized Gaussian model will have a lowpass

characteristic of an RC filter. For a nonlinear device of constitutive relation i = g(v),

the incremental conductance at the origin is G = g′(v)|v=0. The critical frequency is

then wcrit = G/C. For the diode,

G = g′(v)|v=0 =
d

dv
IS [exp(v/vT )− 1]

∣∣∣∣
v=0

=
IS

vT

,
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so that the critical frequency is wcrit = IS/(CvT ). The power spectral density looks

like the top-most curve in Fig. D-1.

For the Poisson model, the analysis is more difficult. We will start with the

Markov chain of Fig. 2-8. We will attempt to find the autocorrelation of this chain,

which will be expressed in the form of a sum of exponentials. The Fourier transform

of the autocorrelation is the power spectral density. If one of the exponentials in the

autocorrelation is dominant, then we expect the Fourier transform to have a critical

frequency corresponding to this eigenvalue.

The forward equation for the Markov chain is

ṗn =
IS

e
exp

(
(n + 1/2)e2

CkT

)
pn+1 −

IS

e

[
1 + exp

(
(n− 1/2)e2

CkT

)]
pn +

IS

e
pn−1.

As in the previous appendix, we will rescale time by IS/e and use the variable a =

exp (e2/CkT ) to absorb the remaining physical constants. We will be interested in

the behavior of this system in the limits that e2/(CkT ) is either large or small. In

the case that this quantity is small (since e and k are fundamental physical constants,

this means CT large), we expect to approach the linearized Gaussian result, based on

our analysis of the Poisson model when the electron size goes to zero. In the case that

this quantity is large, we hope to find a measurable difference in the power spectral

densities predicted by the Poisson and Gaussian models.

Hiding these physical constants yielded the equation (C.2), which can be expressed

in matrix form,

ṗ = Q p
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where p = [. . . , p2, p1, p0, p−1, . . .]
T and

Q =



. . . . . . 0 0 0

a3/2 −[1 + a1/2] 1 0 0

0 a1/2 −[1 + a−1/2] 1 0

0 0 a−1/2 −[1 + a−3/2] 1

0 0 0
. . . . . .


(D.1)

The Gibbs equilibrium distribution is

po = A
[
. . . , a−22/2, a−12/2, a−02/2, a−12/2, . . .

]T

= A
[
. . . , a−2, a−1/2, 1, a−1/2, . . .

]T
,

where A =
(∑∞

n=−∞ a−n2/2
)−1

normalizes the distribution. This solution satisfies

Gallager’s criterion for uniqueness of a steady-state distribution. We believe that

solutions to the forward equation will exist for any initial distribution of compact

support, specifically any delta-function corresponding to the exact charge on the

capacitor when we set up the experiment.

The eigenvalues

λ̃n = −an − 1

an
= −1 + a−n, n = 0, 1, 2, . . . , (D.2)

were calculated in the previous appendix. The eigenvalue for n = 0 is zero; this

corresponds to the equilibrium distribution eigenvector po
n. Recalling that we rescaled

time by IS/e, the next eigenvalue of the original system is

λ1 =
IS

e

[
−1 + a−1

]
=

IS

e

[
−1 + exp

(
− e2

CkT

)]

In the limit that CT is large (which means the approximate variance CkT/e2 = σ2
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is large), the exponential can be Taylor-expanded

λ1 ≈
IS

e

[
−1 + 1− e2

CkT

]
= − IS

C vT

, (D.3)

which is the critical frequency obtained in the linearized Gaussian approximation.

To see specifically how this eigenvalue appears in the power spectral density for the

Poisson system, we will have to make some more calculations.

The autocorrelation of the charge on the top plate of the capacitor is given by the

expression

Rqq(t) = E {q(t) q(0)}

(The system is assumed to be at equilibrium, so that the random process is stationary:

E {q(t) q(0)} = E {q(t + τ) q(τ)} for any τ .) Since we have a discrete-state system,

we can split up the expectation as follows:

Rqq(t) =
∑

n

E [q(t) q(0) |q(0) = n] Pr{q(0) = n}

=
∑

n

nE [q(t) |q(0) = n] Pr{q(0) = n}

=
∑

n

n

[∑
m

m Pr{q(t) = m |q(0) = n}

]
Pr{q(0) = n} (D.4)

If we define

Pij(t)
∆
= Pr{q(t) = j |q(0) = i},

then the Kolmogorov equations in [13, Sec. 6.2],

P(t) =
∞∑
i=0

tiQi

i!
= exp (Qt) ,

give us a way to calculate the transition probabilities Pnm(t). Here, P(t) is the matrix

with elements Pnm(t), P(0) = I, and Q is the same matrix we defined in Eq. (D.1)

for the forward equation.
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If we define c = [. . . ,−2,−1, 0, 1, . . .], we can write (D.4) in matrix form,

Rqq(t) = cT P(t) [diag po] c = cT exp (Qt) [diag po] c, (D.5)

where [diag po] is the matrix with the vector po along the main diagonal and zeros

elsewhere.

It can be shown [65] that the system matrix Q is similar to a symmetric matrix.

Let D be the diagonal matrix with entries dnn = an2/4 where a = exp(e2/CkT ) was

defined earlier. Then

D Q D−1 = −D M D =



. . . −a3/4 0 0 0

−a3/4 1 + a1/2 −a1/4 0 0

0 −a1/4 1 + a−1/2 a−1/4 0

0 0 a−1/4 1 + a−3/2 −a−3/4

0 0 0 −a−3/4 . . .


where M is positive semidefinite and symmetric with a nullspace of dimension 1 con-

sisting of the span of the vector 1. This can be shown algebraically or by reversibility,

noting that po
n ∝ a−n2/2. In this case, the symmetric form for the autocorrelation is

Rqq(t) = cT D−1 exp [−D M D t]D−1c (D.6)

In either case, Eq. (D.5) or (D.6), we would like to show that the scalar time

function Rqq is a sum of scaled exponentials, b0 exp(λ0t) + b1 exp(λ1t) + . . ., with the

eigenvalues determined in Eq. (D.2). For large CT , we expect to find that one of

the coefficients, specifically b1, is dominant, because the corresponding eigenvalue λ1

matches the critical frequency from the linearized Gaussian case. In this case, the

vector D−1c would be an eigenvector of the matrix D M D (and hence the matrix

exponential).
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Unfortunately, D−1c is never exactly an eigenvector for finite CT . Consider the

center row of the eigenvalue equation:

D M D D−1c
?
= λ1 D−1c

[
· · · 0 −a1/4 1 + a−1/2 −a−1/4 0 · · ·

]



...

2a−1

a−1/4

0

−a−1/4

−2a−1

...



?
= (−1 + a−1) [0]

−1 + 0 + a−1/2 ?
= 0

This equation is only true when a = 1. For the eigenvalue, we used the constant and

linear terms in the expansion for a; for the eigenvector, we only want the constant

term.

It is not clear how to proceed analytically. Therefore, we will look for an expression

for the power spectral density for the Poisson model and compare it to the lowpass

filter function of the linearized Gaussian model. Fortunately, it is possible to find an

analytical expression for the power spectral density, rather than having to numerically

Fourier-transform the autocorrelation.

The power spectral density of the capacitor charge is the Fourier transform of the

autocorrelation function.

Sqq(ω) = F {Rqq(t)} =

∫ +∞

−∞
e−jωtRqq(t) dt

The autocorrelation expression (D.5) is only valid for t > 0, but since the random
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process is reversible, this is not an obstacle. For positive time,

∫ +∞

0

e−jωtRqq(t) dt =

∫ +∞

0

e−jωt cT exp (Qt) [diag po] c dt

= cT

∫ +∞

0

exp (−jωtI + Qt) dt [diag po] c

= cT (jωI−Q)−1 [diag po] c.

The power spectral density is then twice the real part of the above expression, or the

sum of that expression and its complex conjugate.

Sqq(ω) = cT (jωI−Q)−1 [diag po] c + cT (−jωI−Q)−1 [diag po] c

= cT
[
(jωI−Q)−1 + (−jωI−Q)−1] [diag po] c

= −2 cT Q
(
ω2I + Q2

)−1
[diag po] c (D.7)

D.2 Numerical Analysis

The power spectral density (D.7) can be calculated with Matlab. We consider a

system with only a finite number of states, specifically 2N +1 states, corresponding to

−N to N electrons on the capacitor. Of course, the equilibrium density will decrease

exponentially with |N |, making computer calculations difficult. However, the effects

of these distant states on the power spectral density will also be negligible. Some

roundoff errors are avoided by using pico-units, such as pF of capacitance and pC for

the charge of the electron. The constants always appear in ratios in the equations so

that the scaling cancels algebraically.

If one simply sets the rates f−N = 0 and rN = 0, meaning no transition down

from −N to −(N + 1) and no transition up from N to N + 1, then the states

outside −N . . .N will never be reached. Fortuitously, the equilibrium density for the

reachable states will be unchanged except for normalization. Detailed balance must

still be satisfied for the reachable states, and is governed by rates that we have not
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changed.

While it is possible to use detailed balance to calculate the equilibrium distribu-

tion, it is numerically more robust to simply use the Gibbs formula,

rho = exp(-[-N:N].^2 / (2*C*V_T))’;

and then normalize. If the vectors f and r contain the transition rates for the states,

then the tridiagonal matrix Q is given by

Q = diag(-f-r,0) + diag(r(2:2*N+1),1) + diag(f(1:2*N),-1);

The Matlab expression for the power spectral density is

Sxx(i) = -2 * (E/C)^2 * c’ * Q * inv(w(i)^2*eye(2*N+1)+Q^2)

* diag(rho) * c;

The factor (E/C)2 is the electron size over the capacitance, and converts the power

spectral density in charge to one in voltage. This result is compared to the linearized

Gaussian model.

Svv = 2 * k * T * G ./ (G^2 + C^2*w.^2);

where G = IS/vT is the linearized conductance at the origin. The complete Matlab

codes are in Section D.4.
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D.3 Numerical Results

In this section, we present some simple results. For the product CT = 10, Matlab

calculated the following:

sigma= 73.42 G/C = 1.159420e+03

N= 50 1:-2.504115e+07 2N:-6.643783e+03 2N+1:2.592060e-10

98.68% 0.00%

N=100 1:-2.515784e+07 2N:-2.176808e+03 2N+1:-1.392664e-09

99.04% 0.00%

N=296 1:-2.562321e+07 2N:-1.160312e+03 2N+1:-1.629009e-09

99.99% 0.00%

The first line gives the standard deviation sigma =
√

CkT/e2 followed by the

critical frequency G/C for the Gaussian model for the linearized system. We expect

that the number of electrons N must be greater than the standard deviation of the

charge on the capacitor plates to capture the behavior of the system.

There are three pairs of lines giving the data for N = 50, 100, and 296. The

first line of each pair lists three of the 2N + 1 eigenvalues of the truncated system.

The largest, labelled 2N+1, is approximately zero, matching Eq. (D.2) for n = 0.

The next-largest eigenvalue, labelled 2N, appears to be converging to the critical

frequency G/C. The second line of each pair shows part of the decomposition of

the vector D−1 c in Eq. (D.6) in terms of the eigenvectors corresponding to the two

largest eigenvalues. If we write D−1 c =
∑2N+1

n=1 bnvn, where vn are the eigenvectors,

then the percentages given are |bk|2/
∑2N+1

n=1 |bn|2 for k = 2N, 2N + 1. The percent

of energy in the eigenvector corresponding to the eigenvalue that converges to the

critical frequency G/C is almost 100%.

In Fig. D-1, the line for N = 50 is the lowest; N = 100 is the middle, and N = 296

lies almost exactly on top of the dotted curve of the linearized Gaussian lowpass filter

curve. The value N = 296 was chosen as four times the standard deviation; 99.99%

of the area under a Gaussian curve lies within four standard deviations.
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Figure D-1: Power spectral densities for CT = 10.

For large CT , i.e., large sigma, we need a larger N to capture a larger section of the

Markov chain. But, as predicted by our analysis on the eigenvalues and eigenvectors,

as well as by physical reasoning, the more electrons (in a mean-square sense) are

on the capacitor, the less influence a single electron will have on the behavior. The

hope is that for small CT , the effects of a single charge would be more noticeable,

and hence, the power spectral density for the Poisson model would differ appreciably

from that predicted by the linearized Gaussian model.

For the case CT = 0.01, Matlab computed

sigma = 2.32 G/C = 1.159420e+06

N= 1 1:-1.852184e+07 2N:-6.531965e+06 2N+1:4.656613e-10

99.82% 0.00%

N= 5 1:-3.102086e+07 2N:-1.203525e+06 2N+1:-9.313226e-10

96.31% 0.00%

N= 25 1:-6.215398e+08 2N:-1.058232e+06 2N+1:-1.874696e-10

91.01% 0.00%
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Figure D-2: Power spectral densities for CT = 0.01.

Again, as N increases, the second-largest eigenvalue approaches the the critical

frequency G/C. The curves for N = 1, 5, and 25 are plotted in Fig. D-2; again, the

larger values of N are closer to the linearized Gaussian curve. However, note that for

N = 25, the Poisson model curve is slightly above the linearized Gaussian curve. This

effect persists for larger values of N (but recall that for more than 99% of the time,

the system is certainly within the ten standard deviations represented by N = 25).

Further analysis shows that when decomposing the vector D−1c into the eigenvectors

of the symmetrized system, 91% is in the direction associated with the second-largest

eigenvalue. A further 7%, most of the remainder, is in the direction associated with

the third-largest eigenvalue, λ2 = −1 + a−2 ≈ −1.937288e + 06, which is within a

factor of 2 of the second-largest eigenvalue. (Note that any energy in the direction

associated with the largest eigenvalue would be lost, because this eigenvalue is zero

and hence makes no contribution to the power spectral density.)
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An experimental disproof of the linearized Gaussian model would require an ex-

tremely sensitive spectrum analyzer to see the slightly higher response or extremely

good frequency resolution to detect the second time-constant behavior. Of course,

one also needs a diode that operates properly at low temperatures (where “carrier

freeze-out” might occur) and for which one has very good knowledge of its saturation

current to calculate the expected critical frequency.

D.4 Matlab Code

shotcomp.m

% shotcomp.m % gjcoram, 3/21/00

% comparison of power spectral density for

% finite-state shot-noise model to linearized Gaussian

% parameters

% in pico-units - note that I_S/E = pA/pC = A/C

% E/C = pC/pF, G/C = (pA/V)/pC

global I_S C E V_T MOD

I_S = 1; % saturation current, pA

if exist(’C’) == 0 C=10; end % capacitance, pF

E=1.6e-7 ; % electron charge, pC

k=1.38e-11; % Boltzmann constant, pJ/K

if exist(’T’) == 0 T=10; end % temperature, K

V_T = k*T/E; % thermal voltage, Volts

MOD = 1; % model for f and r: diode=1

% Gaussian linearized solution

%

% Svv = 2 kT G / (G^2 + C^2 w^2)

% corner freq: G/C = wc

G=I_S/V_T; %pA/V

wc=ceil(log10(G/C));

nfreq=50;

w=logspace(wc-3,wc+1,nfreq);

Svv = 2 * k * T * G ./ (G^2 + C^2*w.^2);

%pJ pA/V / ((pA/V)^2 + (pF/s)^2)
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clf;

loglog(w,Svv,’k.’);

title(’power spectrum’);

xlabel(’ang frequency w’);

hold on;

% std dev for eigenvalue comparison

sig2=C*k*T/E^2;

s=sprintf(’sigma =%7.2f G/C = %e’,sqrt(sig2),G/C);

disp(s);

s=sprintf(’power spectrum, sigma=%6.2f’,sqrt(sig2));

title(s);

% shot-noise model solutions

%

if (sig2<10)

for N=[1,5,25];

Sxx=shotspec(N,w);

loglog(w,Sxx,’y’);

end

ylabel(’N=1,5,25’);

else

four = 4*ceil(sqrt(sig2));

for N=[50, 100, four];

Sxx=shotspec(N,w);

loglog(w,Sxx,’g’);

end

s=sprintf(’N=50, 100, %d’,four);

ylabel(s);

end

% make sure Gaussian is on top

loglog(w,Svv,’k.’);

legend(’linearized Gaussian’,’Poisson model’);
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shotspec.m

function Sxx=shotspec(N,w)

% function Sxx=shotspec(N,w) % gjcoram, 3/21/00

% power spectral density for finite-state shot-noise model

% chain runs from -N to N, frequency points w

% parameters

%

global I_S C E V_T MOD

c=[N:-1:-N]’;

% get transition rates

%

% reverse (rising charge) rates

r=rev(N);

r(1)=0; % no transition from N to N+1

%

% forward (falling charge) rates

f=forw(N);

f(2*N+1)=0; % no transition from -N to -N-1

% eq dist from Maxwell-Boltzmann

%

rho = exp(-c.^2 * E / (2*C*V_T))’;

% normalize

a=1/sum(rho);

rho=a*rho;

% find the transition matrix

%

% Q(i,i) = -nu_i = -(f_i + r_i)

% Q(i,j) = q_ij = P_ij*nu_i

% q_i,i+1 = r_i; q_i,i-1 = f_i; q_i,j=0, otherwise

% Q(i,i) Q(i,i+1) Q(i,i-1)

Q = diag(-f-r,0) + diag(r(2:2*N+1),1) + diag(f(1:2*N),-1);

% symmetrize (so eigenvectors are orthogonal)

%

D=diag(sqrt(rho)); % actually inv(D) in Wyatt’s report

P=inv(D)*Q*D;
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% check eigenvalues - 2nd largest -> G/C ??

%

[v,l]=eig(P);

[eigvs,i]=sort(diag(l));

s=sprintf(’N=%3d 1:%e 2N:%e 2N+1:%e’,

N,eigvs(1),eigvs(2*N),eigvs(2*N+1));

disp(s)

% check expansion in 2 largest eigenvectors

%

Dr=D*c;

an=v’*Dr; %Dr = a1 v1 + a2 v2 + ...

pv0=an(i(2*N+1))^2/sum(an.^2); % fraction along 0-eigenvalue direction

pv1=an(i(2*N))^2/sum(an.^2); % fraction along next largest ev

s=sprintf(’ %3.2f%% %3.2f%%’,

100*pv1, 100*pv0);

disp(s)

% power spectral density from Report 1, eq. (4)

%

Q2=Q^2;

nfreq=size(w,2);

Sxx=zeros(1,nfreq);

for i=1:nfreq

Sxx(i) = -2 * (E/C)^2 * c’ * Q * inv(w(i)^2*eye(2*N+1)+Q2)

* diag(rho) * c;

end
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forw.m

function y=forw(N)

% computes forward rates

% N = number of states in chain

% model = 1 for diode

global I_S C E V_T MOD

if MOD==1

% for diode, f_j=(I_S/e)*exp(-e/(2*C*V_T))*exp(j*e/(C*V_T))

j=[N:-1:-N];

y=I_S/E*exp(-E/(2*C*V_T))*exp(j*E/(C*V_T));

elseif MOD==2

% diode w/half-electron mean?

% for diode, f_j=(I_S/e)*exp(j*e/(C*V_T))

j=[N:-1:-N];

y=I_S/E*exp(j*E/(C*V_T));

else

disp(’error! - no such model’)

end

rev.m

function y=rev(N)

% computes reverse rates

% N = number of states in chain

% model = 1 for diode

global I_S C E V_T MOD

% for diode, r_j=I_S/e

if MOD==1

y=ones(1,2*N+1)*I_S/E;

elseif MOD==2

y=ones(1,2*N+1)*I_S/E;

else

disp(’error! - no such model’)

end
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